1911.]

NUMBER OF PRIMES OF GIVEN LINEAR FORMS

By Lt.-Col. Allan J. C. CUNNINGHAM, R.E.

(Fellow of King's College, London).

[Received April 18th, 1911.-Read April 27th, 1911.]

[The author is indebted to Mr. H. J. Woodall, A.R.C.Sc., for reading the proof sheets of this paper.]

1. Introduction.—The object of this paper is to give the results of actually counting the numbers of primes of certain linear forms, and to compare the numbers counted with a certain formula for the same.

Let N = total number of primes (p) within a given "range" (say R), of the natural numbers.

Let p denote a prime of the linear form $p = nw + \alpha$ ($\alpha < n$): n is hereinafter styled the "modulus" of the prime-form.

Let M_a = the number of primes (p) of that form within that range (R).

Let $\phi(n)$ denote the totient of n.

2. Approximate Formula for M_{α} .—Considering the form of p with respect to the "modulus" n, it is seen that a must be prime to n (in order that p may be *prime*): so that the set of values possible for a is the whole set of integers prime to n, and < n; and the number of such values (of a) is therefore = $\phi(n)$, the totient of n.

Hence, unless there be some reason for certain of the $\phi(n)$ values of a yielding more primes than other values of a yield, it would follow that the numbers (M_{α}) of primes of the forms

$$p = n\varpi + a_1$$
, $n\varpi + a_2$, ..., $n\varpi + a_r$ (a prime to n, and < n)

in any one *large* range of the natural numbers should be nearly equal; so that $M = \frac{1}{2} N$ enprovince table (for each value of r). (1)

 $M = \frac{1}{\phi(n)} N$ approximately (for each value of α). (1)

This rule has now been tested by the author by actually counting*

^{*} The labour of such counts is very great: the author had, however, a number of printed and MS. tables ready to hand, specially suited to this work. The risk of error (especially of missing one or two primes in counting) is considerable; all the counts have been done by two independent counters.

April 27,

the numbers (M) of primes p of a considerable number of forms $(n\varpi + a)$ within various ranges.

3. Form
$$p = n\varpi + 1$$
. Count of M_1 .—The particular form
 $p = (n\varpi + 1)$

(in which a = 1, always) seems the most interesting on account of its connexion with Fermat's theorem for bases a (prime to p), viz., whether

$$a^{(p-1)+n} \equiv \mp 1 \text{ or } \not\equiv \mp 1 \pmod{p}, \quad [p = n\varpi + 1]. \tag{2}$$

The main Table (on p. 251) shows the number (M) of primes of form $p = (n\varpi + 1)$ actually connected with certain ranges $(R = 1 \text{ to } 10^4, 10^5, \text{ or } 5.10^5)$ for a number (61) of values of the modulus (n). The short abstract below shows the total* number (N) of primes in each range (R), and the number of cases (*i.e.*, of different values of n) available for discussion in each range.

Values of n.		Total number (N) of primes in Range (R)					
		$R = 1 \text{ to } 10^4$	$R = 1$ to 10^5	$R = 1$ to 5.10^{3}			
All even numbers, 2 to 60 Certain even numbers, 64 to 210 Numbers $n = 8q$ (q prime = 101 to 241)	30 15 16	N = 1228 N = 1228	N = 9591 N = 9591 N = 9591	N = 41537			

The Table (on p. 251) shows also the totient $\phi(n)$ of each value of n, and the (computed) value of $N \div \phi(n)$, for comparison with the (counted) M.

An examination of the table shows at once that the formula (1) really is a very close approximation to the counted number (M), but also discloses the remarkable result that—

The counted number (M) of primes of form p = (nw + 1) is (almost always) less than, and in many cases markedly less than, the computed average, $N \div \phi(n)$. (3)

The exceptions to this rule, *i.e.*, the number of cases of $M > N \div \phi(n)$, are very few (see detail in the abstract below): and the excess of M over $N \div \phi(n)$ is, in all those cases, *trifting* compared with the relatively large deficiency in many of the other cases.

^{*} The primes 1 and 2 are excluded—throughout this paper—from the totals denoted by N.

Range.	Values of <i>n</i> yielding $M > N + \phi(n)$.					
1 to 10 ⁴	22, 28, 34, 44, 50, 54	6 in 45				
1 to 10 ⁵	34, 50, 54, 58, 100, 130, 720, 768	8 in 61				
1 to 5.10 ⁵	432, 552, 720, 768	4 in 16				

This renders it probable that the deficiency of the number (M) of primes of the forms $p = (n\varpi + 1)$ below the average number $N \div \phi(n)$ above disclosed really is a property of primes of that form, when taken through a *large range* of the natural numbers. The cause of this property has yet to be sought.

р	$n = \phi(n) =$	2 1	4 2	6 2	8 4	10 4	12 4	14 6	16 8	18 6	20 8	22 10	24 8	26 12	28 12	30 8
≯10⁴	$\begin{array}{l} N \div \phi = \\ M = \end{array}$	1228 1228	614 609	614 611	307 295	307 306	307 300	204 203	153 144	204 203	153 152	123 126	153 143	102 99	102 103	153 152
≯ 10⁵	$N + \phi = M = M =$	9591 9591	4795 4783	4795 4784	2398 2384	2398 2387	2398 2374	1598 1593	1199 1188	1598 1592	1199 1181	959 94 5	1199 1181	799 798	799 787	1 199 1 189
р	$n = \phi(n) =$	32 16	34 16	36 12	38 18	40 16	42 12	44 20	46 22	48 16	50 20	52 24	54 18	56 24	58 28	60 16
≯10⁴	$\begin{array}{l} N + \phi = \\ M = \end{array}$	77 73	77 78	102 101	68 64	77 71	102 98	61 63	56 55	77 69	61 63	51 50	68 70	51 50	44 43	77 76
≯10⁵	$N + \phi = M = M =$	6 00 599	599 603	799 797	533 525	599 582	799 787	480 466	436 429	599 581	480 486	399 392	533 535	399 385	342 345	599 585
р	$n = \phi(n) =$	64 32	70 24	72 24	80 32	88 40	90 24	96 32	100 40	104 48	110 40	120 32	130 48	140 48	150 40	210 48
≯10⁴	$N \div \phi = M =$	38 38	51 48	5 I 47	38 35	30 29	5 I 50	38 35	31 30	26 22	31 29	38 35	25 25	25 24	30 29	26 23
≯10⁵	$\begin{array}{l}N \div \phi = \\ M = \end{array}$	300 300	399 392	399 397	299 293	240 228	399 388	299 292	240 243	200 194	300 231	299 286	200 202	200 183	300 235	200 192
p	n =	2	8.101	8.103	8.107 8.109	8.137	8.139	8.149	8.157 8.167	8.173	8.181	8.193	8.199	8.227	8.229	142.0
-	$\phi(n) =$	1	400	40 8 4	424 43	2 544	552	592 6	24 66	4 688	720	768 '	792 9	04 9	12 90	50
≯10⁵	$\begin{array}{l} N + \phi = \\ M = \end{array}$	9591 9591	24 21	24 18	23 2 18 1	2 18 6 17	3 17 7 17	16 16	15 I 11 I	5 14 5 14	13 15	13 14	12 6	1 I I I	10 8	10 10
≯5.10⁵	$\begin{array}{c} N \div \phi = \\ M = \end{array}$	41537 41537	/ 104 / 104	102 99	98 9 96 10	6 76 1 75	5 75 77	70 69	67 6 64 6	3 60 3 60	5 8 61	54 58	57 48	46 44	46 <i>4</i> 43 4	43 41

4. Form $p = n\varpi + a$. Count of M_a .—The above result carries with it the property that the number (M_a) of primes of the form $p = (n\varpi + a)$ (with a > 1) must exceed the average number of the formula for some

values of α (> 1); and that, in particular, some M_{α} must be > M_1 ; all the M_{α} being, of course, within the same (large) range (R).

To test this further property, the numbers (M_a) of primes of each of the following forms

$$p = 4\varpi \pm 1$$
; $6\varpi \pm 1$; $8\varpi \pm 1, 3$; $10\varpi \pm 1, 3$; $12\varpi \pm 1, 5$

have now been counted within the same range R = 1 to 10^5 .

The table below—drawn up very similarly to the preceding—shows under each modulus (n = 4, 6, 8, 10, 12) the totient $\phi(n)$ of n, the computed average number $N \div \phi(n)$ of primes of each form $p = (n\varpi + a)$, and lastly the actual counted number (M) of primes of that form.

$n = \phi(n) = N^* = N \div \phi(n) =$	4 2 9591 4795	6 2 9590 4795	8 4 9591 2398	10 4 9590 2398	12 4 9590 2398		
<i>p</i> =	4 ar + 1 4 ar + 3	6 ar + 1 6 ar + 5	8 er + 1 8 er + 3 8 er + 5 8 er + 7 8 er + 7	10 - 4 + 1 10 - 4 + 3 10 - 4 + 7 10 - 4 + 9	12 + 1 12 + 5 12 + 7 12 + 11		
$M_a =$	47 ⁸ 3 4808	47 ⁸⁴ 4806	23 84 2409 2399 2399	2387 2402 2411 2411 2411	2374 2409 2410 2397		

An examination of this table shows the following somewhat remarkable relations between the numbers (M_a) of primes of the $\phi(n)$ forms $p = (n\varpi + a)$ with the same modulus (n), all taken, of course, through the same range R (= 1 to 10⁵ in this case):—

The numbers M_a are approximately equal, so that formula (1) is a good approximation.	(4)
The number M_1 is the least of all the M_a .	(5)
The number M_{n-1} is the <i>next least</i> of all the M_a .	(6)

[It should be stated that the particular result for the modulus n = 4, viz., that the number M_1 is $< M_3$, has been proved generally true by \uparrow Tchebycheff.]

The two results (5), (6) together involve the following :---

The number of primes (within a given large range), of which 2, 3, 5 are 2-ic residues, is markedly less[‡] than the number of which these bases are 2-ic non-residues. (7)

^{*} The primes 1 and 2 are excluded from all these totals (N): the prime 3 is excluded when n = 6 and 12, and 5 is excluded when n = 10.

[†] In a letter to M. Fuss, published in the Bull. de l'Acad. de St. Petersbourg, 1853; quoted in Glaisher's Factor Table for the Fourth Million, London, 1879, Introduction. p. 33.

⁺ This property as to 2-ic residuacity is believed to be true for other bases; and a similar property is believed to be true for higher orders of residuacity. It is hoped to make these properties the subject of a further communication: the data are well in hand.

1911.] NUMBER OF PRIMES OF GIVEN LINEAR FORMS.

5. Author's Previous Work.—A certain number of the counts (M_a) now reported had been previously published by the author on p. xx of the Introduction to his Tables of Quadratic Partitions, London, 1904; viz.,

8 cases of M_1 (i.e., for p = nw + 1), viz., for n = 4, 6, 8, 10, 12, 16, 24, 30.

2 cases of M_{n-1} , viz., for $p = (4\varpi - 1)$ and $(6\varpi - 1)$.

Slight errors in those counts have been found, viz.,

Unde r	$p = (6\varpi + 1);$	$(6\pi - 1);$	(12 - + 1);	24
Read	611 (not 612);	4806 (not 4807);	2374 (not 2373);	1181 (not 1180).