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1. In spik of the considerable attention which the theory of integral
functions of finite order has received for the last fifteen years, the theory
of the functions of zero order has been somewhat neglected. Analysis
which applies to the. theory of finite order usually breaks down in the case
of zero order; moreover, the greater part of the few general theorems
which exist in the latter theory are particular cases of general theorems
applicable to all integral functions.

In his first memoirf on integral functions, M. Hadamard obtained an
upper limit for the modulus of the general integral function defined by a
Taylor series,! and he has given in a subsequent memoir§ a new means
of finding such an upper limit. The latter method gives an approxima-
tion T for Mix) [the maximum modulus of | F(z) | on the circle \z\ = r ] ,
such that [M(r)J+' > T > [M(r)]1"6, when r is sufficiently large, where e
is as small as we please. This method applies to the case of functions of
zero order.

M. Le Roy 11 has given a method by which we can obtain asymptotic
expressions for certain functions defined by a Taylor series with real and
positive coefficients, the variable also being supposed real and positive.
Among these functions are certain functions of zero order, e.g., the function

ie~n"zn (Kp<2).
o

The asymptotic expressions of M. Le Roy for these functions afford a

• The paper has been practically rewritten.
f Memoir crowned by the French Academy, Jour, de Math. (Liouville), t. ix., 1893.
+ Hadamard also obtained other general results which hold in the case of zero order,

shall, however, only refer to such results as are connected with the subject of this paper.
$ Bull, de la Soc. Math., t. xxiv., p . 186.
|| Bull, des Sciences Math., 2me ser., t . xxrv.
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nearer approximation for M(r) than those obtained by the method of
M. Hadamard.

M. Lindelof* has considered a similar class of functions and obtains
similar results.

M. Maillett has extended as follows the definition of order in the case
of functions of zero order.

Let ek+i (vi) —

where ax = a2 = ... = e.

Let £ f e * ' p ) i ^
and let M(r) be the maximum modulus of a function f(z) on the circle
\z\=r.

Then, if M{r) < E (/•, k, p+e), for all values of r, and if

M(r)=E(r, k, p-ej

for values of r as great as we please, where e and ex tend to zero as r tends
to infinity, then we say that/(^) is of index k, and of order (0, k, p).

He has established theorems concerning the relations between the
modulus of the function and the coefficients of the Taylor series, when
these coefficients approximate to the form of those of E(x, k, p). He also
defines " irregular growth," and establishes theorems concerning functions
with this property.

The sole particular functions of zero order (the argument being
supposed complex) which have been considered in detail, are the function

CO

II (l-\-qnx) and its generalisations

IX) CO

I I {l-\-qnx)n'' and n [ l + S ' i 1 ^ ••• Q*sX]-
n=l 7i,, «2, ... = 0

M. MellinJ has given formulae for the logarithms of these functions. In
particular, his formula for F{x) = logII(l+gfTOa;) provides an asymptotic
expansion for log F(x) in the case when q is real. We shall give this
result in § 12.

* Aeta Soc. Fenn., t. xxxi .
\ Journal de V Ecole Poly technique, 1904 and 1905 ; Jour, de Math. (ZiouvilU), t. x., 1903-4.
X Acta Soc. Fenn., t. xxix., p . 14, formulae (23), (25).
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This function F(x) has albO been considered by Dr. Barnes* and
Mr. Hardy, t

Mr. Hardy obtains the formula (in our notation)

F{x) = H .pogawiogte-)sin

where — a = x = — re1*, — S < <f> < 8, where S is a small positive number,
log a = log r+<0, and KX<.H < K2, where Kv K2 are constants. This
formula gives an approximation for F(x) near the line of zeros. The
part of the plane for which this formula holds includes the part of the
plane from vhich x is supposed excluded in the asymptotic expansion of M.
Mellin (cf. § 12).

Dr. Barnet + has shown that in the case of certain functions of finite non-
zero order we can obtain a complete asymptotic expansion of the logarithm
of the function, i.e., an expansion proceeding in descending powers of z.
The analysis, however, breaks down for zero order. Moreover Dr. Barnes
concludes § that the complete asymptotic expansion of log F(z) in the case
of functions F(z), the modulus of whose ?i-th zero is a function of n of
high order in n, is impossible without the introduction of functions at
present unknown in analysis.

It is the object of the present paper to show that the functions of zero
order have simple and characteristic properties, which do not generally
hold for functions of finite order, that they should be studied by different
methods than those applicable to other integral functions, and that the
arithmetical method is specially applicable to their theory.

I wish to acknowledge my indebtedness to Dr. Barnes for his kind
assistance and advice. My thanks are also due to one of the referees,
who has given me a number of suggestions with reference to arrangement
and choice of expression.

2. The most general integral function of zero order is

Fz= GlUl+zIa,),
i

where av a2,..., as,... is the most general sequence of numbers arranged in

* Phil. Trans. Boy. Soc. (A), Vol. 199, pp. 411-500; Camb. Phil. Trans., Vol. xix.,
pp. 322-355.

t Quarterly Journal, 1905.
X Loc. cit. and Proc. London Math. Soc, Ser. 2, Vol. 3, Part 4.
§ Phil. Trans, and Camb. Phil. Trans., loc. cit.
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order of increasing moduli, subject to the condition that, if X be any
00

positive number, then 2 | a J~ A is convergent, however near to zero X
may be.

Let an be written for \an\, and let loga u / logn= <f>(n).

Then an = n*™*

Now we must have, for a function of zero order,

L t d> (?i) = oo .
H = 00

For suppose this were not the case; then we should have a sequence
nlf n2, ..., ?ir, ... of values of n, for which <p(n) < h, when h is some finite
number.

00 1 1 1

The series 2 - j ^ must converge. But the nr-th term > - j ^ > -j,

and therefore, since the terms of the series do not increase, the sum of the

first nr terms > nr — > n\. Thus, as nr can be taken as large as we

please, the series 2 l/aJ/2A diverges, which is contrary to our hypothesis.

Hence Lt <t> (n) = oo .
In the case of functions of zero order, defined by a product form, which

arise naturally, the moduli av a2, ..., an, ... of the zeros will increase in a
regular manner (the word "regular" being used in a rough sense), and, since
an = n*^, and <f>{n) ultimately becomes infinite, in the natural cases <p{n)
will increase uniformly after a certain value of n, e.g.,

an = nlogn, an = en = nnflogn.

This, of course, only applies to functions which arise from the considera-
tion of the product form. If a function of zero order be defined by a
Taylor series, then, however regularly the coefficients of this series may
increase, there seems no legitimate presumption that the moduli of the
zeros of the function increase at all regularly.

In the present paper we shall chiefly be concerned with functions
which are such that <j>(ri) increases uniformly with n, after some finite
value of n, the word " increasing " always being understood to include the
case " not decreasing."

Functions of this class we shall call " functions of standard type."

* The standard function of finite order p (p < 1) ia n (1 +za"1/'>). When p = 0 this form

does not exist, and we introduce the function <p (n) to replace, to some extent, the constant 1/p.
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8. We shall use the following notation:—

Let n be the integer such that an ^ | z | < an+1. Then n depends
uniquely on r. We shall always use the symbol n with this meaning.

We have

where n has its special meaning.
We call the first three terms of the right hand of (1), respectively

P, B, S. We also denote the real parts of P, B, S, by T , B, S.

Then P = ?ilogr— 2 log a,, B = 2 log 1 +
3— 1 o — «

S = Vlog 1+ —
s = l 2

Throughout this paper we shall be primarily concerned with F(z), and
not with log F(z), although most of our results are stated in terms of the
latter function. We shall, then, not concern ourselves with the proper
multiple of 27rt which occurs in equations like (1).

When we deduce an asymptotic expression for F{z) from a correspond-
ing expression for log-F(z) the imaginary part of the latter expression
yields a factor e*4 in F(z), where we may suppose | \Js \ ̂  it.

We shall then regard all possible values of log F {z) (for the same z) as
equivalent, and we shall regard the imaginary part of log F{z), however it
may be expressed, as a finite term in the expression for log F {z).

We may then re-write (1), after separating the right-hand side into
its real and imaginary parts,

1 +
an+\

•Hog (2)

where we suppose that | yz \ .< TT.

4. We shall establish the following general theorem :-

LetF(z) = G. II (l-\-z/as) be any integral function of zero order,
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where %, aa, ... are arranged in order of non-decreasing moduli. Let
M(r), m(r) denote the maximum and minimum moduli of F(z) on the
circle \ z\ = r.

Then there exists a sequence of circles |*| = r, r = rvr2,...,
ri < >a < ..., Lt rs = ao, with the following properties.

3=00

If any positive number e be assigned, however small, there is an
integer ix depending on e, such that, when s > /A, on the circle | z | = rs

w e h a v e

where
n

P = n logr— 2 log a,,

n having its special meaning, and where | n (z) | < fa.
Moreover, the sequence rvr2, ... depends only on | ax |, | a21, ..., and is

independent of the arguments of the zeros.
Hence, if Fx{z) be any integral function of zero order, the sequence of

the moduli of whose zeros is the same as the corresponding sequence for
F(z), and for which the coefficient of z° in the Taylor series is G, then

where | m te) I < fa•
Again, when s > /*, we have

[M(rt)J-% mi(rs) > [^(r,)]1"', vi(rs)

ml(r8)>[M(rl)J-t.

We shall require the two following lemmas:—

LEMMA I.—If we are given in the x-plane a circle with its centre at
the origin and with radius I, and are given any m points a1}a2, ..., amin the
plane, each of which may be within, without, or on the boundary of the
circle, then there exists a concentric circle of radius ^ I, such that for
every point x on it,

II (*—as)
8=1

> (l/2e)m.

Moreover, such a circle can be found whose position {i.e., whose radius)
depends only on | ax | ... | am \, and not on the arguments of the a'a.

If ds | = as, py
IL(p-as)

whatever be the arguments of the a'a. It is therefore sufficient to prove
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that, if alfa2, ...,am be any m points on the positive real axis, we can find
a point p on this half axis such that p <l, and

1

Let a be any point on the positive real axis.

Consider Ia = I log | x—a | dx.
Jo

If a > I, /a > 1 log (l—x) dx (algebraically)
Jo

f log x dx > Hog I— I > I log (l/e) > I log (l/2e). (1)
JoJo

Next let a < I; then

Ia = I \og(a — x)dx-\-\ \og(x—a)dx
Jo Ja

= a log a—a+(Z—x)\og(l—a) — Z+a.

Let a = £2 (1+/3), where — 1 < /3 < 1. Then

-iQ)} - 1 ]

(2)

(1+/3) log (l+0)+(l-/3) log (1-/3)

fi + ? ^ ? ^ > 0. ,8)

If /3 = ± 1, it is easily seen that (1+/3) log(l+/6)-|-(l—/3) log(1—0)
tends to the limit 2 log 2 > 0. (4)

From (2), (8), (4),

Ia > I log (2/2) - 2 > Hog llie (a < 0. (5)

From (1) and (5) we have Ia^l log l/%e for all values of a.
Giving a the values ava2, ...,aTO and adding, we obtain

n
\ log | (x—ax) (x—a<j)... (x—am) | <?x > ml
Jo
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Let M be the maximum value of | (p—at)... (p—am) \ for 0 < p < I.
n n

Then Hog Jlf = logMdx > log | (x—ax)... (x — am) \ dx > nillog
Jo Jo

Therefore log M > m log (l/2e),

and M > (^/2e)m.

Thus there exists a p such that

\(p-al)...(p-am)\>(ll1e)m,

and the Lemma is proved.

LEMMA II.—Let ux,u2, .....be a sequence of real positive numbers, such
that as+i ^ a,, and such that-a, = s*(s), where Lt <b{s) = oo .

5 = CO

Let a (a;) be the function defined by

a(x) = (x — s)as+i+{s+l — x)as,

when s + 1 ^x ^ s.

Then a(s) = as, a (a;) is a continuous non-decreasing function of x, and
u (ic) = x*w, where Lt d>(x) = ao .

Suppose now that we are given a number v as large as we please.
Then if any (large) number h be assigned, there exists a point (X, Y) of
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the curve y = a(x), such that X> h, and such that the part of the
curve C, {yjY)Vv = x/X [which evidently passes through (X, Y)], for which
1 < x < X, is entirely above the corresponding part of the curve
y = a(x), while the part of C for which* x > X + 1 is entirely below the
corresponding part of y = a(x).

Effect the transformation

x' = x, y'v = y.

The curve C becomes C, y'jY' = x'fX', i.e., a straight line through the.
origin, and y = a(x) becomes y' = fiix'), where fi(x) = [a(x)Jlv, so that
J3(xf) is a Eon-decreasing function.

If in the original plane a point A is above another point B of the same
abscissa, the transformed point A' will be above B' in the transformed
plane.

Hence to prove the Lemma it is sufficient to prove that a point (X1, Y')
exists on y' = /3(x')> such that X' > h, and such that the part of the line
C for which 1 < x' < X' is entirely above, and the part of C for which
x' > X' + l is entirely below, the corresponding part of y' = fi{x').

Suppose the contrary case. (1)

Call the curvet y = /? (x), L.

This curve L starts at the point [1, (3 (1)].
Since ft(x) is non-decreasing it is evident from the figure that the line

I joining the origin 0 to [1, /3 (/*.)] does not cut the curve L in any point
of abscissa < h.

Let l± be any line through 0, lying between I and Oy.
Since B{x) = x*^'" and Lt d>(x)lv = <x>, it is easily seen that every

ray through the origin, lying in the first quadrant, and sufficiently near
the axis Oy, but not coincident with that axis, must intersect the curve L.

Let then (#i2/i) be that intersection of lx with L which is nearest to
the origin.

Then, from the figure, xx > h, and the point [/*, /3 {h)~\ is below the
point of lL whose abscissa is h. Hence the part of L for which x < xx is
below the corresponding part of lx. Again,

B(x) = x^x)t'v>^-x,
x

* The result can be extended to the case when this inequality is replaced by x > X, but the
proof is somewhat troublesome, and the above form is sufficient for our purpose.

t For convenience we shall drop the accents.

SER. 2. VOL. 5. NO. 967. 2 B
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when x is sufficiently large, so that the distant points of L are above the
corresponding points of lv

Then it follows from the supposition (1) that there is an intersection
(x2y^ of li with L such that x2—xx ^ 1.

For, if this were not the case, ( x ^ ) would be a point of L satisfying
all the requirements for (XT')-

Let 1% be the line joining 0 and (xxyj)t and let {x3y^) be that intersec-
tion of l2 and L which is nearest to the origin. From the figure x3 > x2,
and x2 takes the place of h in the reasoning above.

Then, as before, there exists an intersection of l2 and L such that
xt~xs > 1- We proceed similarly with the line l3 joining 0 and (x3?/4),
and so on.

Us. _ Mi = Mi = Mi
C\ *Ci

_ Ml £a ^1 xiv-i x ^ Vi
Xi X9 X5 X2p-1 X\

since x,+i > x4. Therefore

y2p < ("^}) Xgp for all values of p. (2)

Now
a;2

and tends to infinity with x. Therefore a number k exists such that, when

4 - (3)
X" X\

But, since x2s ^ x2s_i+l, x2s_i > x2s_2, when p >• k, we have x2p > k.
Hence, since (x2j)y2p) is a point of L, (2) and (3) are incompatible.
Hence the supposition (1) is false, and the Lemma is proved.

We can now proceed to the proof of the theorem.
Take for the sequence alf a2,... of Lemma II. the sequence of the

moduli of the zeros of F(z).
If we are given a number h, however large, and when we have assigned
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a v we can, by means of Lemma II., find an X > h such that the point
[X, a (X)] has the properties of the lemma.

Let m be the greatest integer contained in X. By Lemma I. we can
find a number r ̂  £a(X) such that, for all points z on the circle \z | = r,

(aa+z) ra(*)
l_4e4e J '

and such that this inequality obtains without alteration of r, when the
arguments of the a's are varied; so that

- >

log n(l+— )|>P1-wlog(4e)
i \ aa/ I

and

where P2 = m log a(X)—

Again, log II [\-\ J < logII | -

From (1) and (8) it follows that

(1)

. . .cO. (2)

< P 1 + m l o g 2 . (8)

fi (l+—) = Pi+flm where |d| is finite.log

When | z | > i

Therefore, since |^ | < £a(X), so that

(4)

(s > 1),

< a (5)

Now by the property of Lemma II., when m-\-s > X-\-l, i.e., when
> l ,

am+, > the ordinate of \_yja{X)^lv = x/X corresponding to x = w + s

Hence
00

a(X)S

!5±.
I/— 1

2 B 2
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Hence, from (5), when m > v > 2,

I flog n ( l+ -^ ) |~ | |< l+^±l = 0'm, where |0 ' |<-!_<8. (6)
IL i \ am+t/\J\ v—l v—\

Next consider Pv We have

since the arithmetic mean is greater than the geometric mean. Now by
the property of Lemma II., when 1 < s < X,

as < the ordinate of [y/a(.X)]1/r = x/X corresponding to x = s,

Hence "f' „ < 2® "f , < 2® [*,* < «<S « £ < 2® ...
1 A l A Jo A i/-f-1 v

Therefore [ | as]/[ma(X)] < ^- + -i-.

Choose i/ so large that 1/v < fa, where >/ = e"1 ei and €i will presently
be chosen, and choose h > v so that w > J/, l/??i < £17. Then

[5 «

and therefore

< if,

^> log-±->f.
n

Then, from (7), Pj > W«i- (8)

From (4) and (6), log | F(z) | = Pi

Now

Pi

Choose e1 so that this last expression is less than £<?. Then

log 1 (̂̂ )1 = Pi [l+»?i (<?)], where |»7i(̂ )| < £e (9)

for every point of the circle \z\ = r.
By choosing h sufficiently large, we can make m as large as we please,

and hence P l t which is certainly positive, as large as we please:
Now r cannot be equal to cts for any value of s, for then log|F(2)|

would be — oo for z =• — a,. Hence there is an n such that an<r < an+i,
both limits excluded.
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Then log \F{z) | = P+log Q, (10)
n

where P = n log r— 2 log a,

and

We shall show that there is a point z1 on \z | = r for which Q ^ 1; so
that [log Q~\zi ^ 0 algebraically.

Suppose the contrary case. Then, since Q is continuous for points
z on the circle, and, since a continuous function attains its limits, there
is a number X > 1 such that Q > X for every point z of the circle.

[X may depend on n, and tend to zero with 1/w, but we only require
X to be independent of the argument of z.~]

Hence, if p be any integer, and z' any point on the circle,

1 [ W * ] 1 (11)
«=o

00 / z \ n ( a \
But, since II (l-\ ) is absolutely convergent and II (1H—-) is a finite
product,

n [QWW] = n | n 1+ *^ | n
t=o !=ilLi=o I z '^JJIze

| n

< U, where U is independent of p, though not of n. (12)

But, if p be taken sufficiently large, Xp+1 > U.
Hence (11) and (12) are incompatible, our supposition was false, and

it follows that there exists a point z1 on | z \ = r such that Q (zx) ^ 1 and

In a similar manner we can prove that there exists a point z2 such
that [log Q]Z2 > 0.

The number X > 1 is replaced by n < 1. We consider the same
product of <3's as before, and the inequality indicated by the star is
replaced by

Vn B ^ ] > n [i- (a)1! 5 fi- W
^ o »=i L \r / J s=i L Vet*.,.,,/
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We thus obtain an inequality incompatible with II [Q (z'e2nUlP)~\ < /xp+1

when p is sumciently large.
Now P is independent of the argument of z, and is the same for zx

and z$. The same thing is true for Pv

N o w [ l o g ^ ) ~ P l = 3 l < 0 (algebraically).

From (9), pogTO-d-^Pj^ > 0.

Hence, subtracting, (1—^e^—P < 0.

Similarly, by putting z = z2> we obtain

( l + ^ P j - P > 0,

whence Px = P/(l+^e/c2), where U Z | < 1 for all points z of the circle,

log \F « | = P,[1+»W] = P

Now 1 -Je) < £e, when e < 4.

Then log |F(«) | = P [ 1 + J I ( * ) ] , where | *(*) | < Je. (13)

The complete form of the theorem is established by the following
considerations :—

By choosing h sumciently large, we can ensure that m is as large as
we please, and that therefore X, therefore a{X), therefore Plt there-
fore M(r), and therefore r or n, is as large as we please.

We have then determined an r such that

\F(z)\ = exp[P{l+.,(*)H h « | < H
n

Moreover, P = nlogr—2 log as is evidently independent of the argu-
ments of z and of the zeros. In the course of the work r was determined
(by means of Lemma I.) solely by means of the moduli ax, a2, ..., and is
independent of the arguments of the a's ; moreover, the analysis through-
out assumes these arguments to be arbitrary.

Thus on the circle | z \ = r

\Fx{z)\ =

We determine the sequence rx,r2,... as follows :—
Let rj be a value of r which has the above properties when e = £.
Let r2 be the least possible value of r such that r2 > Pi+1, and such

that r2 has the above properties for e = 1/22.
Similarly, let r3 be the least possible r > r 2 + l and corresponding to

e = l/23, and so on. We evidently have Lt r, = oo. Then, when an
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e is assigned, if n be the least integer such that 2~M < e, when s > ix,
on the circle | z \ = rs, we have

where | r\ (z) | < ^ < |e .

A similar result evidently obtains for i^U).
Finally, we have to show that m(rs) > \_M{rs)J~e We have

> P d - i e ) > P(l + i e ) d - e ) > [logM(rs)](l-e).

Therefore w(rs) > [ilf (r,)]1"'.

Similarly, the other inequalities of the theorem are proved.

5. The theorem of the preceding article does not in general hold for
functions of finite or infinite order, and it does not hold for any of the
ordinary functions of finite order which occur in analysis, e.g., ez, sin z,
1 / I» , sin z.

It does not hold, moreover, for the functions* Pp(z) of Dr. Barnes,
which may be regarded as the standard type of functions of finite order.

The most precise completely general theorem t which is known con-
cerning the relations of m{r) and M(r) for functions of finite order p,
is that, on certain circles \z\ = r, where r is as large as we please,
m(r) > e"1"***, where e has its usual meaning. It seems certain, moreover,
that when p > 1 we cannot find a lower limit for m(r) which is of
higher order than is implied in this inequality, unless we make further
assumptions t as to the nature of the zeros of the function.

Again, on the circles \z\ = r of § 4, log\F(z)\ has a dominant term§
P which is independent at once of the argument of z and of the arguments
of the zeros, and |.F(2)| has a dominant factor exp(P) which is similarly
independent.

• Barnes, Proc. London Math. Soc, Ser. 2, Vol. 3, Part 4.
t \_fiote added August Ylth.—I have proved the following theorem:—If p < §, a sequence of

circles exists for which m(r) > [JLf(»)]C082»'>-€, which is a generalisation of the theorem of §4. I
hope to publish the proof in another paper.]

J Cf. Lindelbf, Ada Soe. Fenn., Vol. xxxi. (1), 1902, pp. 1-79, where an extensive theory
of this kind is elaborated.

^ In saying that P is the dominant term of f(z), it is meant that f(z) = P+ Q, where

in -* LI r\J
0- Similarly, P is a dominant factor of f{z) when / (s ) = P . Q, where
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This again is not true for the standard functions of finite order.
Consider the function

= i n [(1- £) (1+£)] =
whose order is £.

If z* = g+tij, the dominant term of log|.F(*)| is ir( |£| + | v | ) . This
evidently depends on the argument of z, and varies from ^/^irr^ to TIT*.

But even the maximum value of the dominant term can be changed by
a change in the argument of the zeros.

Consider

whose zeros have the same moduli as those of F(z).
The maximum value of the dominant term of log | Fx (z) | is 2-7rri, which

is different from the corresponding maximum s/iirr^ for F(z).
We have chosen a function of order less than unity because of the

exponential factors which may occur in the product form of a function of
order greater than cr equal to unity. In the case of functions of order
unity, a more striking example is afforded by the pair of integral functions*
sin irz and z~l[l/T(z)f. The moduli of the zeros of these two functions
are the same in each case, but the maximum values of the dominant
terms of their logarithms are respectively irr and 2r log r.

It is possible t to construct functions of finite I and infinite (including
transfinite) orders for which log F(z) has a dominant term independent
of the arguments of z and of the zeros, but these are exceptional cases.

It is clear, then, that functions of zero order behave at infinity in
a manner quite different from that of functions of finite order, and that
they deserve to be studied by special methods, not applicable, in general,
to the theory of finite order.

In the general theorem of § 4, we have no means of determining the
precise positions of the circles | z j = rs. We may, however, expect that,
in the case of functions of standard type, the results of this theorem will
hold for circles in a part of the plane which can be determined.

In the following articles we shall undertake the approximation to
functions of standard type.

* This example was given to me by one of the referees. It is due to Borel.
t This is an example of a theory which I propose to develop in another paper.
X Mr. Hardy has given examples of functious of finite order with the above property, ZYoc.

London. Math. Hoc, Ser. 2, Vol. 2, 1904, pp. 332-339.
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6. We proceed to establish the following theorem for functions of
standard type:—

00

Let F(z) = U(l-\-zlas) be any function of standard type, so that <f>{s)
i

increases with s after some finite value N of s.

We define the region B of the z plane as follows:—Assign any positive
number Jc, which may be chosen as large as we please.

Let Cs be the circle | z + a s | = |a s | exp[—x(s)]> where x(s) is ^ne

greater of the two numbers k and k[sl<p(s)~\. Then B is the region of
the plane which is exterior to all the circles Cs.

Then, when z is restricted to lie in the region B, a constant K exists
8 U c h t h a t log TO = P+Q,

• n

where P = nlogr— 2 logas,

n having its usual meaning, and where

... \Q\ < the greater of the numbers K and K\_n/^>(n)].

As for P, if any positive number X < 1 be assigned, then, when r is
sufficiently great,

P > \n<p(n).

Further, if the circle | z \ = r do not cut any of the circles Cs, fehen,
when r is sufficiently great,

- m(r) > [M(r)J-e,

where e is any assigned positive number.

We have (§ 8)

\ogF(z) = P+B+S+hg 1+ + log

where | yz \ < TT. We shall show that P is of order not less than that
of n0(vi), while

B+S+\og 1 + + log

is of order not greater than that of the greater of K and K\pil^>(n)\ and
we prove tLa latter result by considering separately the order of each
of the five terms B, S,

First let us prove the result concerning P.
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We have P = &P = & I log n — j = n log r— 2 log as

n

> n log an— 2 log a,

n

> n<f>(n) log ft—log a!— 2 <j>(s) log s.
2

Let .AT" be the value of s after which <p(s) increases, and let

N

2 log a, = G,

where C is a finite constant. Then

P>ft0(ft)logft—C— 2 d>(s)logs >ft^>(?i)logft—0(ft) 2 logs—G.

N+l N+l

it n .

Now 2 logs < 2 logs < log (n\) ^n logn—?i+logv27rn+e7l,
iV+l 1

where en vanishes when n becomes infinite (Stirling's formula). Therefore

P > %0(?i)logft—^(?t) |n log ft—n-\-% log(2x)+^log?i+e7l}—C

Now, when n is sufficiently large, i.e., when r is sufficiently large,

where X is any assigned number < 1.

Therefore, when r is sufficiently large,

P>\n<f>{n), (1)

where X is any assigned number < 1.

We notice, in passing, an upper limit for P,

P < n log r < n log an+1 < n<f> (n+1) log (w+1). (2)

Next consider the term JR.

We notice once for all the two following inequalities.

If | x | < 1, then 3a log (1+x) < \ x \, algebraically,

and |3£llog(l+a;)| s^ — log (1— \x\).

For the first &log(l+a>) = l o g | l + a j | < log (1 + | « | ) < \x\.
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For the second |»log(l+a>)|= ft (x-y + y-- - - ) I

We shall frequently have occasion to use these inequalities in the course
of the present paper, and shall hereafter use them without further
remark.

We have B = 2 & log (1+ —).
*=2 5 V an+sJ

We divide his sum into two parts as follows.

Let X* bt a constant which we shall choose later to be greater than a
certain finite number.

Let r\ be the greater of the numbers X/w, A/0 (n). Then, by choosing
X sufficiently large, we can ensure that rjn is greater than any assigned
number, and, since <f>(n) tends to infinity with n, by choosing n sufficiently
large we can make >/ as small as we please. We suppose for the present
that n is so large that r\ < 1.

We divide the sum B into

[ijn] »

o"! = 2 log|l+*/o»+, |, and <ra = 2 log | l+z/an+t\.
8=2 Djn]+1

We shall prove successively that <rx and cr2 are of order not greater than
the greater of Kn/<f>(n) and K.

First consider ov We have

| T, | < - X log ( l - ^ - < - 2 log ( l - 2s±!)

- 2

[since <f>(n+s) ^ <j>

^ — 2 logi 1—V I ") ^

[since X/>; = the lesser of n and 0 (w)

* This A is not the \ appearing in (1).
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NOW loglVsifn = - Alog'i±l= _Aiog ( i _ t

>— —
n n-\-s

•^ X s — 1 . X s—1 / • ^ i\
> ; — > - (since rj < 1).

i) n-\-rfii 217 n

Now, when a; < ^,

^ ^ 2 ! ^ 3 ! + ' " < ^ 2 \ 2 + 22 + 23 + " 7 ^ 2*

Hence, when »; < JX, (5)

,, . X s—1 . X ?i . 1
so that < - <—,

2J/ 7J- 2>/ ?i 2

and, from (4),

i/ri-

1LW±i) ^ 8M
X ( l ) X(s- l ) '

provided X > 2, so that \jf)i\ > m—1 > X—1 > 1. Then, from (8),

Using the asymptotic formula tor logF(a;+l) (Stirling's formula), we
obtain
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where A (n) is finite for all values of n,

(log Y + * ) +A (*> <since M > i)

( 1A \

log-r- + l ) » and (2°) the maximum

value of | A (n) | . Then, if n = X/n,

If »; = X/0(w), so that 0(w) > n ,

Hence, in any case, | <rx | < the greater of Kx and Kx-^r-^. (6)

Now consider <r2. When s ̂  [>7n]H-l ^ tjn,

±1\

2 1 4
Choose X > 4; then —r— < -rr , — < %y, and

n + 1 2 n

< exp [ - ^ (n) i ^ ] [if ^(n) > X]*

<exp(- iX) .

Now, when 0 < a; < 1, ^ — = 1+ -rr "f ~s" + • • • increases as

x 2 o

increases.

Hence, when s> rfn,( r \ I r p~i^

•* * \ / * ^̂  ^

I f 0 < * < * ,
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Then | <ra | < - 2 log ( l - ^ - ) < I. 2 -~-

2 <*•»+*

2 (

tt+12 (?i+s)-*((l+1) < ^(?i+l)-*(/l+1) f
2 J l

when 0(w+l) > 2.

Hence N ^

Next let us consider the term \ S\.

The analysis is somewhat similar to the above, and I shall abbreviate
it where this is possible.

_ n - l

We divide the sum S = 2 log | l-\-aajz \ ,
l

_ n - l

which may be written S = 2 log 11+»„_,/# |,

into two parts,

n - l
<r3 = 2 log | l+a(l_s/2 |, and cr4 = 2 log | l+an-sjz | ,

where n is the number defined above.
Consider <r3. We have

I (r. < — 2 lc

Cinl r / / (7J, s)^^'l~sH~|

2 bg [i/(i—^«—JJ
2 log 1 / ( 1 - ^ g j -
1 L / \ 7fc

< 2 log 1/ 1-F—-) [since ^(w)

log = log 1 ) >— >7fr
L\n—s/ J n ° \ 71/ i;n 21

when X > 2 and >??i > 2.
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Hence, reasoning as in the case above, we have

*- 8 faro] 16 fan]
\s

Then

This is the same inequality as we obtained for | o-j |.

Hence, by repeating the reasoning for that case, we have

| o-31 < the greater of Kl and Kx n/<f> (n).

Now consider <r4. We have

u-. = • * 2 log |
t=[r\n] + \

where 7̂" is the least integer such that
If n be so large that r ̂  aTO > 2a^,

+ 2 log | l+ajz

<f>(s) when

• if

2 log
i

<2|logi|<JVlog2.

Again, when s ̂  fan] + 1 ̂  >/n,

=£)*«
a» ^ n*(n) \ n J n

- ^ " < exp [—log (I-?)] < exp (-X).

Hence, by reasoning similar to that used in the case of <ra,

where Z' is a finite constant. Then

(8)

(9)

< (1—>?)*(n)

rn-N-l n I -i n-If-l / \ 7/ n-i^-1

2 log l+«2z£ < - 2 l o g ( l - ^ - s ) < — 2 a.-.

7/ n - N - l

< — 2 an_s < I't
n-N-1

Jo

2 ' ( n -
I

<V n • (10)
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Adding (9) and (10), if %K2 be the greater of JVlog 2 and I', we see that

| <r41 < the greater of K2 and K2n/<f>(ri). (11)

Next consider the term

| [log \l-\-zlan+i | ] | is a maximum for a given n when | z-\-an+\ | is a
maximum or minimum.'

Now, by the definitions of the number n, \ z-\-an+i | has its maximum
when z = an+\. We then have

1^1 = log 2.
Again, by the definition of the region R, \ z+an+i | has its minimum

value when z lies on the circumference of the circle Cn+i, and this value
is exp[—xOfc+1)].

Then | 2\ | = x('»+D = the greater of k and k{n+l)l<f> (n+1)

< the greater of 2A; and 2kl<p(n). (12)

We proceed similarly with T2 = log | l-\-anlz\. | T21 is a maximum
when | l /^+l/a t t | is a maximum or a minimum.

The first case occurs when z = an, and we then have | T2 \ = log 2.
The second case occurs when z is the point on the circumference of Gn

which is at the greatest distance from the origin.
In this case, since

= exp[—XN] < e-k

so that |*| < \an\(l+e^k),

< the greater of 2k+log (l+<rfr) and [2A;+log(l+e-fc)jn/<p{n). (13)

Finally, \yzi \ ^ ir < the greater of 2TT and ZTrn/tfrin). (14)

Now, adding the inequalities (6), (7), (8), (11), (12), (13), and (14), we
have, if K =

I B + S+log | l + «/o»+i | +log
< kJ + k2| + |o-8| + K| + 1 Til + | T2\
< the greater of K and Knj(f>{n).

Then the first part of the theorem is proved.
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To prove the second part we recall that, if X be any assigned positive

number < 1, then, when n is sufficiently large, P > \n<f>(n).
Thus on any circle \z | = r which does not cut any circle GS) i.e., which

lies entirely within the region M,

\ogF{z)=P+Q,
where | Q\ < the greater of K and Knl<j>(n).

Now, when n, or r, is sufficiently large,

K K
\n<j>{n) 4 '

It follows at once that, when r is sufficiently large,

log m (r) > (1—e) log M (r),

and therefore m (r) > [M"(r)]1~e.

7. The formula log F(z) = P-\-Q of the last article may be used to
approximate to the logarithm of any function of standard type. ,n

In practice it is necessary to approximate to the finite sum 2 log as

which occurs in P, in terms of n, which is supposed large, to approximate
to n as a function of r, and to effect the substitution of n in terms of r.

Both of the above approximations should be carried just so far, when
this is possible, that the final approximation for P has an error of the
order of n/<p(7i), or a finite error, according as we have the inequality
\Q\<Knl<t>{n) or | Q \ < K.

The order of the terms in r thus obtained ranges from that of K or
Knl<j>(n) as a lower limit (which is not attained), to the order of P, which
varies with different functions from n<j>{n) to nlogn<p{n) [cf. the in-
equalities (1), (2), of § 6].

Thus, provided we can effect the approximations spoken of above, we
can find some of the higher terms in the asymptotic expression of
\ogF{z).

It may be remarked that in the case of some functions the expression
Q is actually of order nj<j>(n), so that the inequality for Q which constitutes
the theorem of the last article is the most precise general inequality which
can be obtained on our lines. In the case of certain functions for which
<j>{n) is of less order than n, so that | Q \ <.Kn/<p(n), Q is of slightly less
order than n/<f>(n). The difference, however, is usually irrelevant in
practice, so far as finding more terms of log F (z) is concerned.

SEK. 2. VOL. 5. NO. 968- 2 C
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Since P is independent of the arguments of z and the zeros, the terms
in r which we obtain are similarly independent, so that our method gives
the same approximation for all functions whose constant term in the Taylor
series is 1, and whose zeros have the same sequence of moduli.

The region B, however, to which z is confined, varies with the argu-
ments of the a's. It contains, however, the region B' which is the part
of the plane exterior to every annulus AS) whose boundaries are the circles
with centre at the origin, touching the circle Gs internally and externally.

The region B' is independent of the arguments of the a's. Hence,
when z is confined to B', a change in the arguments of the zeros can only
affect terms of log F(z) whose order is not greater than the greater of K
and Knl<f>(n).

It is clear, from the alternative inequalities which occur in § 6, that
there is a change in the behaviour of log F(z) when <f>{n) is approximately n.

When <j>{n) is of order not less than w/log?i, we can obtain a better
approximation than that afforded by the theorem of § 6, and we shall in
the following three articles consider the approximation to classes of
functions of this type. The analysis in these cases is fortunately far
simpler than that of § 6.

The theorem of § 6, then, is more particularly appropriate to functions
for which <f>{n) is of ordsr less than njlogn.

It is necessary, however, for the cases when <j>(n), although not
decreasing, is of irregular growth. It is possible,* e.g., for <f>(n), while
being an increasing function, to be of order w* for an infinite set
of values of n, and to be of order w2 for another infinite set of values.
In this case we should have the inequality | Q | < K for certain ranges
of z [i.e., those ranges for which <j>(n) is of order nr\, and for other ranges
the inequality | Q | < Kn*.

We shall conclude this article with some remarks on the regions B
and B'.

We suppose <j> (s) is of less order than s/log s, and that it is of regular
growth (in a rough sense).

The radius ps of the circle C, is as exp [—ks/<j) (s)].

* Borel, Lemons sur les Fonctions entiires. Borel constructs a function which we may call
f(x), which is of order comparable with eF for an infinity of values of x as large as we please, and
of order comparable with e* for another similar range of values. If we take

<*>(") = - r l o g / ( n * ) ,

we have the case above.
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The distance of —aa from the nearest other zero (usually)

^ as—aa-i ^ as 1 — ( ) ^s as-— (approximately).

Then the ratio of ps to the distance from —as to the nearest other zero

This tends to zero with 1/s, and is very small if 0(s) increases slowly
with s.

Thus the region R covers by far the greater part of the plane, and
since the circles Gs do not intersect when s is large, as is evident from the
above, the point z can move in the region B from any point in B to
infinity.

The region B' covers the greater part of the plane, but consists of
disconnected annuli.

8. THEOREM.—Let F(z) be a function such that after a certain value N
of s,

- ^ < 0 < 1; (1)

but no other restriction is placed upon <j> (s) than that implied by (1).
Assign any positive number k, which may be as large as we please.
Let i?! be the region exterior to every circle Gs,

| z+as | = e~k | a, | .

Then, when z is confined to the region Bv there is a number K such that

log-FC*) = P+Q,

where \Q\ < K.

We notice firstly that the class of functions defined by (1) includes
functions other than of standard type, and secondly that this theorem
gives a better approximation than the theorem of § 6, for functions for
which (f> (n) is of order not lower than n/\og n, and lower than n.

We have
z

\ogF(z) = P+B+S+\og 1 + +log 1 + ^L
z

2 c 2
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Consider R. We have

| ̂  | = I f 2 log i + - i - | ] |

gf
s=2 \ <*»+*

< - 2 logd-jQ1-1) (when w > # ) . (2)
s=2

Now 2/3s"1 is convergent. Therefore 11(1— /3s"*1) is finite and not
OS

zero, and therefore — 2 log (1—/3s"1) is finite and <.KV
s=2

Hence | B \ < Kv (3)

Again, l ^ l

- 2 log (l-^-) ~ U2 log ( l - ±).
s=\ \ a»/ 5=^+i ° V an/

Choose r so large that r ^ a(l >
Then, if s < N,

1 - — > *, and - 2 log( l -^ - )< iVlog2 .

Then

| S | < # l o g 2 - "21 log(l-/37I-i)<iVlog2- 2 Iog(l-i8s)
s=N + l s=l

<. a finite constant K2- (4)

We prove, by reasoning as in § 6, that

I Tx I = I log (l+zlan+l) I, and | T91 = log (l+ajz) \,

are less than finite constants Hx and H2. (5)

Finally, | iyz \ < ir. (6)

From (3), (4), (5), (6), we have, if K5 = K^K^H^H^ir,

\Q\=\ R+8+Tx+T%+iyt I < K3.

We have so far assumed that n is greater than some finite value,
N' suppose.



1907.] ASYMPTOTIC APPROXIMATION TO INTEGRAL FUNCTIONS OF ZERO ORDER. 389

Let JBT4 be the maximum value of Q for all values of z belonging to R,
and such that n < N'. Let K be greater than Ks and K4.

Then | Q | < K, and the theorem is proved.

Taking the exponential of each side of the formula

log F(z) = P+Q,

we have F(z) = C{z) e7,

where eK >\G(z)\> e~K.

Let .Ri be the region derived from Rx in the same manner that R' was
derived from R. Then R[ is independent of the arguments of the zeros.

Hence, if F(z) = II (l-\-zlas), Fx(z) =• Hil+z/al) be two functions of
the class defined in the theorem, for which the sequence of the moduli of
the zeros is the same, then, if | z | = r lies within R[,

e*K>\Fl(z)IF(z)\>e-2K.

Thus F(z) and Fx(z) only differ by a finite factor in the region R\.

If we can express P in terms of r, with a finite error, we can find all
the large terms in the asymptotic expression for log F(z).

The ratio of ps, the radius of Gs, to the least possible distance ds from
—as to the nearest other zero is greater than in the case considered in § 7.

We have as > /3~s.

Then (usually) ds = as—as^ > (11/3—1) /3~s,

and is finite, though by choosing k sufficiently large we can make it as
large as we please. We can thus ensure that the circles C do not intersect,
and that R'i exists.

9. THEOREM.—Let F(z) = II (l-\-zla,) be a function such that
s= l

Lt as/at+\ = 0,

S=oo

but no further restriction is placed upon <f> (s).

Let -R2 iv) be the region of the s-plane which consists of all the annulirjas+i > | z\ > as/>7, where s is such that ^as+1 > as/t], and where ^ is a
positive number < 1.

Then, if any positive number e be assigned, there is a corresponding
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non-zero positive number rjty such that when z is confined to the region
jRa(i;e), and when moreover \z\> Kt, where Kt is a positive number
depending on e, we have

\ogF(z) =
11

where P = nlogz— 2 log a,,
s=\

and where | Q | < e.

The class of functions considered is evidently contained in the class con-
sidered in the last article.

It is evident, however, since we propose in this case to obtain the
inequality | Q j < e, that we must take count of the imaginary part of
log F(z), so that P will no longer serve as an approximation with the
accuracy which we require.

Again, log (l+z/an+{) is not small when |*/on+i| is nearly unity, so
that the theorem requires a new kind of region B.

We have

log F(z) = P+B+S+\og(l+zlan+1)+\og(l+anlz),
where the logarithms in B, S, and in the last two terms are supposed to
have their principal values.

Let 6lf which for the present we suppose less than £, be a positive
number, which we shall presently choose suitably.

Then there exists a v such that when s > v,

-*- < A- (i)

Then, if z be any point of the region B^), there is an n such that

r/aM+i < elf an/r < ev (2)

and such that n has its usual meaning.
Now, if \x\ < £, and if log (1+x) has its principal value,

| l o g ( l + * ) | < 2 | x | . *

Moreover

provided n > v.

Hence | log (l+z/an+s) \ < 2ef"1 (s = 1, 2, ...),

'*l + lT-v--<'*'+'*''-<rqfr
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and therefore

#n + l s= i

Again, if n > v-\-\,

Iog(l+-i-)|

< 2 £ ef-1 < - ^
s=l 1 — ^i

§
< 2

s=l

When

When

Then,

og(l-

S>1

s ^

from

z

(4),

-+•S

a«+i

z

< 2

an r

2
s=i/+l

Hence, from (8) and (5),

\Q\ =

(3)

• (5)

when n > y-j-1, or when |^r| > a finite K'ei depending on e^ Choose

Then, when z is confined to B (i/e) and | z \ > Ke, we have | Q \ < e,
which proves the theorem.

Since Lt a,/as+i = 0, when s is sufficiently large, we have »/eas+1 > as/>7€,
so that the region Bz (>?g) exists.

The breadth of the annulus which passes, between the points as and
a,+i is large compared with a,, but small compared with a,+i.

Taking the exponential'of each side of log-F(^) = P+Q, we have,
for large values of z within Bz(rjt),

F(z) = [1+«W] *"
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where | e(s) | < exp (e) — 1 < 2e.

If we can approximate to P as a function of z, with an error which
tends to zero with I/;*, this approximation gives all the large* and finite
terms of log F(z).

00

10. THEOREM.—Let F(z) — II (l-\-z/as) be a function, such that
s=l

X (.s) = <p(s)/s is an increasing function after some finite value N of s, and

such that Lt Y(S) = oo.

We define the region BB as follows.
Assign a positive number k such that 0 < k < ^, and where k may be

taken as small as we please.
Then R3 is the region of the plane which consists of all the annuli

(s+&)*w <\z\< (s+l-fc)*(s+1).

Then when z is confined to the region B3, and when r > some finite
constant H, , _ . . „ . ~

log-P(^) = P+Q,

where | Q \ < K exp [—%k x (w)],

K being a finite constant.

Since z lies in JB3, there is an integer n, such that r-= (?i-f-0)*(n)

(6>k) and r = (;i-|-0')*('l+1) (#' < 1 —*). Moreover, » evidently has its
proper meaning.

We suppose r so large that n > N. Then

We have

n+J

• I shall use the phrase " large terms " to mean " terms tending to infinity with \ z | , "
" small terms" to mean " terms tending to zero with 1/| z \," and " finite terms " to mean " terms
whose moduli lie hetween fixed finite limits."

+ We have log ( 1 - - i - V ' * 1 = (» + 1) log ( 1 - -~\ < - A.
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Similarly

*(«)

\n+k) ^ L l + J J
(2)

Let i^j be the integer such that
N' the greater of JV and Nv

Then, when s> N',

> * for all values of s, and

Suppose ??. > N',' and, further, so large that e~*kxin) < ^. Then, from
(1), (2), and .(3), if X = exp(—£&),

and, when s > N',

an+s

Also when s < N', — < — <
r r

Hence

when s > N',

and, when s <.N',

Then | Q \ =

< 2
O»+8

log(l+ -2

<log(l+

< 2

< 2

« S

« S

2Xx ( 7 l ) + ( n~J i ) ;

+ {log(l+ «fj + s\

2XX(W) f i
L«=i

- N l X*( n )

w h e r e

• We have log ( 1 + — } > n log ( 1 + — ) > « ( i — ] , since — < —
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We have supposed n> N': this is equivalent to supposing r greater than
a finite constant.

Thus the theorem is proved.
It is possible, by finding closer inequalities than (1) and (2), to show

that
\Q\ < K' e x p [ - & ( l - e ) x « ]

when r is sufficiently large, where e is as large as we please. The
difference is unimportant in practice.

If we can calculate P in terms of z, we have an expression which
represents log F(z) asymptotically with an error of order e~x('l).

It may happen that P can be asymptotically expanded as in a
divergent series of descending powers of some function of r, and that the
error committed by stopping at any particular term is always of greater
order than e~x(-nK In this case, the asymptotic expansion for P obtains
for log F(z). Such an example occurs in § 15.

11. It will have been observed that in §§ 6, 8, 9, 10 the terms

satisfy an inequality precisely similar to that satisfied by \Q\; indeed, the
various regions JB and B' are defined so that this may be the case.

It is easily seen that in the case of any function F(z), which belongs
to one of the classes considered in the above articles, we have, in the
cases of §§ 6 and 8,

log F(z) = P+log z +log

where Qx satisfies the same inequality* as Q, and where z may have
any value whatever ; and, in the cases of §§ 9 and 10,

logF(z) = P+log ( l + — ) + log

where Qx satisfies the 3ame inequalities as Q, and z may have any value
(subject only, in the case of § 9, to the condition that | z | is greater than
a certain value).

These formulas enable us to study the behaviour of F(z) near its zeros

* That is, of course, when K is suitably rechosen.
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and, in the cases of the functions of §§ 9 and 10, near the circles with
their centres at the origin, and passing through the zeros: e.g., if F(z) be
one of the functions of § 8, we have, near the zero — an,

where | Qi | < a finite K.

12. We shall now apply our general methods and results to the
investigation of some particular functions.

The simplest function of zero order is

F(z) evidently belongs to the class of functions considered in § 8.
This function has been considered by M. Mellin,* Dr. Barnes,! and

Mr. Hardy, t
M. Mellin obtains a result, which, written in our notation, is as

follows :—

I

2™sinh( — - )

When | * | > 1 , log ( l + — ) F{—) = - 2 V ; _

and we have

logFC*)

When a) is real, the term in crooked brackets

= 2
m=l 2w sinh

and is finite.

* Ada Soe., Fenn., t. xxix.
t Phil. Trans., Ser. A, Vol. 199 ; Camb. Phil. Trans., Vol. XES., pp. 333-335 and 433-435.
X Quarterly Journal of Mathematics, 1905.
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Hence, when w is real, (2) afifords a complete (convergent) asymptotic
expansion.

It happens in the case of this function (with w complex), that our
methods enable us to find a complete asymptotic expansion.

The case is quite exceptional, but it exemplifies to some extent the
general procedure.

Let co = t^-j-twg. n is the first integer for which |s~Vtt+ l )w| > 1, or
for which (?i+l)o>1 > logr.

Let (rc+Do)! = logr+/3a>j, where 0 < p < 1. (4)

Then {n+l)co = logr+jSa^+fa+l )^ ' = logs-f a«i,

where o . (n+l)oo2—6 /a .
a = fi+ ^ 2 t (6 = arg z)

(i)x

and z = g(»+i)<—««i. (5)

One value of log F{z)

^ i ^ ^ J ^ ^ ) . (6)

Now £ log ( l + ^ ) = £ log ( l + e~) = log F{*-"«), (7)

? log (l+ '-) = ? log (l+ j^z) = ? log

- £

P = j^log^— 2 sa)| =

(8)

= -^( log*+aa>j—to)— rr- Gog^+00^)(log^H-awj—w)
ft) 4ft>

[on substituting for n from (5)]

= ^ (log*)*-£ l o g * - ^ (aft^-co). (9)
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We have for a,

a = fi- *L + «*i Wl i

ICOn i I COP tft) n ,-, n s

or a = —§ log z-\ -26, (10)

where 0 < /3 < 1.
Adding (6), (7), and (8), we have

:0+ 2 ^2e-*) V>
00

on substituting for 2 log(l+^"1e~Sa)) its expansion in descending powers

of z. a is given as a function of log zlt and of /3 and 6 (which are finite)
by equation (10).

Now Ba = /3. Hence \ea"1\ and le"-™1! are equal to ep<°1 and e^-W"1 re-
spectively. If 0 < fi < 1, these are both < eui < | the first zero of F(z) |.

If, then, 0 < j8 < 1, both limits being excluded, ^(eaui) and F(eu-aa>l)
are finite both ways. Then their logarithms are finite.

Thus in equation (11) the terms in 3quare brackets give the large
terms, and the other terms are finite or small.

Substituting for a from (10), we obtain, from (11),

where the terms in square brackets are the finite terms.
When w is real, i.e., o>2 = 0, this expression simplifies considerably.
P u t CO = ft>! = 1 , 6t)2

 = : 0 .

log F(z)

l - J i_ (18)
s ( l -e - s ) ^
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Comparing this with (3), we see that the large and the small terms
agree.

We have chosen a different determination of the logarithm of F(z)
from that of M. Mellin.

CO

M. Mellin's log F(z) is equal to 2 ]og(l+ze~*°), each logarithm on

the right-hand side having its principal value (i.e., having the modulus
of its imaginary part less than ir).

Our determination is that implied by equation (6.) Thus the finite
terms in (3) and (13) may differ by some multiple of %TTI. We may notice
that it was quite possible, a priori, that the large terms should differ in
the same way.

We have expressed log F(z), in the general case of « complex, in terms
of log z rather than in terms of log r, in order to exhibit the corre-
spondence between our form and M. Mellin's.

Written in this way, the large terms have imaginary parts which
do not really count as large terms.

Let us find the expression in terms of log r.

We have

P = nlogz—

which reduces to

where the terms in square brackets count as finite. The remaining terms
of log F(z) may be written as before, and we have

log F(z) = P + l o g | F(eoul) F(e
w-aw0} + 2 ( ~ ) $ ^ , (16)

where P is given by equation (15).
Thus we see that the large terms of log-FO?) are (log r ) 2 / ^^ ) —£logr.
Finally, suppose \z\ tends either to \eiua\ or to |e(w+1)<0|. Then (3 tends

to 1 or 0. But, if z tends to a point on the circle | z \ = | ella> \ other than
the zero — en<0, the right-hand sides of (12) and (15) are continuous, and
so are their left-hand sides. Hence the equations (12) and (15) are valid
when (3 = 1 or 0, provided z be not actually at the corresponding zero
—enu or — e(

)l+1)".
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13. The comparison of the equation (11) of the last article with
M. Mellin's result (1), leads to certain other formulae. We have

/ 2 \ oo

%n sinh (

= log[F(«~0 F ( « — - 0 ] - f-J (owx-w), (1)

where the 2&7n is supposed absorbed into the logarithm, and where
z2mml°> is interpreted to mean exp(2w7r* to"1 log 2), where

7r, l o g * =

Let (1 + 1/*).F(«)F(1/*) = 0(«), tf>(etfl)

so that 0 ( 1 / ^ ) = z<t>{z).

Retaining the usual signification for n, we have

p[—(1
Then

Substituting in the last term of the right-hand side of (1) the value
of a in terms of log z, i.e., i^hl log *r+[»(#«!—*#)]/&£ and using (2),
we obtain, after some reduction,

co ^2mjrt/« I £-2m»ri/o>

sinh
(JO

2+ - r l l (2/3+1K-2I0 [log*

- l o g 0|e-o-fl"i+<»-«-.>i} + ( ^ + i 0 ] , (3)

where the term in square brackets is finite, and n and /3 are determined

The equation (3) gives an asymptotic expression for the left-hand
side. We notice that the real part of the right-hand side tends to — <x>
as I z I tends to 00 .
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Next suppose that o> is real and \z\ = e{n+l)w. Then w = wj, w2
 = 0,

/3 = 1. The formula (8) is still valid, provided 16 | <• w.
We have

CO

or i/r(0). Thus (8) becomes

c o s h

immit. — e x . j i. _ {(n+l)a>+«0[ = exp ( ,
\ w ) L w J \ c o /

|e-(i-««I+(«-n«t)cj becomes <f>(eie)

- L l o g + m + TJ-sinh
to /

Now e^(6) = 6^(1+e"ie) 5

= 2 cos £0 n {l-\-2q2s cos 0+?4s),
1

on putting q = e~4<u.
In the notation of MM. Tannery and Molk,*

q0 = fi (l-q2s),
1

92(a0 = 2^0gi cos TTX &

Then 92(ar) = q^e^Virx), log? 0 = - f£ g ( 1 ^ .

Then, from (4), we obtain

5 C08h

V w /
where w = 2 log(l/(;).

This expansion is valid when x and q are real, 0 < g < l , | z | < £ .
The series involving x is highly convergent when w is small, i.e., when
</ is nearly unity.

When I x \ <. % and q is nearly unity, i.e., w is small, we have

where e(g) tends to 0 as q tends to 1.

Elements de la Theorie des Fonctions elliptiques, 1.11.
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14. In the case of functions ^(z), such that Lt as/a,+i = e •*, &
5 = co

we can express the finite term of log F(z) by means of the function <f>(x)
defined in the last article.

THEOREM.—Let F{z) — I\.(l+zlns), and let Lt atjas+\ = e~°, and

suppose z is confined to the region B.
Then, when any positive e is assigned, there is a constant Kt, such that,

when | z I > Ke, we have

where

log F (z) = P+log <p (zlan) + Q',

I Q' I < e.

Let 17 be a small positive number, which we shall presently choose
suitably. Then there is a number N, such that, when s > N,

where \ Vs\ < i-

Suppose r so large that n > N, and let w = . Then, if s ^ 1,

an l+z/an

Now

Choose >7 < Jo)!. Then, from (1),

- 1

(1)

sn exp (5*7).

(2)

Now Lt se~isu>1 = 0, so that se~iSl°l has a maximum h.

5 = 00

Choose rj so that i

8KB. 2. VOL. 5. NO. 969.

2 D
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Then, from (2),

log ( l+ —
\ (In

e- - l o g
Q>n+

< | log (l-riek+<*>

and therefore

2 log ( +
s=i \ au+,

% (3)

since both series on the left-hand side are uniformly convergent, and
since 2.se~isui is convergent.

Again, we can show in a similar manner that

Now choose n so large that

Then, when s ̂  n—N,

< »/ < i.

and, similarly,

Hence

log
^ / [

s=n-A'+l
*2

s=n-N+l

< 2
A

Finally, when .s > n,

2ie—) <2

so that 2 log(l+—
s—n \ Z s=u+l

(4)

». (5)
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Choose n so large that this last expression is less than 17. Then

I 2 [ 0 ] - 2 fog ( l + « = . « — ) ! < , , . (6)
s=n s=n " \ Z I \

Adding (3), (4), (5), and (6), we have

- [ "2 )+
an / »=o

or I [log 2 * » - P ] - [log 0(*/oJ] | <

Choose >; = e/J5T. Then, when n is greater than some finite number
depending on >/, or when r is greater than some number Kt,

where | Q' \ < e.

As an example, consider

where A; is real, ^<o > 0, and a and v are any complex numbers.

We evidently have Lt aJas+i = e~a, so that the formula of the

theorem holds in this case.

n is determined by

log I [ a + (w+1)«? e(ft+1)a) I > log >• > log I (a+wi>)* e^ |,

whence n is determined as a function of r by the relation

nwx-\-k log I a-\-vn \ — log r = — atoj, (1)

kwhere 0 <; a < 1 -\ - , (2)

so that a is a function of r. *
We approximate to P as a function of ?i, retaining terms of order not

less than 1/n, and to n as a function of r and a, to the same order of
approximation.

2 D 2
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Substituting from the second approximation in the first, we obtain

log F(z)

t l k A;2 "1

— (log r)a log r logar+(c—%) log r + — (log2r)
2—&(&+c)logarJ

c*-c + a(1-a)} + * J logra+oM + l - i log 2TT}]

log2r+Wl(2c-hl-2a) logr+A;2(log2r)

-O)! (2c+1 - 2a)] (log2 r)

where \Q' \<.e, when r is sufficiently large, and where

6 = arg z, log2 r = log log r, afv = b-\-tbf, y = arg

and c = (fc/coj) (log a^—log |« |).

The third term of the above expression is purely imaginary and counts
as a finite term.

Hence, when z is not near a zero, so that (/>{z/a,n) is finite, the first
term gives the large terms.

It will be noticed that no terms in a occur in these large terms, which
are expressed by means of the ordinary functions of analysis.

If a) is real, so that w2 = 0, the above expression simplifies considerably,
the greater part of the third term disappearing.

The comparative simplicity of the large terms is somewhat remarkable,
as will be seen on working through the rather complicated analysis.

If we only wish to obtain the large terms, we have the following
result:—

If z be confined to the region B defined in § 8, we have

1 k k
log F(z) = — (log rf log r log2 r+{c-l) log ?•+ r-^ (log2 if

-k(b+c)\og2r+Q,

where \ Q \ < K.

We notice that the dominant term, (log r)2/(2c«1), is independent of k.
Thus, multiplying the n-th zero — en<0 by nk does not affect the dominant
term of log F{z).
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If k = 0, we have the function of the last article, and the large terms
reduce, as they should, to (logr)2/(2«i) — | logr.

15. We shall work out one other particular case. Consider the function

F(z) = nfl+—fL-1
k real and positive, WiaP > 0.

The two cases, & > 1 , and k < 1, present very different characteristics,
and are separated by the case k = 1, which has intermediate character-
istics, as we shall explain later.

We shall consider in detail the case when k > 1. We have

T log s

and is an increasing function of the same value of s. Also

Lt s"1 0(s) = oo.
S—<x> '

Hence F(z) belongs to the class of functions considered in § 10. The
number n is determined by the relation

| exp [a+(?i+1) «P | > r ^ | exp {a-\-nw)k \

or 3& 0+ (n+1) w]k > log r >

or 4 Tn+l

> log ;• > 3a -, coknk \l-\ \- —- •,

where l̂)M 4̂'rt are finite.

Put
Then

and n = — [(log r)1 '*—y i-a] , (1)

where a lies between — c/?i and y-\-c'ln, for some (positive) values of
c and c'. When z is confined to the region BB, we have (§10)

J5Texp[-P0(**)/»], or |Q | < Zexp [-\;i l-Vlogw],

for some non-zero value of A. (2)

Again, we have P = ?ilog^—2 (a-\-sw)k. (3)
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Now, when n is large, we have the asymptotic expansion*

Z(a+sw)K= £(—h \a+oo) + £ p ' h - )

where i! is any positive integer, and | Ji nl~k~1 | tends to zero when n tends
to infinity.

Now Lt IQ np I < Lt I Ke~An*"1;log H n» \ = 0.

Hence, substituting from (2) in P, we may take I to be any integer we
please, and we obtain

log F(z) = ;ilog z- S°

where

so that

Then

4 S{.(<H
/)=2 P'

~co)

Lt

K, = -J,+Q

Lt Ki ii1-"-1 =

K< (log ?f-k-»ik

0.

= 0.

Thus, on substituting w = (1/y) [(log r)1/A'—yx—a], (5) provides
an asymptotic expansion for log .F {z) in descending powers of
[ ( logr ) 1 '— 7 l -a ] .

On arranging the right-hand side in terms whose order in r decrease,
and regarding pure imaginaries as finite terms, we obtain

logF(*) = * (log r)<*+1>*-(yi/y + *) logr
\K-\- i) y

~ j - [ a ( a - y ) - y ; + y9y+^yi]Oogr)(fc-l>t + lower terms, (6)
Zy

where y = [»a)fc]1/A>,

Vl = [mac/

The first two terms involve only known analytic functions.
We may give some idea of the nature of the region Rs, by observing

that the restriction of z to JB3 is equivalent to restricting a to lie between
-4/logn and 1—B/logn, where A and B are finite constants depending on
k which can be made as small as we please by taking k sufficiently small.

• Barnes, Proc. London Math. Soc, Ser. 2, Vol. 3, Part 4, p. 262. The above formula is
obtained by changing a into a + w.
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As the possible range of a is from — c/n to l+c'jn, we see that the
restricted range differs but slightly from the total possible range..

In the case when k < 1, <p(n) is of less order than n, and we cannot
find all the large terms of F{z). We restrict z to lie in the region JB
defined in § 6. Then we may retain terms of order greater than that of
n/<f>(n), or n1~fclog?i, or (logr)1^"1 log logr. Thus, when 1 > & > £ ,
so that log r > (log ?-)1/fc~\ we have

0"* '>('+1)"- ( * + T ) 1O« r

+terms of order not greater than (logr)1^"1 log log r,* (7)

and, when k ^ £,

+terms of order not greater than (log r)11"1 log log r. (8)

The ratio /t>,/as, where p8 is the radius of the circle Cs, is in this case of
order e~

sX~kl°88, while the ratio dsfa8, where ds is the lower limit of the
distance between — as and the nearest other zero, is of order l/s1-fc.

Hence pslds is of order exp(—s^Mogs), which is very small.

16. The two examples which we have worked out in detail suffice to
show how, in practice, the value of P is approximately calculated in terms
of r. In particular cases, various special artifices may be used to facilitate
the approximation, such as replacing a sum by an integral in cases when
the consequent error is of an order which we are to neglect.

We give the following summary of particular cases :—
00

Call, for convenience of reference, the case of the function EL
s= l00 r z ~\considered in § 12, L, the case I I | 1 + ; — ; — r r - r , II., the case

s=i L {a-f-svrerj

I. with k > 1, III., and the case of the same form, with

k < 1, IV.

* It can be shown, by a closer study of B and 6', that this error is actually of order
(log r)V* -!, except near the circles C,.
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V. F(z) = & [ l + * 1 + t l l ,
,=2L exp j(logs)1+*-|J

k real and positive, z confined to the region B ;

logFW = e x p t a o g r ) 1 ' 1 ^ - - ^ (logr)fc/(fc+1)- - ^ ^ (log r)^-1 >'

with an error of order exp[(logr)1/(1+fc)] (\ogr)~kl(k+l\ where I is the
greatest integer less than 2k, and where the series in square brackets

stops at the term + . , . . . , =• (log /•)(fc~A:)/(fc+1) when k is an integer.

VI. F(z)=IL f l + ^ 1
8=1 L eme J

a real and positive, w = wx-\-iw<i, wx > 0;

= ~ Pog2r—logft)x+log(1+a)— a]log2
CL

ft) 1 + a , . wea

! ea— 1
+ (an expression of order r~A where /i > 0),

where [1— |log(1-fa)}/a] is the fractional part of (loglogr—logooj/a,
and z is supposed restricted to the part of the plane defined by

k < a < (l-k)(ea-l),

where & is a constant as small as we please. The total possible range
of a is from 0 to ea—1.

The constant h depends on k, and tends to zero with k.

17. We shall conclude by some remarks concerning certain general
facts of which the above six cases afford illustration.

Of the six cases, IV. and V. are cases in which Lt as+i/as = 1, or as

increases less rapidly than e8". In these two cases, and under the various
restrictions placed upon z, we have been able to find, in terms of known
analytic functions, an expression which proceeds to precisely that order
of approximation which our theory allows as valid.

III. and VI. are cases in which Lt as+i/as = a>, or in which as in-
creases more rapidly than eS(u. These two cases are distinguished by the
presence of terms of the expansion of log F(z) involving a, where a is
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determined by means of the fractional part of some analytic function
of r. Now such a function of r as a cannot possible be expressed in
terras of the ordinary known analytic functions, and I think it is obvious
from the manner in which a enters into the expansions in cases III. and
VI., that the whole expansion cannot possibly be expressed in terms of
known analytic functions.*

It is easy to multiply instances of both types, and we are led to these
conclusions : If as increases less rapidly than el(a (for all positive values of
&>), and is expressed in terms of known analytic functions, then the terms
in P which our theory permits us to retain as an approximation for
log F{z), can be expressed in terms of known analytic functions of n and-r,
and, moreover, the problem of finding these terms is practically soluble, how-
ever complicated a function of .s as may be. Further, provided we can
invert the equation <*„ = t, into an equation of the form n = X ( 0 + T ,

where x (0 is expressed in finite terms, and in terms of known functions
of t, and where | T | is finite for all values of n, then we can express the
above expression (for P in terms of n) in terms of known functions of r.

If, on the other hand, as increases more rapidly than e**, then there
will be large terms in the expansion for log F(z) which involve a number
a analogous to the a's in cases III. and VI., and consequently the com-
plete expansion cannot be effected in terms of known functions of r.

Again, when Lt as+i/as = oo, it is not always possible in practice to
find all the terms of P which are admissible, even by the introduction of a
number a, nor is it always possible even to find all the large terms of P.
For example, if as = exp[exp(exp s)], to determine all the large terms

n

of P, we should have to sum the series 2 exp (es) with an error only finite,
which is impossible by any known analysis.

It is found that the more nearly the rate of increase of as approaches
that of e*" (while remaining greater than that rate) the smaller is the
order of the highest term of log F(z) which involves a, in comparison
with the order of the dominant term. In consideration of this fact, and
of the behaviour of functions for which Lt as+i/as= 1, we might expect in
the case when Lt as+i/as = a finite number greater than 1, which separates
the two cases which we have been considering, all the large terms of log F{z)
are sometimes expressible in terms of known functions, while the finite
part is not so expressible. This we see to be the case in cases I. and II.,
and instances can be multiplied.

It will be noticed that our conclusions confirm those of Dr. Barnes t
* It is easy to see that the occurrence of a is not due to the fact that we have expressed the

various terms of the expansion in terms of r, instead of in terms of z.
t Cf. § 1.



410 ASYMPTOTIC APPROXIMATION TO INTEGRAL FUNCTIONS OF ZERO ORDER.

as to the impossibility of solving, by the method of contour integration,
the problem of the complete asymptotic expansion of log F(z) when a, is
of high order in s.

We might expect, however, that when Lt as/as+i = 1, this method

might, in certain cases, be applied to obtain a complete expansion.
This is, as a matter of fact, the case, and it is possible to obtain such

an expansion for the function IV. I shall reserve this theory for another
paper.

It may be remarked that the property of requiring non-analytic func-
tions for the complete asymptotic expansion, is not confined to functions
of zero order, and, indeed, has no real connection with the order of the
maximum modulus.

The same property belongs to certain functions * defined by a product
form of the type IL[l-\-(zlas)

m~\, where f(s) becomes infinite with s, and
I <h l> I a21> • • • ^en<i i n value to infinity, or to a finite limit.

These functions may be integral functions of any order—zero, finite,
infinite, or transfinite. They may also be functions whose Taylor series
has a finite radius of convergence.

The property, however, does appear to be intimately connected
with the rapidity of the convergence of the product form. In the
particular case of functions of zero order of standard type, the general
condition for the property is equivalent to the condition that as should
increase as rapidly or more rapidly than eSai, and this condition, again,
can be expressed in terms of the order of |-F(.z)| qua function of \z\,
but the question of order is really quite irrelevant.

• I hope, in another paper, to develop a theory of these functions, which is somewhat
analogous to that of the present paper. It is easy, in this theory, to give a multitude of
particular examples, which bear out the rule governing the property.


