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1. Introduction.—The object of this paper is to give the results of
actually counting the numbers of primes of certain, linear forms, and to
compare the numbers counted with a certain formula for the same.

Let N = total number of primes (p) within a given "range" (say B), of the natural
numbers.

Let p denote a prime of the linear form p = iw + a (a < n): n is hereinafter styled the
"modulus" of the prime-form.

Let Ma = the number of primes (p) of that form within that range (B).

Let <p(n) denote the totient of n.

2. Approximate Formula for Ma.—Considering the form of p with
respect to the " modulus" n, it is seen that a must be prime to n (in
order that p may be prime): so that the set of values possible for a is
the whole set of integers prime to n, and < n; and the number of such
values (of a) is therefore =• <p(n), the totient of n.

Hence, unless there be some reason for certain of the <f>{n) values of
a yielding more primes than other values of a yield, it would follow that
the numbers (Ma) of primes of the forma

p —ww + ai, nvr + a2, ..., nw + a, (a prime to n, and < n)

in any one large range of the natural numbers should be nearly equal;

M = —— N approximately (for each value of a). (1)
<p(n)

This rule has now been tested by the author by actually counting*

* The labour of such counts is very great: the author had, however, a number of printed
and MS. tables ready to hand, specially suited to this work. The risk of error (especially of
missing one or two primes in counting) is considerable ; all the counts have been done by
two independent counters.
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the numbers (M) of primes p of a considerable number of forms (/inr-|-a)
within various ranges.

8. Form p = nvr+1. Count of Mv—The particular form

p = (WCT+1)

(in which a = 1, always) seems the most interesting on account of its
connexion with Fermat's theorem for bases a (prime to p), viz., whether

a(P-i)-r» = T i o r ^ T i (modp), [p = nw + l]. (2)

The main Table (on p. 251) shows the number (M) of primes of form
p = (nvr+1) actually connected with certain ranges (R = 1 to 104, 105,
or 5.1O5) for a number (61) of values of the modulus (w). The short
abstract below shows the total* number (N) of primes in each range (B),
and the number of cases {i.e., of different values of n) available for dis-
cussion in each range.

Values of n. Cases.
Total number (N) of primes in Range (R)

R = 1 to 104 R = 1 to 105 R = 1 to 5.103

All even numbers, 2 to 60
Certain even numbers, 64 to 210
Numbers n = 8q (q prime = 101 to 241)

30
15
16

N= 1228
N= 1228

=9591
= 959-1

= 4IS37

The Table (on p. 251) shows also the totient <j>{n) of each value of
n, and the (computed) value of N-r-<f>(n), for comparison with the
(counted) M.

An examination of the table shows at once that the formula (1) really
is a very close approximation to the counted number (M), but also
discloses the remarkable result that—

The counted number (M) of primes of form p — (nv +1) is (almost always) less tfian, and
in many cases markedly less than, the computed average, N+<p(n). (3)

The exceptions to this rule, i.e., the number of cases of M > N-S-
are very few (see detail in the abstract below): and the excess of M over
N-r-<l>(n) is, in all those cases, trifling compared with the relatively large
deficiency in many of the other cases.

* The primes 1 and 2 are excluded—throughout this paper—from the totals denoted
by N.
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Range.

1 to 104

1 to 105

1 toS.lO5

Values of n yielding M > N-r<j>(n).

22, 28, 34, 44, 50, 54
34, 5°, 54. 58, 100, 130, 720, 768

432, 552, 720, 768

Cases.

6 in 45
8 in 61
4 in 16

This renders it probable that the deficiency of the number (M) of
primes of the forms p = (nvr+l) below the average number N+<f>(n)
above disclosed really is a property of primes of that form, when taken
through a large range of the natural numbers. The cause of this property
has yet to be sought.
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4. Form p = nzj-\-a. Count of Ma.—The above result carries with
it the property that the number (Ma) of primes of the form p = (/Mir-fa)
(with a > 1) must exceed the average number of the formula for some
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values of a ( > 1); and that, in particular, some Ma must be > M1; all
the Ma being, of course, within the same (large) range (R).

To test this further property, the numbers (MJ of primes of each of
the following forms

, 3; , 3 ; 12nr±l, 5

have now been counted within the same range B = 1 to 105.
The table below—drawn up very similarly to the preceding—shows

under each modulus {n = 4, 6, 8,10,12) the totient 0(/t) of n, the com-
puted average number N-r-<f>(n) of primes of each form p = (MCT+CI), and
lastly the actual counted number (M) of primes of that form.
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All examination of this table shows the following somewhat remark-
able relations between the numbers (Ma) of primes of the <j>{n) forms
p = {nrs-|-a) with tlie same modulus (n). all taken, of course, through the
same range R (= 1 to 105 in this case):—

The numbers Ma are approximately equal, so that formula (1) is a good approximation. (4)

The number A/, is the least of all the Ma. (5)

The number Mn-\ is the next least of all the Ma. (6)

[It should be statod that the particular result for the modulus n — 4, viz., that the
number Mi is < M3, has been proved generally true byf Tchebycheff.]

The two results (5), (6) together involve the following:—
The number of primes (within a given large range), of which 2, 3, 5 are 2-ic residues, is

markedly less% tlian the number of which these bases are 2-ic non-residues. (7)

* The primes 1 and 2 are excluded from all these totals (N): the prime 3 is excluded
when n = 6 and 12, and 5 is excluded when n = 10.

t In a letter to M. Fuss, published in the Bull, de VAcad. de St. Pitersbourg, 1853 ;
quoted in Glaishcr's Factor Table for tlie Fourth Million, London, 1879, Introduction, p. 33.

* This property as to 2-ic residuacity is believed to be true for other bases; and a similar
property is believed to be true for higher orders of residuauity. It is hoped to make these
properties the subject of u> further communication : the data arc well in hand.
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5. Author's Previous Work.—A certain number of the counts (i¥a)
now reported had been previously published by the author on p. xx of the
Introduction to his Tables of Quadratic Partitions, London, 1904 ; viz.,

8 cases of Mx (i.e., for p = nm +1), viz., for n = 4, 6, 8, 10, 12,16, 24, 30.

2 cases of Mn_i, viz., for p = (iw—1) and (6w — 1).

Slight errors in those counts have been found, viz.,

Under p = (6V + 1) ; (6tir-l) ; (12w + l ) ; 24w + l ;

Bead 611 (not 612); 4806 (not 4807); 2374 (not 2373); 1181 (not 1180).


