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Lamé's Differential Equation. By A. G. GREENHILL.
[Read May 10th, 1888.]

1. This differential equation, in the form
1 4—-—— n(n+l) Bsn’z+h,
y do
employing Jacobi’s notation of the elliptic functions, has been solved
completely by M. Hermite (Sur quelques applications des fouctions
elliptiques, Pa,rls, 1685, a collection of articles from the Comptes
Rendus).

But the advantage of the notation of Weierstrass has been pointed
out by M. Halphen (Mémoire sur le réduction des équations différen-
tielles linéaires auw formes intégrables, Paris, 1884); the differential
equation of Lamé then takes the furm

ldj_

y aw (D esth. e (1),

where pv is Weierstrass’s elliptic function; and the solution of
Hermite then takes the form

y=O0F @)+ OF(=2)veerre v crenn(2),

where F (z) is a doubly periodic function of the second kind (fonction
doublement périodique de seconde espéce), which, according to Hermite,
can be expressed in the form

F(z) =D ¢(:v) —A D)% (2)+4, D7 (2)— on e (3),

where ¢ (z), called the simple element, expressed by Weicrstrass's o
and { functions, is of the form

¢ () = ﬂ%}") 0Xp (A—{w) B .euvivnrnnannns “4);

and Halphen has shown (Fonctions elliptiques) that, when A=0,
¢ (=) satisfies the differential equation

L B 2 gt p s seenns (B),

y de® ¢z

Lamé’s differential equation for » = 1.
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2. In order to obtain the coefficients 4,, 4,, ... in (3), the functions
F(z) and pw are expanded in powers of 2 in the neighbourhood of
@ = 0, in the form -

(=1)"'F (z) = (n—l)' A, (n-—23)' (11:5) s (6),

1
p;v: -T

+'q2’—0' L2 + (1] Sesaeisrssrscantne (7),

$ () = THAH (P P) B+ N+IPA+R) Tt
(Halphen, Fonctions elliptiques, 1., p. 231), and then, substituting
in the differential equation, we find

(n—1)(n—2)

A= ™

A= (n—1)(n—2)(n—8)(n— 4){ B n(n+1)(2n—~1) }

1T T (2u—1)(2n—3) 10 ’
Ay = civeve v, rererasiirern e eees e ereernrae e (8).

3. But, if we suppose that a particular solution & (2) of (1) is of
the form
& (z) = o(rta)o(z+a) .. o(z+a,)
oa,odq, ... o, (er)"

exp (—&a,—lay—...—a,) x,
the product of » simple clements, each of the form

p () = 2{2ta)

ot gl

exp (—{a)z,

and if we scek to satisfy the diffcrential equation (1), we shall have,
putting y = & (),

1 dy _ ,.

-?7 E——V{((.Lﬂ-a)——{m—(u,}

=31 £

391,-39&
1 &y _ Y (_1_ ‘_iy)’
Y 2{591 —-p(e+a)l + S
= _ 1e(Pr—pa
E{p:c 59(1-{-(:)}-{- q(gm gm)
+13 (@:P'&) (Mi’in)
‘ o — it oL — 2y

=Znpu+Ipa+iS() ()
=nn+1) pr+(Cu—1) Xgpa,
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provided that we can make

33 (%}z;ﬁ) (%’:—:%) = n(n—1) pa+(2n—2) 3pa,

and then h = (2n—1) Spa.
The necessary conditions for the a.béve relation to held are
Spa=0, Zpap'a=0, Z(ps)p'a=0,..Z(p)"pa=0,
as Brioschi has demonstrated (Comptes Rendus, xcir., p. 325); then
3 (pa)y"'pa=C=[(p) @
putting, with Brioschi, h = n (2n~1)p, and thenp = pv.

Here f(pz) denotes the product ® (z)® (—=z) of two particular
solutions @ (x) and ® (—z) of (1); and thus

f(p¥) = T (pr—pa),
and Spa = np = ngpv,
h=nu(2n-1) po.
These conditions of Brioschi may be replaced by
Zp'a=0, 2p”a=0,..3p"Na =0,
and SpNa=Nf'(p) p'v.

4. In order to compare the two solutions F (z) and ® (z) of the
differential equation (1), it will be necessary to decompose ® (z) into
simple clements of the form ¢ (z) of (4), and of its derivatives
(Halphen, Fouctions elliptiques, 1., p. 228), and then we shall find

a+agtag+...+a, = w,
lo—{a,~la;—~...—{a, = A.

Differentiating ® () logarithmically,

:‘;8 = 3 {{(et+a)—la—La}

o 2 at 2
- ;'l'Bgl—!"*'Bs'z—!""B‘m‘f‘.u
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where By=~Xpa = —npv,

By=—3pu=0,

B,=-3Spa+2 B =0, ..

10
and we have

V=L (14p.% Lp 2
@) = (1+122! +P44!+...),
where P,=B, P,= B,+3L,

Py = B+ 151,B,+15L;, ...
Consequently the decomposition of ® (x) into simple elements is of

the form

- _D9() P, D¢ (a) Py Di’g(a)
=1 l‘b(")_'(n—l)! +~21 (n—=3)" " 4! (n—s)!Jr

ey

and F(x) =(n=1)"!(=1)"" (),
P, = —npe,
= 27?_”:‘} {n (20—1} p'v— i]() (_n-{-l)gq}
whence Spe = o,
S o1y = wep'n
2p Dy —1}

3p'™ a being, in general, an integral function of po.

. 5. The differential equation for Y = f (p.), the product of ® (x) and
® (—z), two solutions of Lawnd’s equation, is easily formed (Halphen,
Fonctions elliptiques, 11., p. 493).

Yor, if we take the livear difterential equation of the second order
in its canonicul form,
1 &y _ I

y d o
and if y and z are two particular solutions, so that
Y =y,
then, denoting differentintion by accents,
Y =y'z2+ys,
Y\ =y 2427 +y7"
= 2yz +2y7,
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or Y —21Y = 27,
and Y -2IY -2I'Y = 247 +2y7"

= 21 (y2'+yz) = 2IY,
or Y —4IY' —2I'Y =0,
a differential equation of the third order for Y, the general solntion
of which is ay*+2byz + b,
with 3%, yz, and 2? for particuAla.r solutions.

6. In Lamé’s differential cquation
I=n(n+l)pe+h,
Y '—4{n(n+1)pe+h} Y —=2u (n+1)p'aY =0,

and this equation has, as a particular solution, a rational integral
function of pr of the »™ degrec, which is

Y =f(px) =1 (pr—gpnu).

Then Y _y,F_5 #r
Y y oz Pr—pu
also, since yz—yi"= 0,
therefore y'z—ys = C,
or ¥ _2_06-._C
Y z Y I (pr—pa)

and this, auccording to Brioschi, may, when resolved into partial

fractions, be replaced by s P2

or—pL
Thus ._’_IL=2%$OJ:+@7_Q_,’
Y L

i' =Efl§)'1)—-9:‘_1

z ? pr—pa’
leading to the solution given above in § 3.

7. For certain particular valuesof /. we obtain the solutions originally
considered by l.amé (Ferrers, Spherical Harmonics, Chap. v1.), which
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are rational integral functions of px and p'x; but these have recently
been shown by Halphen (Fonctions elliptiques, 1, p. 273) to be
identical with binary forms Z, which are identical with the covariant

d)ee Zu - 2'1’13 Zn + (D" Zﬁa:

composed of Z and a form @ of the fonrth degree.

8. Consider the particular cases of n =1, 2, and 3,

Cose I, n = 1. The differential equation is then

1 d%
v 33:7’ = 2pa+pv,

the solution of which is
y=CF (2)+0F (—ua),

o (fc+~v)

where F(z) = exp (—adv)

(Halphen, p. 235).
Case II.,, » = 2. The differential equation is then

1 d'y _
= el = ¢
Y P €pr+Cpu;

and then
P (@) = D,72E%) oxp =0 m,

—_c (m+nl) o (x+ay) exp (—{a,~{a,) ,

oa, ca, (ox)?

where a,+a, = w,
A =lw—La,~{ny,
P+ p1 = 2pv,
putpag=0,
2
PV — = -

250‘77;) ’

_pu = fo—~3 (wv) — L (w—v) = gomga v’

PL—fow )

A=

[

—3pw = 2 (pv— pw) = —X—, &e.

Case II1,, n = 3. The differential equation is
1 &y

— =5 = 12pz+41py,
y di
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and then F(x) =D, 7 (ztw) exp (A—{w) 2

orow
—3p0 ° (x4 w) A
v orow oxp ( (m) o

=97 (z+a) o (x+ay) 7 (2 +a,)

oa, oa, aay (ox)?

exp (—{a,—La,—{ay) 7,
where o, +ata; = o,
A = {w—{a,—{a,—{ay
pa,+ pa, + pay, = 3pv,
Patpat+pia, =0,
Spap'a =0,

ga)\_w = A —3pw—IJpv

2 - 22
In interpreting the resuits of M. Hermite (Sur quelques appli-
cations, &c., pp. 124-129) in this notation, we must take his
Q=pv, O =ipo,
O =plo—igy @ = ipup ...
h = —5l = 1%pv,
and generally h=n(2n—1) pv,
=3g,, b=12lg, 4a®-0'=2]A, ....

The cases of n = 4 and n = 5 are also investigated by Halphen in
his Functions elliptiques, 11., p. 529, but the complexity increases
very rapidly.

. The origin of Lamé’s differential equation in connection with
physw.ﬂ prob]ems relating to confocal quadric surfaces was
expluined in Proc. Lond. Math. Soc, XvViIL, p. 275, employing the
notation of Weierstrass.

Putting, in the usual notation,
a+A=gpu—e, b+A=pu—e, +\=pu—e,
adltpu=po—e, b tp=pv—e, t+p=pr—eg,

a+v = pu—e, bi+v=puw—e, +v=pw—e,
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then Poisson’s equation becomes

0o _
a ?

and supposing that ¢ may be decomposed into terms of the form UV W,
where U is a fuuction of u, V of v, and W of w only, then

(sov—sow)a L+ (po—pu) 3 ¢+(sow—sov)

(po—pu) 2 T du ,+(saw pu) 2 T ,+(w~m) W;V, =0,
equivalent to iU d—U— gputh,
—}; dRTV=gsov+h
% ‘g?=gpw+h,

and g mast be put equal to n (n+1) for the solution of these equations
to be a uniform function.

It is usual to take ¢, > ¢, > e,, 50 that we must suppose a’, b, ¢* to
be in ascending order of magunitude.

10. In dealing with spheroidal harmonics, two of these three
quantities are equal.

For oblate spheroids, ¥* = ¢*, and ¢ = ¢,; and we can choose the
constants so that

pu—e, =cot’u, pu—e = cosec’y,
by making =% e=6=—}
For prolate spheroids, a® = b%, and e, = ¢, and then, by making
ee=¢g=1% e=-—%
@u—e, = coth’s, pu—e = cosech’u.

The corresponding Lamé equations are then of the form
1 d—y =n (n+1) cosec® u+4,

or = n (n+1) cosech? u+ &,

the solution of which can be expressed in Hermite's manner by the
corresponding degenerate circular or hyperbolic functions,
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11. For instance, the solution in general being written
y = OF (2)+ C'F (—2),

for the particular case of (n = 1)

3
1 dy _ 2 cosec’z+cot’ a

y da?
we have F (z) = Ell—(—w e*%t = (cot z+cot a) e~ =7,
sin ¢ sina
3,
and for (n=2) L (-i—% = 6 cosec’ z+cot' q,
y da

_ _li (SiD(T}-*—b) -zcota}
I (z) = dz \sinzsmb ’

where cotb= icota—2tana;

with corresponding expressions when the circular functions are re-
placed by hyperbolic functiuns; and so on for other particular cases
which can be indefinitely multiplied.

12. A still more degenerate case is obtained by supposing that
e=¢=¢=0~0;

then a®=0b' = ¢,

1

and pu= —,

U

and we obtain the ordinary spherical harmonics as the solution of
Laplace’s equation.

Then Lamé’s equation degenerates into
3,
Ly _n@in
y dx x
the differential equation discussed in Boole's Differential Equations,
p. 424; Forsyth’s Differential Equations, p. 176; also by Glaisher.

Thus, if we take n =1 and & = ¢*, we have

y =CF (z)+ CF(~z),

1 g
-~ '—'1-'——2;+q’.

the solution of Y I

where F(z)= (% +q) ="

)
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while y=0C (-:;—cos gz+q sinq:c)+0" (:Tsinqw-qcos qm)
is the solation of — ==

13. The differential equation for the propagation of an impulsive
jerk T along a uniform chain lying in a curve on a smooth table is

1 &7 1
TR

A T

and is therefore soluble in the manner explained above for curves in
which the intrinsic equation

—:; =I=n(n+l)pst+h;
but these curves do not appear to possess any simple properties.
14. Consider the differentiul equation

1 &%
m T = isechlz;
this is the form assumed by the differential equation for X and K';
given in Cayley’s Elliptic Functions, p. 61, when we put

o 1 a_ 1

1+4¢=’ 14+’
or =3 (l--tanbz), k¥*=3(1+tavha),
so that its solution is y=CK+0K;
or T=CK+0K

3

is the solution of .}_, %’—:_' = .pl_, ,
. 1 1 s
if 5= 4_6:59"}1’?»

1 1
and then k'=-1—_4-eT{" k’=m,
or cos 20 = k?*—k* = tanhs/c,

6 denoting the modular angle, so that

3w —20 = gd sfe..
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15. In this case the equation of the curve in which the chain lies
may be evaluated; for

1 _dy_ _ sechsle

p  ds 2c¢
taking the negative sign; and then
2¢ = sin~'sech s/c,
sin 2¢ = sech s/c,

cos 2¢ = tanh s/e,

so that we find 0 =y.
Then g—' = cos = v/ {} (1 +cos 24)}
o)

= /{2 (1+tanhso)} = %"’_ﬂ_}

., -a'c
dy _ y=—2

ds V(L4 ;
and integrating, from s = 0,
a/c = sinh™' " —sinh™' 1,
y/c = sinh™'1 —sinh™'e " ;
or, putting sinh™1 =a =cosh™' /2 = log (V2+1),
e = sinh (z/c 4 a),
e~ = sinh (a —y/c),
so that sinh (¢/c + a) sinh (a—y/c) =1,
the Cartesian equation of the curve of the chain, a catenary in which
the linear density varies as e™*".
16. We sce that
z/c+a=0 and a—yf/c=0
are asymptotes; and, changing to them for coordinate axes,
sinh z/c sinh y/c = 1.
This may be written, sinh y/c = cosech z/c,
cosh y/c = coth a/e,
e¥* = coth x/c + cosech z/c

= coth $a/c,
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or y/c = log coth } 2/c,
or z/c = log coth % y/c.

17. Lamé’s equation has received considerable attention of recent
years, and has led to the discovery of a large class of differential
equations, also soluble by elliptic functions, for which Halphen's
Chapter xmr, t. 11., Fonctions elliptiques, may be consulted.

Besides the references already given, the following articles may be
consulted :—Brioschi, Annalt di Matcmatica, 1X., p. 11; Fuchs, Annald
dt Matematica, I1X., p. 25 ; Brioschi, Annali di Matematica, X., pp. 1 and
74; Mitta.g-Lefﬁe}', Annali di Mutemalica, X1., p. 65; K. Henn, Math,
Annalen, Xxx1. and xxx111. ; A. Pick, Wiener Sitz., Nov., 1887,

Thursday, April 11th, 1889.

J. J. WALKER, Esq., F.R.S., President, in the Chair.

Mr. C. E. Haselfoot was admitted into the Society.

The following communications were made :—

On the Free Vibrations of au Infinite Plate of Homogeneous
Isotropic. Elastic Matter : Lord Rayleigh, Sec. R.S.

Ueber die constanten Factoren der Thetareihen im allgemeinen
Falle p = 3 : von Felix Klein in Gottingen.

On the generalised Equations of Elasticity, and their application
to the Theory of Light: Prof. K. Pearson.

On the Reduction of a complex Quadratic Surd to a Periodic
Continued Fraction: Prof. G. B. Mathews.

Construction du Centre de Courbure de la développée de la
Courbe de Contour apparent d’'une surface que l'on projette
orthogonalement sur un plan: Prof. Mannheim.,

The President made & few remarks ‘“ On an unsymmetric quadri-
nomial form of the general plane cubic, for which the fundamental
invariants are both binomial only.”

The Treasurer also made a brief impromptu communication.

The following presents were received :—

¢ Proceedings of the Royal Society,” Vol. xLv,, No. 277.
¢ Proceedings of the Physical Society of London,’ Vol. x., Part I.
“‘The Educational Times,”” for April.





