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In 1869 we had " The Practical Application of Eeciprocal Figures
to the Calculation of Strains on Framework," in which he ex-
emplified in a very clear manner the mode of applying to important
statical questions a beautiful principle, due in part to Eankine but
mainly to Clerk-Maxwell.

The paper for which the award of the Keith Prize is now made
is more thoroughly original, and may be roughly described as an
extension of Maxwell's principle to the kinetics of machinery, where
all parts move in one plane. It is entitled " The Application
of Graphic Methods to the Determination of the Efficiency of
Machinery." The first part was read to the Society in 1877, and
the second in the following year. All three of these papers are in
our Transactions.

Among his other contributions may be mentioned his application
(in conjunction with Professor Ewing) of the Phonograph records
to the " Harmonic Analysis of certain Vowel Sounds." This is an
ingenious and elaborate piece of work, and shows us (among other
things) within what wide limits the components of a sound may
vary while it is still recognised by the ear as having a definite vowel
quality.

Professor Jenkin, in handing you this medal I express, I am sure,
the feelings of all the Fellows of the Society, when I say that we
thank you heartily for the valuable contributions you have already
sent to our Transactions, and that we look with confidence for an
additional series,

Professor Jenkin then took the Chair.

The following communications were read :—

1. Non-Euclidean Geometry. By Professor Chrystal.
(Plate XX.)

When I had the honour of being asked by the Council of the Eoyal
Society to give the following address, I chose the subject partly because
it had been brought under the notice of the fellows by my predecessor,
Professor Kelland. His memoir was written comparatively early in
the history of the subject; and he seems to have been but little
acquainted with what others had done even up to the time at which
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he wrote. Accordingly, although the subject is treated very ably in
his paper, it is treated from only one point of view; and, indeed, one
side of it is left out of sight altogether. The relation of the whole
theory to the question of the origin and mutual independence of
the axioms of geometry has been made much clearer of late, and I
believed that some account of the more modern views might be of
interest.

I am particularly desirous of bringing pangeometrical speculations
under the notice of those engaged in the teaching of geometry. In
discussing with schoolmasters the difficult problem of the reform of
geometrical teaching, I have met with much enlightened and some
unenlightened criticism. The former kind of criticism has convinced
me that many teachers of mathematics will be glad to have this subject
made more accessible; and I believe that a knowledge of what great
mathematicians have thought on the subject would destroy criticism
of the latter kind altogether.

It will not be supposed that I advocate the introduction of
pangeometry as a school subject; it is for the teacher that I advocate
such a study. It is a great mistake to suppose that it is sufficient
for the teacher of an elementary subject to be just ahead of his pupils.
No one can be a good elementary teacher who cannot handle his
subject with the grasp of a master. Geometrical insight and wealth
of geometrical ideas, either natural or acquired, are essential to a
good teacher of geometry ; and I know of no better way of cultiva-
ting them than by studying pangeometry.

The following sketch is addressed to those already familiar with
Euclid's geometry. I have made no attempt to give a detailed ac-
count of modern researches, or to build up a systematic treatise.
I have simply tried to give in a synthetic way a general idea
of what is known in a certain department of a now very
widely developed subject. In so doing I have used the mate-
rials and methods of Euclid as much as I consistently could,
at some sacrifice of elegance, no doubt, but with obvious practical
advantage.

I have not attempted to give any bibliographical details, for the
simple reason that any one who wants them will find nearly all that
can be desired in two papers by Mr Halsted in the first volume of
the " American Journal of Mathematics."

VOL. x. 4 G
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On Pangeometry.

I know of no question possessing more interest for a thinker, and
none of more importance for a mathematician, than the well-worn
one of the origin of the axioms of geometry.

Passing over the discussions of mental philosophers, which, so far
as I am acquainted with them, are of little mathematical or physical
interest, we find two great modern contributions to this interesting
subject; one by the mathematicians headed by Gauss, Lobatschewsky,
Bolyai, and Eiemann; the other by the physiologists represented by
Helmholtz.

The mathematical investigators may be taken as representing the
subjective side of the subject, the physiologists as representing the
objective; although, in point of fact, Helmholtz, the personal
representative of the latter, is a happy union of both classes of
philosopher.

Any purely abstract science starts with certain data called defini-
tions and axioms ;* and of these materials reason builds the fabric
of the science.

I do not intend to take up the question of the origin of axioms
directly. On the contrary, I shall lay down axioms, and the only
argument against me, so far, will be to prove the inconsistency of my
conclusions with my premises, or with one another.

The absence of such inconsistency is what I mean by conceiv-
ability. I do not deny that other meanings may be attached to this
word, and that the question of the conceivability of axioms might be
profitably discussed from other points of view. We might discuss
it as a purely personal question, each man to be judge and jury, or it
might be granted, as I, for the most part in what follows, take it to
be, that any axioms that can be made the foundation of a consistent
reasoned system are given ct priori I suspect that this would be

* In Euclid's Geometry the functions of definition and axiom are not always
clearly separated ; at all events, some of his definitions serve purposes for which
others are unfit, and this must be kept in view in what follows. With postu-
lates I have at present nothing to do, as I am concerned solely with geometrical
theorems. The mixture of problems with theorems is a peculiarity of Euclid's
method for which there is no absolute necessity, and which is certainly incon-
venient in an elementary text-book. Geometrical constructions are in a sense
the applications of geometrical theory, and ought to be kept by themselves.
The Society for the Improvement of Geometrical Knowledge have acted wisely,
I think, in following this arrangement in their syllabus.
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allowed by most of those who have considered the question of
axioms in what I believe to be by far the most useful and
effective way, viz., by examining and pushing the conclusions to
be drawn from them to the utmost; and by investigating what
change on these conclusions would be induced by varying one or
more of the axioms themselves.

The question might also be approached from the side of experience.
I take, for the sake of illustration, an instance which brings me at
once to my subject. We have, by generalisation from experience,
ideas more or less refined according to our individual physical
education of a geometrical straight line, and of a geometrical point.
Let us think, then, of two straight lines intersecting at a point, and
let us ask ourselves, Can two such lines intersect again ? Our first
impulse is to answer no; but due consideration will show us that, in
point of fact, experience does not settle the question. All we can say
is that no one starting from the point of intersection of two straight
lines has ever followed them by physical (say optical) observation to
a second intersection. Bat then we must admit that, on our usual
assumption that space is of infinite extent, and straight lines of
infinite length, the distance through which any one has so followed
them is, after all, relatively speaking, but an infinitely little way. Our
assertion, therefore, that two straight lines never intersect again is
merely an assumption, accordant, no doubt, with our limited experi-
ence, but otherwise unfounded, and certainly not of necessity involved
in our idea of straightness, though we may superadd it thereto if we
please. I recommend those who doubt this statement to begin by
defining a straight line by a single geometrical property, which is aot
verbally equivalent to the assertion in question, and to attempt to
prove it.

It may be well to remark here that the discussion of the properties
of tridimensional space in reality divides itself into two parts :—first,
what may the properties of space be conceived to be? conceive being
understood in the sense above explained; second, what are the pro-
perties of space as we know, or think we know, them ? The former
question is a purely mathematical one; the latter is one in the main
for the physicist or the mental philosopher, and the function of the
mathematician in connection with it is to make clear what the question
exactly is, and what alternatives are open for us. What the bearing

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0370164600044412
Downloaded from https://www.cambridge.org/core. Stockholm University Library, on 24 Feb 2018 at 20:43:03, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0370164600044412
https://www.cambridge.org/core


642 Proceedings of the Eoyal Society

of modern mathematical research on this point appears to be, I shall

endeavour to explain later on.
With these preliminary remarks in explanation, I now proceed

briefly to sketch a system of geometry which, as to its foundations,
differs from that of Euclid only in the alteration of one (or at most
two) axioms. Its conclusions will be found to differ very materially
from his, although this difference is merely in the way of wider
generality, Euclid's geometry being contained as a particular case
in what I shall, for distinction's sake, call Pangeometry.

The space which I shall consider is to be tridimensional. I appeal

to the ordinary conceptions of
Point, Line or curve, Surface, Solid;

and, for the sake of the words, state that a point has no extension, a
line is once extended, a surface twice, a solid thrice.

As a test of these distinctions, the idea of motion may be intro-
duced. I cannot stop now to justify this, but merely remark that
nothing is to be predicated concerning time.

Farther, space is to be uniform, in the double sense that it has no
properties depending either on position or direction.

The great test of this last statement is congruency,* which I mention
thus early, because it is the touchstone of geometry. Thus the
statement that space has no properties depending on position, simply
means that congruent figures exist, e.g., that a solid of a certain size
and shape can be carried from one part of space to another without
alteration in either respect; and that two congruent figures can be
conceived as separately existing in different parts of space. It is
evident that all space measurement rests on congruency.

It is essential to be careful with our definition of a straight lino,
for it will be found that virtually the properties of the straight line
determine the nature of space.

Our definition shall be that two points in general determine a
straight line, or that in general a straight line cannot be made to
pass through three given points.

It is important to notice the force of the phrase in general. This

* Two figures are said to be congruent when one can be placed on the other,
so that every point of one shall coincide with a point of the other, and vice
versa. The phrase equal in every respect is used in the same sense in most-
English editions of Euclid,
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will be best understood from an illustration. We all know from
the case of a three legged stool, if not from any more scientific source,
that three points determine a plane. Yet not any three points; for,
if the third foot were put in line with the other two, the one stool
would be as unsafe a seat as the proverbial two. Yet again, and very
near indeed to our case, two points on a sphere in general determine
a great circle on it. But there are exceptions; a point and the
diametrically opposite point do not determine a great circle, and yet
it would be a good definition of a great circle to call it that line on
a sphere which is in general determined when two of its points are
given, no other condition being assigned.*

We recognise therefore that, although in general, any two points
being taken, a line will thereby be determined, yet it may happen
that, one point being taken, another point may exist which along
with the first does not determine a straight line. The necessity for
this admission appears when we consider space in which two straight
lines have more than one point of intersection.

Here let it be mentioned, to avoid misconception, that it follows
from our definition of a straight line, and from the uniformity of
space (the test being congruency), that space is symmetrical round
every straight line. This is at once an answer to those who say
that pangeometry is merely an analogy drawn from the theory of
surfaces of constant curvature.

A plane may be defined as Euclid defines it, and the conclusions
drawn, that two intersecting lines, a point and a line, or a line passing
through a given point and moving perpendicular to a given line, all
in general determine a plane. The last form of definition of course
presupposes the definition of a right angle.

Farther, we adopt all Euclid's definitions up to the definition of an

* It is interesting to notice that any curve already conditioned a number of
times less by two than the whole number of conditions that completely deter-
mine it, fulfils in many respects the definition of a straight line, for any two
points completely determine the curve. A very interesting particular case is
that of a series of circles which always pass through a given fixed point. Such
a series of circles may take the place of straight lines in many of Euclid's pro-
positions. Most of the propositions as to congruency hold for them. The sum
of the three angles of a triangle formed by three such circles is two right angles;
the perpendiculars from the vertices of such a triangle on the opposite
sides are concurrent; and so on, as is otherwise evident by the theory of
inversion.
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acute angled triangle, but reject in the meantime, at all events, all

that follow in the first book.
Next we adopt Euclid's propositions concerning angles at a point,

viz., I. 13, 14, 15; also the propositions as to congruency I. 4, 5, 6,
8, and the first part of 26, with a protest to the effect that in many
cases his demonstrations are needlessly circuitous and difficult. All
that is wanted for the demonstration of these propositions is the
defining property of the straight line and the ordinary axioms and
definitions as to equality.

Different Kinds of Space.

Before going farther, we must distinguish the different cases that
may arise when we consider two intersecting straight lines.

1. They may never intersect again and be of infinite length (i.e.,
each is non-re-entrant). Space which has this characteristic is called,
for the present, hyperbolic space. We shall see, however, by and by
that another case must be distinguished under this head, that, viz.,
of homaloidal or Euclidean space.

2. They may intersect again. Space having this characteristic is
called elliptic space.

The simplest space of this kind is that in which a straight line
returns into itself, so that the next point in which two straight lines
intersect is the point in which they first intersected. In this kind
of space, which I shall call single elliptic space, two straight lines
intersect in only one point; and there is no exception to the state-
ment that two points determine a straight line.

The next simplest case would be that in which two straight lines
intersect a second time in a distinct point, and then re-enter at the
next point of intersection which coincides with the original one.
This might be called double elliptical space. I am not yet certain*
whether the symmetry of space will allow us to carry this multiplicity

* I have not been able to find a definite settlement of this question by any
of the great authorities on hyper space. Frischauf takes double elliptic space
as the representative of elliptic space, and seems to hold that this is the only
possible kind. Klein (" Mathematische Annalen," vi. 125) takes single elliptic
space, and criticises Frischauf's view (" Fortschritte der Mathcmatik," viii.
313, 1876). Newcomb (Borchardt's Journ., lxxxiii. p. 293) professes himself
unable to settle the question. If the notion of double elliptic space cannot be
shown to be self-contradictory, then it would appear that the question becomes
simply one of the choice of axioms. See note below, p. 661.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0370164600044412
Downloaded from https://www.cambridge.org/core. Stockholm University Library, on 24 Feb 2018 at 20:43:03, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0370164600044412
https://www.cambridge.org/core


of Edinburgh, Session 1879-80. 645

of elliptical space farther. In the meantime, I may remark that in
a space of this second kind we must, as already explained, admit
exceptions to the statement that two points determine a straight line.

In what follows I take single elliptical space as the representative
of elliptical space generally, although on account of the non-existence
of a closed surface of uniform positive curvature, on which a pair of
geodetics intersect only once, the conclusions of the geometry of single
elliptical space appear in some respects more bizarre than those of
double elliptical space, whose planimetry is mirrored by the geodesy
of a sphere.

It is obvious that Euclidean, or homaloidal, space is included in
hyperbolic space as above defined. We shall afterwards show,
however, that it may be regarded as a limiting case of elliptic space.
It is therefore the transition case lying between the other two.

Sketch of the Geometry of Hyperbolic (Infinite) Space.

From the definition of this kind of space it is clearly infinite.
Here I must insist on the distinction between infinite and unbounded,
a distinction first brought into notice by Eiemann. The uniformity
of space necessarily involves the notion that it is unbounded, but
by no means necessitates that it shall be infinite in extent; in fact,
I shall point out directly that a single elliptical space is necessarily of
finite extent.*

After the propositions relating to congruency already proved, the
next fundamental proposition to be established is the following :—

In hyperbolic space the sum of the three angles of a rectilineal
triangle cannot exceed ttvo right angles.

The following proof of this proposition is due in substance to
Bolyai. Legendre had given another, but he failed to see exactly
the nature of the assumptions on which he founded.

ABC (fig. 1) is any triangle, 0 the middle point of BC, OD = OA; so
that CD falls within the angle BCL. (Here we assume that a straight
line is non-re-entrant, and that a pair of straight lines never intersect
twice.) Then DOC - f AOB; and ADC is equal in area to ABC, and

* An ellipse and a eircle are unbounded but finite lines ; a hyperbola is both
unbounded and infinite.

t I adopt the sign - used by continental writers for congruent to, or equal
in every respect to.
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has the sum of its angles the same, while the sum of A and D = BAC.
Of these angles one i s l a n d the other^rthan \ A. Taking the least
of them, and bisecting the opposite side, we derive as before from
ADC a triangle, still having the same area, and the same sum of all
the angles, but in which the sum of two of the angles 1%>\ A.

By a similar process we derive another triangle, still having the
Ei|} area and the sum of its angles unaltered, but in which the sum of two

angles^—A.

At last we get a triangle, in which the area is the same as at first,
and the sum of the angles the same, but the sum of two of them

;j>_A, where n may be as great as we please; that is, in which

the sum of two angles is P,S small as we please.
But the third angle can never be greater than 2R, hence the sum

of the angles of the original triangle cannot be>2R
It is to be noticed that this demonstration would fail if a straight

line were re-entrant, or if two straight lines had more than one point
of intersection.

Corollary.—If C be the external angle at C of the triangle ABC,
then, since

where E stands for a right angle, and 8 is either zero or essentially
positive, and

C + C'=2K,
we have

That is, the exterior angle of any triangle is not less than the sum

of the two interior opposite angles.

Of course it follows that the exterior angle of any triangle is

greater than either of the interior opposite angles ; and that the sum

,«,.', of any two angles of a triangle is less than tivo right angles.
!l;|,i We can now prove for hyperbolic space :—

That the greater side of every triangle has the greater angle oppo-
site, and conversely.

That any two sides of a triangle are together greater than the
third side.
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Also Euclid /. 21.
Euclid L 24 and 25.
Euclid I. 26 (the second part).

Also the usual propositions concerning the perpendicular and the
obliques drawn from a given point to a given straight line.

The amount by which the sum of the three angles of a triangle
falls short of 2R is called the defect of the triangle. This is the same
as the excess of the sum of its exterior angles over 4B. If we take
the latter statement of the definition, we may talk of the defect of any
plane rectilineal figure. In forming the external angles of figures
generally, we must go round, producing all the sides in the direction
of our progress, assigning the positive or negative sign according as
the angle is not or is re-entrant.

Thus in figure 2 the defect is

Defining defect in this way, it is easy to prove that
The defect of any rectilineal figure is equal to the sum of the defects

of any rectilineal figures of lohich it may be supposed to he composed.
Cor. Hence if one rectilineal figure lie wholly within another the

defect of the former is not greater than that of the latter.
Hence follows at once the following important proposition:—
If the defect of any triangle whose sides are finite be zero, then the

defect of every finite triangle must be zero.
For if ABC (fig. 3) be a triangle whose defect is zero, then,

by applying to its sides three triangles, each congruent with itself,
as shown in the figure, we evidently construct a triangle A'B'C,
having the same angles as ABC, and hence zero defect, each of
whose sides is double a corresponding side in ABC. We may repeat
this process with A'B'C, and so on. Hence we may construct a
triangle, having zero defect, large enough to contain within it any
finite triangle whatever. But the defect of any triangle cannot be
greater than that of a triangle within which it is contained, and the
defect cannot be less than zero; hence the defect of every finite
triangle must be zero, if the defect of any one finite triangle be zero.

Thus in hyperbolic space, as defined above, we are shut up to one
or other of two alternatives. Either the defect of a triangle is

always positive or it is always zero.
VOL. X. 4 H
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If we take the latter alternative, we get Euclidean or homaloidal
space; and, from the defining property by which we have character-
ised it, we can prove Euclid's parallel axiom, and develop Euclid's
geometry in his or any other equivalent manner.

f i Having separated out homaloidal space, let us now consider mere
J closely hyperbolic space proper, in which the defect is always positive.

The fundamental proposition to be proved is the following.
| The defect of a triangle (and consequently the defect of any plane
'!»' rectilineal figure) is proportional to its area.
1 ^ Various proofs of this proposition might be given. I select that

which depends on the properties of the curves of equidistance from
a straight line, because the intermediate propositions are the analogues
in hyperbolic space to the propositions regarding parallels and
parallelograms that are given in the latter part of Euclid's first book.

If in any plane perpendiculars of constant length be erected upon
a given straight line, their extremities generate two curves which I
shall call the equidistants, the two equidistants corresponding to a
given length of the perpendicular may be called conjugate equidis-
tants.

The equidistant is a self congruent line.
For if we take any piece AB (fig. 4) of the given line, and LM the

corresponding piece of the equidistant, and if also A'B' = AB and
L'M' be corresponding points to A' and B', then, if we place A'B'
on AB, L' and M' will coincide with L and M, and, if AT' = AP, Q'
will coincide with Q, and so on. Hence the piece L'M' is congruent
with the piece LM.

f The equidistant is at every point at right angles to the generating
; perpendicular.

^ This is at once evident by considering two equal pieces (fig. 5)
LP and LQ of the equidistant on either side of L, and the corres-
ponding points A and B on the straight line, so that OA = OB.
We have LOAP - LOBQ, hence L OLP = L OLQ, each = E.

The equidistant in hyperbolic space is a curved line, concave towards
the given line.

Let LQM (fig. 6) be a piece of the equidistant, LM a straight line
cutting the perpendicular through P, the middle point of AB,
in R Then LRPA - MRPB. Hence L PEL = L PEM = E, and
the angles at P are each = E, therefore ALE<E.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0370164600044412
Downloaded from https://www.cambridge.org/core. Stockholm University Library, on 24 Feb 2018 at 20:43:03, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0370164600044412
https://www.cambridge.org/core


of Edinburgh, Session 1879-80. 649

But L QLA = R, therefore LQ falls above LRQ, however small
the distance AB may be; in other words, LQM is concave towards
AB.

Every straight line terminated by a pair of conjugate equidistants
to a given straight line is bisected by the given straight line, and
makes equal alternate angles ivith the equidistants, fyc.

If AB (fig. 7) be the given straight line, XP and YQ the equi-
distants, POQ the line terminated by the equidistants, then the
proposition follows at once by observing that, if AP and BQ be
perpendiculars to AB, then AOP ^ BOQ.

The common perpendicular to two conjugate equidistants is the
least distance betioeen them, the oblique distances are greater according
as the angle they make with the perpendicular is greater, and the
length of an oblique can be increased without limit.

It will be seen that conjugate equidistants are analogous to Eucli-
dean parallels. The analogy may be carried much farther.

If equal arcs of two conjugate equidistants be joined towards the
same parts by two straight lines, the figure so formed may be called
a hyperbolic parallelogram.

A mixed triangle whose base is the arc of an equidistant, whose
two remaining sides are straight lines, and whose vertex lies on the
conjugate equidistant, may be called a hyperbolic triangle. The
following propositions are then very easily proved.

The sum of the three angles of a hyperbolic triangle is 2R.
The opposite straight sides of a hyperbolic parallelogram are equal

to one another; its diagonals bisect one another in a point on the
straight line to which the equidistants that form its curved sides
belong ; and each diagonal divides it into two congruent hyperbolic
triangles.

A series of propositions analogous to those of Euclid, Book I., 35-
41, may be proved very easily; we have only to substitute hyperbolic
parallelograms and triangles for ordinary parallelograms and triangles,
and conjugate equidistants for parallels. In particular, we see (fig. 8)
that

Two hyperbolic triangles CAOB, DAOB, which have for common
base the arc A OB of an equidistant (and consequently have their ver-
tices on the conjugate equidistant) are equal in area.

Hence follows at once that—
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The rectilinear triangles CAB, DAB on the same chord of an
equidistant, whose vertices lie on the conjugate equidistant, are equal
in area and defect.

N. B.—the defect is 2 L OAB in both cases. It is obvious that, if we
join the middle points of the sides of any triangle, the extremities of
its base lie on an equidistant to the line so drawn, and the vertex
lies on the conjugate equidistant. Bearing this in mind, the pro-
perties of equidistants enable us to establish the following proposi-
tions :—

We can always construct an isosceles triangle ivhose base is equal
to one side of a given triangle, and whose area and defect are the
same as those of the given triangle.

Given two triangles, we can alioays transform one or other of them
into another of equal area and defect ivhich has one of its sides equal
to one of the sides of the remaining triangle.*

Hence ttvo triangles that have the same area must have the same
defect, and conversely, for we can transform them into a pair of
isosceles triangles on the same base without altering either area or
defect. It is obvious that two such triangles must be congruent
if they are equal in area, and hence they must be equal in defect;
and from what I have proved concerning the defect of composite
figures, the converse follows with equal ease.

Hence the area of a triangle is proportional to its defect. Hence,
p being a certain linear constant, characteristic of a hyperbolic space,
and A the area of a rectilineal triangle of defect S, we have

A great variety of very important conclusions can at once be drawn
from this formula. I mention some of the most interesting.

Since 8 = —, if p be infinite, then 8 = 0 for every triangle of

finite area; in other words, homaloidal space is simply a hyperbolic
space whose linear constant is infinite. This conclusion may be
looked at from another, but mathematically equivalent, point of
view. Let us imagine a hyperbolic space of given linear constant p.

* I leave the reader to consider and settle for himself whether a simpler pro-
position than the above could be established. In particular he should consider
the following problem in hyperbolic geometry:—" To construct an isosceles
triangle of given area on a given base."

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0370164600044412
Downloaded from https://www.cambridge.org/core. Stockholm University Library, on 24 Feb 2018 at 20:43:03, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0370164600044412
https://www.cambridge.org/core


of Edinburgh, Session 1879-80. 651

If we take a region in this space whose greatest linear dimension is
an infinitely small fraction of p, then the defect of every triangle
within that region will be infinitely small, and its geometry will not
differ sensibly from that of a homaloidal space. This is often
expressed by saying that hyperbolic space is homaloidal in its
smallest parts.

It appears, therefore, that, even in hyperbolic space, Euclid's
planimetry will apply to infinitely small figures. For instance, the
ratio of the circumference of a circle to its diameter will be
TT=3'14159 . . , . (the ordinary transcendental constant), when
the diameter is made infinitely small. We may, therefore, if we
please, measure our angles in radians (circular measure), and in
fact use all the formulae of homaloidal plane trigonometry, if proper
restrictions be observed.

It should also be noticed that the existence of this length p related
to the space, but not directionally related, suggests the possibility of
explaining the properties of tridimensional space by subsuming it
in a space of four or more dimensions. I have not chosen to enter
into speculations of this nature, partly because their development
has been entirely analytical hitherto; and partly because, so far as I
can see at present, it may be justly contended that the conceivability
of hyperspace of three dimensions rests on different grounds from
that which we must necessarily assume when we attempt to add
another dimension. In this, however, I may be but one of those
whom Gauss playfully called Boeotians. *

* Before leaving this part of the subject, I may mention the curious solution
of the problem of dividing a plane in hyperbolic space into a network of
regular polygons.

If n be the number of sides of each polygon, p the number of polygons round
a point of the network, A the area of each of the ?i-gons? then

\ n p )

with the condition - + —<T — .
n p 2

Suppose, for instance, we wish to divide a plane into squares, i.e., regular
four-sided figures. Then TI = 4. If̂ > = 4, i.e., if the angles of the square be
right angles, A = 0, which does not, strictly speaking, give a solution. The

next case is p = 5, so that A= g-Trp2 is the area of the smallest finite square

with which we could pave a plane floor. Of course there are an infinite num-
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Theory of Parallels.

If 0 (figs. 9 and 10) be any point outside a line, P any point in it
to the right of the foot of the perpendicular, then the limiting position
of OP, when P is moved in the direction DI to the right, without
limit, is called the parallel through 0 to DI. The corresponding
limiting line on the other side of OD is called the parallel through
0 to DI'.
Thus

OK / / DI
OK' / / DI ' .

It is obvious, from the uniformity of space, that OK and OK'
make equal angles with OD. Whether they are parts of the same
line or not, remains to be seen.

As P moves off along DI the angle at P diminishes without limit.

This is easily shown (fig. 10) by taking PPX = OP, PXP2 = OP2 and
so on ad. inf.

In homaloidal space the parallel to DI through 0 is the perpen-
dicular to DO at the point 0: for the sum of the three angles of the
triangle DPO is always 2E, and P diminishes without limit, hence the
angle at 0 approaches nearer to E than by any assignable quantity.

Thus in homaloidal space the two parallels OK, OK' are parts of
the same straight line, and all the lines through 0 cut IDI', except
the parallel, which may be said to cut it at an infinite distance. In
the language of modern geometry there is but one point at infinity
on the line IDI'.

In hyperbolic space there are two parallels through a given point
to a given straight line.

For as we move P away from D the area of ODP, and consequently
its defect, constantly increases, but the angle OPD constantly dimi-
nishes, hence the angle at 0 can never exceed a certain angle which
is less than a right angle.

It follows, therefore, that if we take any line IDI' and any external
point 0, we must classify the lines through 0 as follows :—(1) inter-
sectors, (2) non-intersectors, (3) two parallels,

ber of solutions, the angles of the squares becoming less and their area greater
as p increases. The area of the'greatest possible square tile that we could use
would be 2TTP2

5 but the lengths of the sides would be infinite.
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In figure 11 KOL' and K'OL are the two parallels; all lines lying
in the angles KOL, K'OL', are non-intersectors, all those lying in
KOK', LOL' are intersectors. The fact that in hyperbolic space
there are two parallels through a given point to a given straight line
is expressed in modern geometry by saying that in hyperbolic space
a straight line has two distinct real points at infinity.

After what has been laid down, the following propositions either
are immediately evident, or can be proved with very little trouble.

If a line is parallel to another at any point, it is so at every point
of itself.

Parallelism is mutual.
Lines which are parallel to the same line are parallel to one

another.
Lines that are parallel continually approach one another on the

side towards which they are parallel.
Non-intersectors in the same plane ham a minimum distance, which

is the common perpendicular.
The angle which a parallel through 0 to L makes with the per-

pendicular on L is called the parallel angle.
The parallel angle is a function of the length of the perpendicular,

increasing lohen the perpendicular diminishes.
If 6 be the angle, p the length of the perpendicular, then it may

be shown by methods which I shall presently explain that

= ao, 0 = 0.

Geometry of Elliptic Space.

For simplicity I take single elliptic space, but there will be no
difficulty in modifying what follows so as to make it apply to double
elliptic space.

In single elliptic space every straight line returns into itself; and
two straight lines intersect in only one point. Thus, starting from
any point P, and proceeding in any direction continuously, we at last
return to the point P ; the length L travelled over in this process is
called the length of the complete straight line.

It is obvious that in single (as well as in double) elliptic space
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two intersecting complete straight lines enclose a plane figure. Such
a figure I call a biangle.

Two biangles are congruent when their angles are equal. All
complete straight lines are of the same length, and all the straight
lines emanating from the same point intersect in the same second
point.

lip These propositions are all equivalent to one another, and are equally
true for single or double elliptic space. The last of them is a mere
truism for single elliptic space. The following demonstration, which

1 j'|r holds good for single or double elliptic space, may help to render
iji'l1 the matter clearer.
V ' Let APBQA A'P'B'Q'A' (fig. 12) be two biangles having the angles
; t A and A' equal. If A'B' be placed on AB so that A lies on A', and

AT' along AP, then A'Q' will lie along AQ, since the angles at A are
equal; hence by the fundamental property of a straight line APB
and A'P'B' must wholly coincide, and AQB and A'Q'B' must wholly
coincide; and hence B' must fall on B. It is to be noticed that the
biangles are multiply congruent.

Next, suppose AKA', AK'A' (fig. 13) to be any pair of intersecting
straight lines. Let AL bisect the angle A and cut the lines in J and J'.
Since AJ and A J' are equiangular biangles, they are congruent; from
this it follows at once that J and J' must coincide with each other,
and therefore each with A'. Hence the bisector of the angle A passes
through A'; and it and AKA' and AK'A' are all of equal length.
We may next bisect either of the halves of A, and so on; and we
may double any of the angles thus obtained as often as we please.

r Hence the propositions stated above are completely proved. The
f ; length L of a complete straight line is therefore an absolute linear
j*l. , constant which characterises an elliptic space.
., -X In single elliptic space the least distance between two points can

never be greater than \L, and the greatest distance can never be greater
than L.

., i • This is obvious, since the whole length of a complete straight line
through the two points is L.

If toe consider the plane determined by two intersecting straight
lines AOA, BOB, and if we pass from 0 along OA through a length
L, we return to 0, but find ourselves on the opposite side of the plane
to that from ivhich we started, and only arrive at the same point 0

V I ' t

! \
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on the same side as before by travelling once more through a length

L.

This curious conclusion is an immediate result of the fact that
straight lines are re-entrant and intersect only once. (In double
elliptical space the apparent anomaly does not occur on account of
the double intersection.)

The best way of representing the thing to the mind that I can
think of is to imagine a rigid body composed of three rectangular
arrows Ix9 ly, Iz (fig. 14). Ix slides along OA; ly passes through
a ring which slides on OB (being long enough never to slip out);
Iz is, of course, determined in position when Ix and ly are fixed in
any positions.

In starting from 0, let Ix and Ty be horizontal and Iz vertical;
then slide Ix along 0 A. Ix will at last return along A'Q. The ring
will return along B'O. It is obvious, therefore, that, at our first
return to 0, Iz must be downwards, for, since the system of arrows is
rigid, one who plants himself with feet at I, head at z and looks along
Ix must see y to his left as he did at starting.

It is obvious that during the journey ly as well as Iz has rotated
through 180°, a repetition of the process rotates both through 180°
more, and then everything is as before.

If we cause a complete straight line of length L to revolve through
360°, always remaining perpendicular to a given line, it will sweep
out the two sides of a complete plane.

It follows at once, therefore, that the area of a complete plane,
taking into account both sides, is finite, and the same for every
complete plane. This I shall call P in the meantime. We also
see, in accordance with what was proved before, that the two sides
of the complete plane are not distinct, since we can pass continuously
upon the plane from a point on one side to the same point on the
other side.

Those who find difficulty in realising this property of the plane in
single elliptic space should take a ribbon of paper, twist it through
180°, and then gum the ends together. A surface is thus formed
which has the property that one can trace a continuous line upon it
from a point on one side to a point exactly opposite on the other side.

After what has been laid down the following propositions are
obvious.

VOL. x. 4 i
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They are given by Newcomb in an extremely interesting article to

n ' which reference was made above. I arrange them in the order which

best suits what has gone before.

All the perpendiculars in a given plane to a given straight line

i|; intersect in a single point, whose distance from the straight line is \L.

•.<!; . . ' Conversely, the locus of all the points at a distance \L on straight

lines passing through a given point in a given plane is a straight line

r!', perpendicular to all the radiating lines.

,.-.p. The fixed point is called the pole, and the straight locus its polar.
[ify If ice cause the given plane to rotate about the polar the pole

describes a straight line which may be called the conjugate of the

•• given polar.

* The relation of these two lines is mutual, every point on one being

at a distance hL from every point on the other.

Without dwelling farther upon propositions of this kind, I proceed

at once to establish the fundamental proposition concerning the sum

of the angles of a plane triangle. I might follow a course like that

adopted for hyperbolic space, but a much simpler method suggests

itself at once as applicable to finite space.

In the first place, since a complete plane is generated by the

revolution of a complete straight line through 360°, it follows that

the area of a biangle whose angle is A° is — - P .

360

I n figure 15 let ABC be any triangle. Produce the sides to

form biangles. Each of the biangles departs from the vertex on the

upper side of the plane and returns to the vertex on the lower side.

r . To make this clear areas in the neighbourhood of ABC in the figure

are shaded with vertical lines when reckoned on the upper and with

j!> horizontal lines when reckoned on the lower side of the plane. A

ylance will show that if we take the three biangles they overlap the

triangle ABC thrice, and that the rest of the plane is covered every

where once on one side or the other, but nowhere on both sides.

t , Hence, A denoting the area of the triangle, we have
M

(!'
i ii — P + — P + — P = J-P + 2A

\ih 360 360 360

360
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If, therefore, we define A° + B° + C°- 180° as the excess of the
triangle, we have the proposition that—

The excess of every triangle is positive, and is proportional to its
area.

The conclusions drawn above (p. 650) for hyperbolic space
follow here, mutatis mutandis. In particular, we see that we may
apply Euclidean planimetry to infinitely small figures. On this
remark we can, as will be done later, found a system of planimetry

for elliptic space, and determine P. The result is P = ^jr . Hence,

writing p for ~ , and e for the radian measure of the excess, we have

where p is a linear constant characteristic of the elliptic space.
It is easy after what has now been established to work out the

propositions corresponding to Euclid's first book. The conclusions
will, of course, be subject to certain modifications, but these are easily
found. I may mention in particular that the propositions concerning
the curves of equidistance already given for hyperbolic space, hold
with very slight modification for elliptic space, the main difference
being that the equidistants are convex instead of concave to the given
straight line.

Theory of Parallels.

In elliptic space there is, of course, no such thing as a parallel,
because there are no infinitely distant points on a straight line.*

If 0 (fig. 16) be a point outside the line IDF; then it is easy to
see that the two segments of the perpendicular from 0 are respec-
tively the least and greatest distances from the given line. If OD
be the least distance, then, as OP, starting from OD, revolves about
0, OP continually increases, until it has rotated through 180°, and
then it is at its maximum, after which it decreases again.

It can easily be shown that, as OP revolves from OD, the angle
OPD decreases, until OP is perpendicular to OD, and then OPD
is at its minimum value. After that, as may be easily shown by
producing the line backwards through 0, the angle again increases.

* In the language of modern geometry the points at infinity on a straight
line in elliptic space are imaginary.
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The line 01, perpendicular to 01), is all that there is in elliptic
space to represent a parallel through 0 to the line I'DI.

General Conclusions.

If I have succeeded in my attempt to explain the results of modern
research concerning the axioms of geometry, it will be apparent that,
even if we overlook the possibility of space being non-uniform, in
the sense of having properties depending on position and direction,
it is still possible to develop three self-consistent kinds of geometry
—the hyperbolic, the homaloidal, and the elliptic. It is impossible,
it appears to me, to say on a priori grounds that any one of these is
more reasonable than the others. If, therefore, a priori ground is to
be sought for the axioms of geometry, such tests of its firmness " as
the inconceivability of the opposite " and others like it are not to be
relied upon. They are merely an appeal to ignorance.

If, on the other hand, we view the question from the side of
experience, three alternatives are open to us. We may hold that
space is homaloidal and therefore infinite. In this case we extend
to the infinite part of space which we do not know the results of our
experience of the finite part of it that we do know.

Again, we may hold that space is hyperbolic and therefore infinite.
In this case experience teaches us that the radius of the sphere of oar
experience is infinitely small compared with the linear constant of
space j for Lobatschewsky calculated from astronomical observations
the sum of the three angles of triangles whose smallest sides were
about double the distance of the earth from the sun, and found that
the difference from two right angles was not greater than the probable
error of observation.

Lastly, we may suppose that space is elliptic and therefore finite,
in this case we must admit that our experience extends to but an
infinitely small fraction of its whole extent, since no sensible excess
can be found in the largest triangles with which we are acquainted.

Before leaving this subject, it may be well to illustrate with some
care what is meant by the words finite and infinite as I have used
them. They have, of course, a purely relative meaning. In the
geometry of homaloidal space no distinction can be built on the
relative dimensions of figures apart from their form. Owin^ to the
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existence of similar figures, the geometrical experience of a cheese
mite in homaloidal space would not be different from that of a being
one of whose habitual walking steps was from the sun to the dog star.

In hyperbolic or elliptic space the case is otherwise. In either of
these two kinds of space we might divide intelligent beings into two
classes according to their bodily dimensions. We might have a race
of micranthropes, whose bodily dimensions and the radius of whose
sphere of experience were infinitely small compared with the linear
constant of space. For instance, if the space were elliptic, the world
of the micranthropes would be but an infinitely small fraction of the
elliptic universe. It must be noticed, however, that from the point
of view of a micranthrope, his world need not be a prison-house by
any means, for he would compare it not with the linear constant of
universal space, of whose magnitude he must necessarily be ignorant,
but with some arbitrary standard such as the-length of his own arm,
and so considered his world would to him be infinite, if we only suppose
him small enough. Again, we might have a race of macranthropes,
whose bodily dimensions were comparable with the linear constant
of space. In the case of an elliptic and finite space, we could, of
course, conceive one of these himself so great that there would not be
room enough in the universe for another as great.

The geometry of the micranthropes would, of course, be homaloidal.
The axioms of Euclid would appear to them strictly in accordance
with experience, and, although they lived in part of an elliptic or
hyperbolic space, their prejudices would render the conceptions of
the general properties of such a space as difficult to them as they are
to us. On the other hand, the geometry of the macranthropes would
be elliptic or hyperbolic, as the case might be. A hyperbolic
macranthrope would, of course, be familiar with the fact that the defect
of a triangle diminishes as its area diminishes. If he were a
mathematician he would be aware of the relation of proportionality,
and might speculate concerning triangles of zero defect, much as we
do about absolute zero of temperature. If Euclid's geometry were to
fall into the hands of an instructed macranthrope, he would very
likely regard it as the production of some macranthropic lunatic, who
had meditated on the fact that the defect of a triangle diminishes
with its area, until he had so far lost his wits as to commit the
vo-repov TTportpov of discussingtheconstructionof an equilateral triangle
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before proving that when two straight lines cut one another the
vertically opposite angles are equal!

Appendix on the Trigonometry of Elliptic and Hyperbolic Space.

The following appears to me to be the simplest, and at the same time the
11111 most instructive way of establishing the Trigonometry of Elliptic and Hyper-
f bolic Space.
•{fi The method might, indeed, by assuming proper axioms, be made to take the

place of the preceding synthesis. As it is, I shall base it upon the results of
that synthesis. What I shall want are mainly the propositions concerning
the excess or defect of plane triangles, and the conclusion founded on them
that homaloidal trigonometry may be applied to figures, all of whose dimen-
sions are infinitely small compared with the linear constant of space.

Let KA and LB (fig. 17) be two straight lines in the same plane at an infinitely
small distance apart. They may be either non-intersectors, whose minimum
distance d is infinitely small, or intersectors which make a very small angle a
with each other at their point of intersection.

Let KL, AB, CD be lines making equal angles with KA and LB ; and let
KA = LB = r, AC = BD = cfoy AB = D. CD = D + dD, where dr is infinitely small
compared with r, dT> infinitely small compared with D ; D of course is in-
finitely small compared with p, the linear constant of space.

Further, let L LBA = L KAB = £-0 , and L LDC = L KCD = «-0-d0.
A A

Since all the dimensions of ABDC are infinitely small compared with p,
we may apply Euclidean trigonometry. Draw Bm parallel to AC. Then

L AB??i = £ - 0, AB = Cm, and Dm = dl>.
A

Now the excess

its area = Ddr.

which gives

Whence by (1)

2 sin

of ABDC =

Hence

4DBm:=:2 sin (-e) = —
dr

e=-hf. .
dr

Ddr-P
2€ - -2p-de.

2 de D _ A

dr p2

cPD D .

•

de J - 2TT

• • (i)

= - 2de ; and
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This is the equation for Elliptic Space ; that for Hyperbolic Space is of course

dr* p2 {Z)

From the equation (2) we get at once

D = pa sin - , (3)
P

r being measured from the intersection of the lines, and the constants of inte-
gration determined by the condition

J)~ar

when r is infinitely small compared with p, which of course includes the con-
dition D = 0 when r = 0.

The corresponding formulae for Hyperbolic Space are

= pa sin h — (4)

for a pair of intersectors ; and

-dcosh- . . . . (5)
P

for a pair of non-intersectors, r being measured in the one case from the inter-
section, in the other from the points of minimum distance.

From the formulae (3), (4), and (5) all the trigonometry of Elliptic and
Hyperbolic Space can be deduced most readily. I append one or two applica-
tions, and select for my purpose important formulae, but anything like a
complete development would be out of place here, t

* The differential equations (2) and (2') contain all the metrical properties of elliptic and
hyperbolic space. (2) suggests that a pair of straight lines diverging at a small angle from a
point might intersect again in distinct points any number of times. The proposition proved
above for elliptic space generally, that all the lines radiating from any point intersect in the
same second point, seems, however, to compel us to conclude that at the point where any line
intersects another for the second time, it must return into itself; for a line can be brought by
continuous rotation into coincidence with its prolongation, hence we must reach the same
second point of intersection in whichever direction we proceed from the first point. I can
see no way out of this at present; and if there is none, it would appear that we cannot get
beyond double elliptic space, even if we can consistently get so far.

t I may refer the reader to Frischauf, "Elemente der Absolute Geometrie," Leipzig, 1S76 ;
Lobatschewsky, Crellc, xvii. p. 295; Klein, Annalen der Mathematik, iv. p. r>73. vi. p. 112, &c. ;
Cayley. Annalen der Mathematik, v. p. 630.
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Area of Complete Plane and Total Volume of Elliptic Space.

The area of a biangle having the infinitely small angle a is

pat sin -dr = 2p2a .
•^ 0 p

TJ ID A 2 4 L 2 , f i s

Hence r = iirpz = . . . (oj

f!): From this result we can deduce very easily the total volume S of elliptical
f.|* space (single). The locus of the most distant points on the radii through any
'•/ point of space is a plane. Suppose this plane divided up into infinitely small

, ;l regular quadrilaterals (squares) of side Tc. The volume dS contained by four
]• • • radii drawn to the vertices of one of these figures is

sin-dr=l

Hence

This curious result can also be obtained by calculating the volume swept out
by a complete plane rotating through 180° about any line in it.

Formulce for Bight-Angled Triangles.

Let ACB (fig. 18) be a triangle right angled at C. Let BA6 = dA , Bb = da.
C&A = B + dB. If Bm be perpendicular to Aft, then bm = dc.

We have at once by (3)

sin Bda = p sin -dA . . (8)
P

Also dc = da cos B (9)

Calculating the area BA6 in the two different ways we get

Ddc = p2e.
** C

Whence

- - cos — ) = p2\
p

no)
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Whence dc tan B = - p tan — dB . . . . (11)
P

From these equations we get successively:

sin B sin— = sin— . I.
P P

cos — cos — = cos — . . . . II.

sin A cos— = cos B . . . . III.
P

b ctan— cot — = cos A . . . . IV.

P P

For hyperbolic space we get in like manner

sin B sin h — = sin h — . . . . I'.
P P

cos h — cos h — = cos h — . . . . IF.
P P P

sin A cos h— = cos B . . . . III'.

=cosA . . . . IV.
P P

The reader will observe that these are simply the formulae included in Napier's
rules for right-angled spherical triangles. The only modification being that in
hyperbolic space hyperbolic functions take the place of circular functions.
In other words, the trigonometry of single elliptic space is identical with
the geodetic trigonometry of a sphere, although it would not be correct to say
that the planimetry of single elliptic space is identical with the geodesy of a
sphere.

For hyperbolic space the analogue is the pseudo-spherical surface of Bel-
trami.

Parallels.

As an illustration of the application of the above formulae to parallels, I
shall find the parallel angle in hyperbolic space.

Taking formula IV, if we make B move off to an infinite distance, then AB
becomes the parallel to CB. A is then the parallel angle corresponding to b.
Now since c =» oo we have

cot h — = 1,
p

therefore

t —?
b e? - e?

cos A= tan h— =-^ 5- , (12)

VOL. X. 4- K
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Whence tan ~o=G >

the relation stated above (p. 653).

Non-Intersectors.

As an example of the trigonometry of non-intersectors, I select the following
formulae, the proof of which I leave to the reader.

If KA and LB be two non-intersectors, K and L the points of least distance,
d, AB = D.

Then sin h — = sin h— cos h - . . . (13)
2P 2p p

cosh—

cos h—
2p

(14)

The results of (6) to (11) are given by ISTewcomb (Borchardt, lxxxiii. p. 293)
mostly without demonstration. He assumes formula (3) as one of the axioms on
which he bases his synthesis. Although I have read most of the original
literature on the subject, I am more immediately indebted to Newcomb and
Frischauf for the materials of the foregoing sketch*

2. Note on the Theory of the " 15 Puzzle."
By Professor Tait.

[After this note had been laid before the Council, the new
number (vol. ii. No. 4) of the " American Journal of Mathematics "
reached us. In it there are exhaustive papers by Messrs John-
ston and Story on the subject of this American invention. The
principles they give differ only in form of statement from those
at which I had independently arrived. I have, therefore, cut
down my paper to the smallest dimensions consistent with intelli-
gibility.—P. G. T.]

The essential feature of this puzzle is that the circulation of
the pieces is necessarily in rectangular channels. Whether these
form four-sided figures, or have any greater (even) number of sides,
the number of squares in the channel itself is always even. (This
is the same thing as saying that a rook's re-entrant path always
contains an even number of squares. This follows immediately
from the fact that a rook always passes through black and white
squares alternately. The same thing is true of a bishop's re-entering
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