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PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER
HAVING INTEGRAL SYSTEMS FREE FROM PARTIAL
QUADRATURES

By A. R. Forsyrs.
[Received January 1st, 1907.—Read January 10th, 1907.]

1. In his memoir* on partial differential equations and their integrals,
Ampére made a selection of one aggregate of equations of the second
order. The characteristic property, defining equations which are -in-
cluded in this aggregate, belongs to their general integrals. These
integrals are to be explicitly free (or must be capable of expression in
a form that is explicitly free) from partial quadratures; and they must
be expressible by an equation, or by a set of equations, which occur in -
finite form. In the simplest cases, the integral is given hy means of
a single equation : more often, and in the less simple cases, the integral
is given by means of three independent equations, each of which has
the specified form and which, when taken together, usually may be
regarded as determining the dependent variable z, and the two independent
variables  and y, in terms of two parameters and two arbitrary functions
of those parameters. Thus a primitive of the equation

r—t =2 £
g

can be exhibited in the form of the single equation
7= ¢y+o)+Yy—n—ri¢' (y+r—y (y—a)},

where ¢ and Y denote arbitrary functions; it can also be exhibited in
the form of the three equations

y = 3u+v)
2 =U4+V—-3(u—e) (U -V

where U and V denote arbitrary functions of « and of » respectively.

’

2= u—0r ) ]
l

* Journal de U’ Ecole Polytechnique, cah. xvir. (1815), pp. 549-611: his definition f the '~ firat
class " of equations of the second order is given on p. 558 of the memoir.
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A more general form of integral, implying a more extensive aggregate
of equations, is suggested by Goursat*; as defined, it is given by means
of three equations expressing z, y, z in terms of two parametric variables
w and v, of m arbitrary functions of « connected by m—1 differential
equations, and of n arbitrary functions of » connected by n—1 differential
equations.

For the purposes of the present discussion, however, it will be suflicient
to take the simpler form when there is only a single arbitrary function
of u and when there is only a single arbitrary function of v. The object
of the discussion is to obtain some of the relations between the integral
and the equivalent partial equation of the second order.

Statement of the Problem, with the various Cases that can occur.

2. Accordingly, it is assumed that the equations of the second order
to be considered are those characterised by the possession of a general
integral given by means of three equations

= f, U, U, ....,v, V, ¥y, ))

.7/ = g(,"’y Us U]c ey v, V, Vl’ ...) e
z2=h@,UU, ...,»,V,V, )J

In these equations, f, ¢, & denote specific functions of their arguments ;
U denotes an arbitrary function of w», and U,, ... are 1its successive
derivatives; V similarly denotes an arbitrary function of v, and V), ...
are its successive derivatives. The integral equations are to be finite
in form; so that only a finite number of derivatives of U and a finite
number of derivatives of ¥ ocecur. It will be assumed that U, 1s the
devivative of U of highest order which ocecurs in the three equations, and
that V, is the derivative of V' of highest order which occurs; but it is
not assumed (and it 1s not, i fact, always the case) that U, must occur
in each of the equations or that V, must occur in each of them.*

* Lecons sur Tintégration des equations auz dérivées partielles du second ordre, t. 1. (1898),
p- 217.

+ [In the most familiar examples of equations which have integrals of this type, such as the
equntion of minimal surfaces, the highest derivatives of U and of ¥ that occur are of the second
order. Transformations can be effected which make the highest derivatives appear to be of higher
order ; in such cases the inference is that, in an extended seuse of the word, the transformed
cxpressions are reducible. Instances of equations huving integral equivalents, which are not
reducible, are provided by Laplace’s linear equations

s+ap+bg+ecz =0

when these are of finite rank in either variable or in both variables. An instance of an equation,
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Specialised forms of integrals may arise. Thus we may have a
primitive of an equation given by
v = fa, U, U0, ..)+Fo,V, ¥V, ..) ]
y=g6, U, U, . )+Go V,V,..) "
d=h, U, U,. . )+Hw V,V,..) ‘
where f, I'; ¢, G; I, H are specific functions of their arguments; and
a primitive of another eqnation might be given by
o= f, U U, ...) ]
y=g@, V, ¥, ..) .
r=nh,UU,....,v V,V, )}
Some illustrations of these two particular forms will be discussed.

But there are limitations upon the degeneration of the forms of the

functions f, g, & as they occur initially in the general case. Thus the
combinations

L= _f(’tL, U, U], ...) £ = ’/.('”, U, L’l’ ...)
y=9w,UUTU, ..) y=ygk V, T, ..
= h@, V,V, ...) z2=l(,UU, ..)

ave not permissible; at least one of the three functions f, g, ., which
represent the values :, 7, z, must involve both the parametric variables
2 and ». We shall therefore assume that 4 involves « and v; if, in any
set of equations, f or g (but not ) should involve u and v, a change of
dependent variable can be effected whereby the expression for the new
dependent variable does involve u and v.

Having made this explanation and this assumption as regards the
expression for z, which is

z2=h, U U,..,vV,V, ..

we see that there are three groups of cases, discriminated by the forms
of f and of ¢ in the equations

r=f y=g.
which is not linear and the integral equivalent of which involves non-reducible expressions
containing derivatives of order higher than the second, is Ampére’s equation

(r—pt)t = grt;
a primitive is given by

= l, ¥+ U, y = wl' — (u’U”"—21lU"’+2U"),
"

= 3Rue—e) 1 =3V + 18U — 430" +12020" - 240U’ + 24 V.

Other instances can be obtained by taking f(A) and g(u), in the equations at the end of § 26, 10
be polynomials not consisting of a single term alone.—Added February 8th, 1907.]
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(L) Each of the functions f and ¢ involves both the quantities « and
v, either with or without the arbitrary functions U and V.

Next, one of the two functions involves both the quantities » and o,
either with or without the arbitrary functions U and V, while the other
function involves only one of these quantities, again either with or
without the associated arbitrary function. There really are four cases;
but, by interchange of the variables z and y and by interchange of the
parameters  and v, they can be assigned to the single case :—

(IL.) The function f involves both % and v, and the function ¢ involves
v only: it being understood that the associated arbitrary functions can
occur.

Lastly, one of the functions may involve only one of the parameters
« and v, and the other may involve only the other of those parameters :
the two possible cases can be merged into one by interchange of z and y.
So we have :—

(IIL.) The function f involves % only, and the function g involves v
only : with an understanding as to the possible occurrence of U and
of V respectively.

Of these three cases to be discussed in succession, it is manifest that
(I.) is the most general in form. Relative formal simplifications will
occur initially in the remaining cases, though (as will appear) this simpli-
fication will not persist throughout the analysis: but the initial simpli-
fications enable us to use the results of Case (I.) for the other two cases,
and therefore to discuss the latter more briefly.

Also, it will be found that relative complications are caused in different
sub-cases by conditions which, at first sight, might be deemed likely to
simplify the analytical results.

A Lemma.

3. A preliminary lemma is required. Several of the results are made
to depend upon the elimination of two variables £ and » between three
equations of the ferm

af?+2bf+c =0, a'r*+2'9+¢ =0,
kén+1é+4mn+n =0;
and therefore an expression for the eliminant is needed. We have
af+b = B*—ac) =d, say,
an+b = (0—a'c)t = d', say;
thus k(d—b)(d —0b)+1la' (d—b)+ma(d —b)+naa’ = 0,
that is, kdd'+Ld+Md +N = 0,
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where L = la'— kb, M = ma—kb,
N = naa' —mab’' —lba' + kbD'.
The rationalised form of the last equation is
(N*—L*d*— M*d"*+ K*d’d")?—4 (kN— LM)* & = 0.

When the values of d* and d'® are substituted, and some slight reduction
is effected, the eliminant becomes

0? = 4 (kn—lm)? (B®—ac)(d*—a'c"),
where 6 = kPcc' — 2klch' — 2kmbc' + 2knbb’ + Pea’ + 2lmbd’' — 2inba’
+mPac’' —2mnad’ +nlaa’.

The umbral expression of the eliminant is simpler: but it appears to be
less useful. '

A General Property, stated by Darbouz.

4. As already stated, the main purpose of the investigation is the
determination of differential equations, which possess integrals of the
assigned type, as well as the construction of primitives of these equations.
But when the equations, thus characterised by the kind of primitive
possessed, have been determined, the construction of their primitive can
sometimes be effected more directly by utilising a definite property : every
such equation s integrable by Darbouz’s method.* The property can be
formally established as follows.

The equations z=f, y=g, =z=h

involve the variables « and v, the arbitrary function U and its derivatives
up to U,, and the arbitrary function ¥V and its derivatives up to V,.
Hence, as

dh _ dz

dh dy
P au +e

du’

dh _ dz dy

aw P ta dv’
where complete derivatives with regard to » and to v are taken, the
quantities p and ¢ will generally involve derivatives of U up to order m-1
and derivatives of ¥V up to order mn+1. Similarly, r, s, ¢ will generally

¢ This result is proved in another (but equivalent) form by Goursat, l.c., p. 227, being
derived from the consideration of the characteristics; it was first stated by Darboux himself.
Comptes Rendus, t. Lxx. (1870), p. 748. For references to Darboux’s method, and for a sceneral
discussion of the process, see chapter xviii. of Part 1v. of my Theory of Diffevential Equations.
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involve derivatives of U up to order m+2 and derivatives of ¥ up to
order n+2; and derivatives of z of order u will generally involve derivatives
of U up to order m+u and derivatives of ¥ up to order n+p.

Accordingly, construct all the derivatives of z up to order u inclusive ;
when these are explicitly obtained, the total number of equations, express-
ing z, y, z and the derivatives of z, is

3+2+3+... +(u+1) = duw+3)+3.

These equations involve %, U, U,, ..., U,,, that is, m+u+2 quantities
dependent upon u; and they also involve », V, V7, ..., I',,,, that is,
n+u+2 quantities dependent upon v.

If, then, « denotes the smallest value of u for which

I (u+3)+8 > ntu+2,
that is, for which du(ut1) >n—1,

then generally the n+wu-+2 quantities v, V. V, .... V,4, can  be
elininated : and we should have

In(u+1)—n+1

equations, involving derivatives of z up to order u«, and involving also «
and an arbitrary function of w with its derivatives. These equations
manifestly are not derivatives of the supposed equation of the second
order, because of the presence of the arbitrary function U; hence they
are equations of order u, compatible with the equation of the second order,
involving one arbitrary function, and therefore derivable by Darboux’s
method.
Similarly, if A denote the smallest value of A for which

INAF3+8 >m+A42,
that is, for which IANA+1) >m—1,

then generally the m—4A+42 quantities w, U, U, ..., U, can be
eliminated : and we should have

INAFLD)—m+1

equations, involving derivatives of z up to order A, and involving also »
and an arbitrary function of v with its derivatives. As before, these are
equations of order A\, compatible with the equation of the second order,
involving one arbitrary function, and therefore derivable by Darboux’s
method.

But it is to be remembered that this generality is only formal. For
particular equations, the result of eliminating 1, U, ..., Uns, may lead to
an equation that does not involve v, V, ..., Vay, @ or some of the equations
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may be evanescent : and, in such instances, it may be necessary to proceed
to the construction of derivatives of order higher than the minimum which
has been indicated. On the other hand, combinations of the derivatives
of U and of V may disappear : then it may be unnecessary to proceed to
equations of the orders indicated.

Prelimanary Formule.

5. We proceed now to the formation of the values of the first and the
second derivatives of z, denoted by p, ¢, 1, s, ¢ as usual : they will be con-
structed initially for the most general case, when

r=f@ UU,..U,®v,VV,.. V,,))
l/ = g(’lﬂ, D" Ul) ey U’my v, 1;', Vll ey I‘.u) :' ’
z=h@, U, Uy, ..., Un, v, V, V1, ..., V,,))

and the values for the restricted cases are then derivable by imposing the
respective restrictions upon the forms of f, g, . Complete derivatives
with regard to » are indicated by means of a suffix 1 and with regard to v
by means of a sutlix 2; thus

U _p T A e &
du - jl’ duz - jll’ dv .f21 dvz '—f22’ dudv - fm ’

and so for other functions. With this notation, we have
hhdu+hyde = dz
= pdz+qdy
=p(fidu+fodv)+¢ (g, du+tg,dv) ;
and therefore h = pfi+q9:, hy = pfatqg.,

hygo— oy —'h fotNo 1,
80 that p =2 _2h =152 21,
Srge—fotn 1 h9—fan
Now the quantity f,¢,—fo¢9, cannot vanish : it does not vanish in virtue
of the equations z = f, y =g, 2 = & ; and, if it vanished identically, we
should have ] '
de dy dr dy _

de de dv du

b

also identically—a relation which would mean that x and ¥ are expressible
in terms of one another by an equation otherwise involving constants
alone. Similarly, the quantities &, g,—/y9, and — 2, fy+ 1, f; do not vanish.
Thus the values of p and g, as obtained, are neither zero, infinite, nor
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indeterminate, though (in restricted cases) it may happen that the
expressions for their values acquire simplified forms.
Agnin, from %, = pf;+qg,, we have

Iy = pfutagut@fi+sg) i+ sfi+9) 915

and so for the other derivatives of the second order. Hence
by —pfu—qgu = 1f} +23f191+tgf
Ing—pfia—q91 = ":/-lf2+s(flg2+f291)+tglg2 ;
hog—pfoa—0920 = 1fy +2sfag,+1g;

the individual values of », s, ¢, if required, can be obtained simply by the
resolution of these equations, or from the relations

p= L1927 Pebh
Nh9—1e 9y’

s=Thfatoh . 09— 00
hoe—fa 91 S19: —fo0n

t = —(Ilf2+Q_2f1 .
S19a—fah

The three equations involving r, s, ¢, either in the form given or in
equivalent forms, together with the two equations expressing p and g,
and the three original equations expressing z, y, and z, are the fundamental
relations for the determination of the problem. It is from among these
eight relations that the quantities u, v, U and its devivatives, ¥ and its
derivatives, have to be eliminated.

6. Again, we have

N m—1

e of of of
Ji= U, Unrt néom U"+l+au,

- '\—aL Um+1 +F11

CUm
say ; and, similarly, n= a"g Uu1t+Gy,
hl = aﬁ(if_ Um+1+Hh

where F,, G,, H, involve only derivatives of U and ¥ which occur in z, y, 2.
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n-l
Also fg * n+l+ af 1n.+l'+' af
8
- Wf— Van+Fa
say ; and, similarly, gs = 8aV Van1+Gy,
= gt Vst H
where also Fy, G, H, involve only derivatives of U and V which occur in
z, Yy, 2. Let
y 4=

a U a Um a Um

ah of 99 ’

B=57. ~Pav. ~15v,
then AU,,.+1-l-)EIl—pFl—qG1 = O}
BVy+H,—pF,—qGy, =0)

If 4 is different from zero, the first equation expresses Um+1 in terms of
P, ¢, and of quantities that occur in z, 7, z; while, if 4 is zero, no such
expression for U, is derivable. Similarly, when B is different from
zero, the second equation expresses V,., in terms of p, ¢, and of quantities
that occur in z, y, 2 ; but, when B is zero, no such expression for V,,, is
derivable.

Again, we have

0
Su= 5"(% Un+at an:" U?uﬂ

m-1 N3
]
S (T A B )
+ {5Um_1+ Eo "HBU,‘?JUM +25 owoU,, | UnsrtFu,
where F,, involves only quantities that occur in z, y, 2. There are
similar expressions for g,,, %,,; hence, writing

ag ;Z%l P% (i,%l‘z;’

0, = 5 425 (Vs ) 2 g
—p {423, (Vunj Uw(fUm) ‘-"mfgv,,,}
~ {2 (o 8+

¢ = H,—pF,,—qGyy,
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we have an expression for, 2i;;—pfy,—¢gy,. Similarly, writing

. _ Ok &P

W =av Lo Tigve
2= 5423 (Vo aVa 37) Fonr,
2 {2 S, (e o) 2|
0 G425, (Ve k) ¥ 2500

¢o = Hy—pFp—qGy,
we have an expression for hyg—pfem—qgs. Again, we have

fl'Z —T'fT'V_UuLHVnH‘*' 95 Um+1+ (:))gl Vn+1+F12;

where Fy, involves only quantities that occur in z, y, 2. There are similar
expressions for ¢,, and 2, ; hence, writing

& o &g

b= st o7, P av.ov. 1 aU.07.
=2Hy_,0F, _ 96, |
0 aUl)l« pg-U—l): aUm

"bo — aHl _ aFl _ aG]

W" aVll aVIL
-y = Hyy—pF,—qGha,

we have an expression for Aj3—pfia—qge. The three expressions thus
obtained are

hy—pfm—qyn = 4 U,,.+2+a,0 U2 1 +20p Uit
haa—Pf1e— 912 = Ko Unsr Va1l Unsr+mg Vasr -+ I .
hoe—Pfre—0qG2 = BVusa+aoVZ, 4+ 200 Vs +co

Thus the quantity U,.. occurs only (if at all) in the combination
hy—pfu—aqgy; and V., occurs only (if at all) in _the combination

Iy —pfer— QY-
The final differential equation, in some form

F,y,2,p, 91,5, t) =0,

is to be the result of eliminating w, v, U, and V and ‘their derivatives
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among (i.) these three equations when the values of the left-hand sides in
terms of 7,5, ¢t in §5 are substituted, (ii.) the two equations giving p
“and ¢, and (ii.) the three original equations expressing z, y, 2.

The various cases, depending (a8 in § 2) upon the forms of £, g, &, will
be considered in turn.

Case L.

7. In this c'ase,' all the three functions f, g, & involve » and v.
Arbitrary funt¢tions U and V, as well as their derivatives, can occur in

f g, he
There are four sub-cases, according to the non-evanescence or

the evanescence of 4 and of B separately : we shall take
"sub-case (1), when 4 %0, B#0;
. @, ., A4%0,B=0;
w @)y ., 4=0, B+0;
w 4, ,, A=0, B=0.

These will be discussed in succession.

‘ *Ferst Sub-case. _
8. 1., (1).—The equations from which the parametric quantities and
the arbitrary functions are to be eliminated are
z = f, y =g, ERY
_ AUmﬂ+1+H1"'PF1“'f1>G1 = 0}
BVy+Hy;—pF,—qG, = 0
AUnistaUL 4 200Unsitc = 7_'ff+2sflg;+tg'f,
BV sot@oV2 1+ 260 Vasitc, = 1fi+2sfa05+tgls
kUi Vi + b Unii+my Vi +ny = 7fy fots(fi9a+ fag) + 2919,

.The last equation but two is the only equation which involves Up.z ;
it can be ignored simultaneously with Uy,,s. Similarly, the last equation
but one can be ignored simultaneously with V,.s. To eliminate Un.i
and V.1, which occur explicitly on the left-hand side and implicitly on
the right-hand side, we use the values of Uy, and Vi, in the forms

1 ~
Uny1 = — a (H,—pF,—qGy),

Van = — 1 (Hy—pFy—qG);
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and the values of f,, f, g,, g, are then

f1= Una g 4P = By gt oGy ~Fu )
N = Una aaU,,,+G1=2}' ¢ aOUh,,, ‘Hlaag +o(F: aagm‘Gl a‘a§>}
Ve e vn= S X o0, L -n 2],
7= Van aV +6,= 5 {6 aarﬁ Hﬂaq +p(F aa_rz,."G“ aar);)}

When all these values are substituted in the equation

kOUm+1 u+l+loUm.+l+1"‘OI/1L+l+n0 = ’fl.fﬁ+s(flgﬂ+fﬁgl)+tglgﬁ'

and, when terms are collected, the new equation can (after some simple
reductions) be expressed in the form

W = N(g*r—2pqs+p*t)+2M (gr—ps)+ 2L (pt—qs)+rD,—2sDy+tD,,
where, if

] , ol
a-—le GlaaU', a=Ha-an— ~Ga 5
—_— 9 ' . O 9
B=Fgr-H Ll F=RI-HJ.
9 0 ) 0 0 |
Y=G13'7{'u“ 18‘05—’" ‘Y=G2a; Faa—%‘,
the values of the coefficients in the equation are
Dy = ad, 2M = yB'+8Y',
= B8, 2L = ay'+yd,
N = vy, 2D, = Ba'+af8,

and
W = ko(Hy—pF,—qGy) (Hy—pF;—qG)
—{,B(H,—pF,—qG))—my A (Hy—pF3—qGy+ny,AB.

Now . 4(M*—ND) = (-y,@'—,B‘y’)2 = 4P say,
4(L*—NDy = (ay'—yd')? = 4Q°% say:
then 4(NDy,—LM) = (‘yﬁ'—ﬂy') (ay'—yd') = 4PQ.

With these values, the equation has the form
{(Ng+MP—P*}r—2{(Np+L) (Ng+ M)+ PQ} s+ {(Np+Ly—Q*} ¢
=NW.
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Note 1.—It is an immediate corollary that, if the equation
(N¢*+2Mq+ D,))r—2(Npg+ Mp+ Lq+ Dy s+ (Np*+2Lp+ Dyt = W

is ‘to belong to Ampeére’s first class and has an integral possessing the
preceding character with the latent limitations, a necessary condition is

N, M, L|=0,
L, D, D,
M, D,, D,| '
provided N is not zero : while, when N is zero, a necessary condition is
L?*D,—2LMD,+ M*Dg; = 0.
But the equation (14g)r—2pgs+ (140t = 0
does not obey the test: the latent limitations are not satisfied.

Note 2.—The preceding result implicitly assumes that F,, G,, H; do
not vanish simultaneocusly : likewise as to ¥y, Gy, H,. Baut, if

F1=0, G1=O, le
F,=0, G,=0, H=

0
0
_ dh of _, 09 _
then 4= aUm P abrm 1 aUm o OT

_oh o g _ o
B=ow. P, v, 0

and the assumption as to elimination is not justified.

Note 8.—The quantities a, B, y; o, B8, y'; ko, by, My, 1y (except in so
far as the last four involve p and ¢) contain only quantities which oceur
in the values of z, y, z: hence, if a differential equation is to emerge as
the result of the elimination, the ratios of the quantities L, M, N, P, Q,

and the coefficients of combinations of p and ¢ in W, are functions of
z, ¥, 2 alone.

9. Comparing the coefficients in the differential equation with their
values in terms of a, B, v; o', B, ¥', we have
(a8 —«'B)E = 4(D§—D1D3)
= = LM+ PQ!— (' — P (I — @Y}
4 2
= ¥ (LP+MQ),

so that o —a'B = % (LP+ MQ).

SER. 2. VOL. 9. NO. 952. K
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Hence aﬁr — D2+ LP-;AIQ — (BI+P;\$L+Q)’

M —P)(L,—
01‘3=D2_LP-1§\-[MQ=(11 P}\;I Q

748' = M+P, BY' = ]lI—P, aY,=L+Q1 a,Y=L_Q7
vy =N, BB = D,, aa' = Dy;

so that a:,B:y=L+Q:M—P:NlL
@By =L—Q:M+P:N|
Also al,.+1 = H](gl_G)_Gl(hl_Hl)
= H,g,— Gy,
BUur1 = Fih—fiH,
'YUm+1 = G1f1_
so that afi+Bg+vyh, = 0,
that is, C+@E+or-p U 4n2=o.
Similarly, (L— Q) L +0i+P) G d’/ +N@ =0

Again, having regard to the initial and the final form of the differ-
ential equation, we have

0f.f, = (Nqg+M)P*—
0(f192+/feg9) = —2:Np+L) (Nq+M)+PQ},
0919, = (Np+L)'— @
0(hyg—pfia—q91) = NW.
From the first three, we have
0 (fi92—fo9)* = 4{P(Np+L)+Q(Ng+ID}?

that is, 0(f192—f29) = + 2{LP+MQ+N(Pp+Qq}.
Hence
0f,9; = — {(Np+L) (Ng+M)+PQ! + {(Np+L) P+(Ng+M) @}

=—(Np+L—Q)(Ng+M—P)
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fo _ 0fifo — _ Ng+M+P
95 0119 Np+L—0Q'

S _0fig. _ _ Ng+M—P

9 919, Np+L+@Q’

Consequently,

and therefore

h — 9 — _ M(=pfitq9)
Ng+M—P —Np+L+Q) M—Pp—(L+Qq’
Ja g — hy(= pfat+4q9,)

Ng+M+P~ —(p+L—Q M+Pp—L—Qq

Again, we have

' hm_pfm__‘].‘]m — INW
Hi9a—fagr (Np+L)P+(Ng+)Q’
which, on writing W = (1, p, ¢l
because W is a non-homogeneous cubic in p and g, gives
-1 Lfiga—fogy, - s
ha fro 2 iN LP+MQ, NP, MQ|
v fu g Iy, it [/
h23 fﬁ’ o h2' j2’ 92

We thus have equations* for the determination of f, g, &: but their
integration, even if possible, is complicated.

But we know that the equation, if it has an integral of the required
form, is integrable by Darboux’s method. For a compatible equation of
any order (e.g., if there is an intermediate integral), there are two systems
of equations. If there are two integrals of each system, then

0@, y,2,p, 9 =u o, Y, 2,p, 9 =0
0, y,2p q = U}’ ¢ (&, Y, 2 p, Q= V}'
Expressing z, y, p, ¢ in terms of 2, u, v, substituting in
dz = (pfi+qg)du+(pfatqg2)dv,
and integrating, we find z=h.

And this consideration, as regards the practicability of the integration,
is enough to justify the ignoration of the source of the differential equation
after it has been construeted.

* Several of these equations can be deduced from those of the churacteristics of the differ-
ential equation. It may be added that .
(L Qydz+ (MF Pjdy+ Ndz,  (Nq+ M&Pydp—(Np+ LFQdg+ 7 W

No+ L+Q

are multiples of the exact differentials that occur in Monge’s method of integration of the

equation.

K 2
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Second Sub-case.

10. 1., (2).—In this case, each of the three functions f, g, /& involves
u and v: but the coefficient of 1°,,. in P vanishes; that is,
of

Ay oh

E=\av: &7 7|7 %
Ju I Iy
f2’ Ja hy !
Taking account of the values of £, and f, in the form
J of .
fl = (r;gm Um+1+Fu fg = % u+l+F2,

with similar expressions for G,, G,, H,, H,, the
the relation

relation is equivalent to

. g Ik =0
v, v oV, ‘
~ - 3 y oh ..
agU—m Unnt+F, a%m Un1+Gy, a_L:; Ut H,
Fb (;2' H2

This relation is not satistied in virtue of relations x = f, y =g, 2 =h;
it must therefore be satisfied identically ; hence, noting that U, occurs
only through terms in the second row and even then only as a linear
tactor, we have

o B0 M|_o | A Bh|_g
oV, oV, aVv.| = 7 ov,’ ov, ov.|
of & oh ¥, G, H,
ou,’ JU,’ oU.

F,, Gy Hy
F2’ G?v H2

Further, remembering that the quantities

Iy fa— o

do not vanish and that they are proportional to 1, —p, —¢, the condition
B = 0 can be written

five—tag  g1la—galy,
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Again, when we take the second expression for B = 0 in the form

of  og ch

v we w| Y
Jo v Iy
F. 2 G29 H2
and when we use the relation
=—pfi—99: =0,
which is general, and the particular relation
ch % cg _ 0,

v, P, T,
we have H,—pF,—qG, = 0.

Consequently, the equation

13 VIH-I +H2_})F2—(]G2 = 0
becomes evanescent.

It appears that there are two relations

Cho_,of g _
(}Vu Z.Vll: anlL - 0’

Hy—pF,—qG, = 0.

The first of these is not evanescent: the quantity V, occurs certainly in
one of the three equations £ =f, y = ¢, z = I; and the relation shews
that, save for trivial and negligible cases, it must occur in two of the three
equations. The second of the relations might be evanescent, through the
identical vanishing of F,, (f,, H,: reserving this result for consideration,
and now assuming that it is not the fact, we have another non-evanescent
relation. In the latter event, two alternatives may occur: the two equa-
tions may be one and the same equation, not determining p and ¢; or
they may be distinet equations, so that they do determine p and g.
With the former alternative, we have

' ' , 3 il
l’ﬂz‘/’.(fi (’2:‘/’;{# H‘z:‘/’%i

and the reserved case, when the second equation is evanescent, is included
in this alternative by taking ¢ = 0.
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With the latter alternative, the values of p and ¢ are given by the
two independent equations

oh Uf dg

v Pay Yy, = O

Hy—pFy—qG, = 0;

obviously the values of p and ¢ involve only those quantities which occur
in f, g, h. But these values also must satisfy

AUni+H,—pF,—qG, =0;

and then neither 4 nor H,—pF,—qG,, after substitution takes place for
p and ¢, can involve quantities which do not occur in f, g, &. The
derivative U, ., of the arbitrary function U cannot be expressible in terms
of these magnitudes ; we therefore must have

_ oh _ af 9 _
A=y 0557 =

H,—pF,—qG, =0,
in this case.

The alternatives must be considered in succession.

11. I, (2), 4.) We are to have
— oL — el .
_¢aV"‘, G2—¢(-)-V"1 ¢'\V )

and the special case, in which the relation H,—pF;—qG; =0 becomes
evanescent, is covered by the value ¢ = 0.

Now f2= n+l ?L'*'a'f— Vasa ’)Ii +F2,

where o'f = V Uf +V,.1 (’f + .+ f.

Il n

Hence, in the present case,
o= Vant o) g

oa{;" + Va9 (5.

and therefore fy, = ( ar2t d¢>

dv



1907.] PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 185

There are corresponding expressions for gy and hy; consequently

a(’l V‘,2L+1+2b(,) Vlh+l+c(,]

= hm—.’!"fm“'qgm
= Vontd) |5 (aaﬁ P % (adjr;,,) 1% (av,) -
1t follows that aop*—2bop+co = 0;

and therefore also

0 “"‘b, 0 - 0 L] ’ 7 .
ao¢1 2= bo¢¢ %= (bog—aoco)'L = A,

say; and the quantity A; is easily seen not to vanish.
For, by § 6, we have

_ P ¥ W
oy Py T Ay

Zl’a—agibl ~rgi gy +2 {7 (57) o0 () ~e0 ()

Q)
S’

AISO, '_f ¢8~V )
, 0 0 2
80 that r“ﬂ ¢ a{;ﬂ+¢aé,
. g (YN B
that s, v, ¢ (OV,,.) =57, a7, Toave

with corresponding relations in g and % ; hence
dh M
a9 =9 (F—ri—155)

=ar§,}f1 ax(;{l aaf_ +5'(§"§;)‘P‘3'(af) qa’(aam)

o _ o . 39
=bt3 laV TPy v )

Also, from the relation §f=¢ 5‘21;’

we have 56 =390 K/ +¢6’( "f)
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with similar relations for ¢ and /. ; so that

co = & (8'h) —pd' (8'f) —qé' (3'g)

=¢ 16’ (;%) —pd' <(_%> 9%’ (P:“g")}

j <ah —p of  _ ¢g\)].
¢ bo aVn 1 ()Vu 1 qﬂV,‘_l>} ’

aop—by _ bop—co
1 ¢

=1 oh of og )
2 (BV.! 1 aVu— (IWV:L 1

hence we have

Consequently the value of Ag is given by

oh (/ _ F‘g .
2Ao ()V,L_ ( Vn 1 1 8Vn—l ’

and there is no general reason in the form of the equations why A should
vanish.

Again, if we erte h= % Uni1+6f,
where i = Vusd—+ .40, L+ 4,

m a Um—

the operators ¢ and ¢’ are permutable ; that is,

88" = ¢§'6.
. Iy of
Now, in the present case, df=¢ =5 PV
0 upm ¢ ¢ of ,
80 that 5U—m (3f) -_ ¢ a(]maVn + aUm }:'Vu.

with similar equations for g and % ; hence

.-\

—p aU (vf)—q—— (¢'g)

m

I,=

_ P Of g }
= ¢ \SU.v, Pam.av, 1iU.07,

= gbko..
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Similarly, §.8f = 8¢ ;Ié +4.8 (a%;)

= 6 7L +9 07 &

oF
= 39”312“%?7"

with corresponding equations for ¢ and % ; thus

Ny = 66'h—p d6'f—q dd'g

Proceeding now to construct the differential equation, we have to
perform some eliminations. As 4 is not zero, we have

Um+1 = - T]:I' (Hl_pFl—qu)’
A= B4y
1 A Y !
_ 1
g1 = — —(a+yp),

with the notation of § 8. Also, as 4 does not vanish, the quantity U,...
occurs only in the expression for Xy, —pf;;—qgy; consequently, the com-
bination »f7+2sf,g,+tg* does not intervene in the elimination. Next, we

h .
ave ha—Pfe— 9912 = ko Unsr Vir Hlo Unir+mo Vit
= (ko Uns1+m)(V.11+¢)

= {mo— Lo (H,— F\—qGy ; Vi t9).

Further, rhfats(figatfag) Higi9: = Viirt+9¢) p,
0 )
where p=rhab 5 (i 401 )+t
and therefore one of the equations to be used in the elimination becomes

{mo—-i—o (Hy—pF,—qG)—p } Vi +¢) =0.
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Again, with the notation of § 6, and now using the condition B =0,

h , ) ’ ’
we have hm_pfm—'qgm = Qo V,-,+1+2b0 Vﬂl+l+co H
and 1f; 425290+ tg2 = (Varr+ 9o,
| of o
where (oV ) 257 gy, T (av,)

Hence the equation becomes
a-E) V;f+1+ 206 V. +1+C;{ = (V,L+1+ ¢‘)2 a

The part V,.1+¢ = 0 of the former equation reduces this equation to

an identity, because
asp®—2bop+cy = 0.

Moreover, as ¢ does not involve 7, s, ¢, or V41, the relation V,,1+¢ = 0
cannot hold. Hence the eliminant is merely the other part of the former
equation : it is i
p = My— 'ZQ (H,—pF,—qG)),

which has the form

(ﬁ+yq)( é‘%“aaﬁ (a+vp)( —L aV,,) = y"+d"p+8",

where the ratios of the coefficients of the various combinations of p, g, 7,
s, ¢t are functions of z, ¥, and 2 only.

12. I, (2), (i1.). With the second alternative of § 10, we have*
A =0, B=0;
the values of p and ¢ satisfy (and are determined by) the four equations
Hy—pFy—qliy=0
oL af dg

ov. Pav, q“V =0

and H,—pF,—qG, = Ol

oh _  of dg i
o Par e, = °)

The first two of these equations are independent of one another. In the

* This is, in effect, part of the fourth sub-case of (I.), to be dealt with in § 15: as it arises
now, the necessary analysis will be developed here.
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second pair, the second equation is not evanescent; the first can be
evanescent (in which case F,, G,, H, vanish); or, it can be effectively the
same as the second (in which case

oF, oG oH,

ob, _ oGy
5w, = v 5, =0 &

= 0H,,

where 0 involves only the quantities occurring in ., y, 2); or it can be an
independent equation. The last is the most comprehensive possibility
among the three; it will be seen to include the other two.

To obtain the partial differential equation, we have first to eliminate
U,.+1 and V, . between the three equations

EUni1 Vi Una+mV, 40 =0,
alU2, 420U, 14+c =0,

WV 42V, +¢ =0,

which (by § 8) can be expressed in a form
6% =4 (kn—1n)? (0*—ad)(d*—a'¢");

and then the coefticients of the various combinations of », s, ¢ in that
eliminant are functions of w, U, U,, ..., U, v, V, ¥, ..., V..: in the present
case all these coetficients must be expressible in terms of «, y, 2, p, ¢.

The expression for O in terms of r, s, ¢ can be obtained by direct
substitution ; but the calculations ave verylong. They can be considerably
abbreviated by the use of variables with umbral coefticients. For this
purpose, we write

£y, Ty = a%’ aa—gm = ¢ Vs

&, &= F, G;

Yv Y2 = A R P Vry

oV, oV.
’711 ']2 = 72! G2;
2 2 2 2
and ] r=a =6 = ¢ = d =...,
§ =0y = b by =c¢,¢c; =d,d, = ...,
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the last being the umbral coefticients. Then

a=—a,+a; a' = —a+a;
3

b = —b0+a,,;a§ b’ = —1)6+aya,, [
¢ =—ct+a ’ ¢ =—ci+a ‘
k=—ky+a.a, }
l=—1 +a.a, |

m=—my+a,az i

n=—ny +a;a,
As regards the expression for O, we note that the interchanges

ky ) ey ) Y
ml’ U’ e’ R’ G

can be made simultaneously without affecting its value. Similarly, the
interchanges k) '

| m) ) $2) V|
U’ ow’ a’ Fy' Gy

can be made simultaneously without affecting the value of ©. Similarly,
the interchanges

a) b) c) 0 ¢ ‘Pl\_ Fy Gy

P I ) EL) ISV I B R A e N
can also be made without affecting its value. When these properties are
noted, it is possible to dispense with many of the calculations; for then
many of the aggregates of terms of a particular type can be set down,
when a single aggregate of that type has been actually caleculated. The
possibility will be utilised.

18. Then, when we adopt the customary process in the wmbral calcula-
tions connected with binary forms, the terms in O, which are independent
of a,, by, ¢g a0, by, co, are

= k'zcé d,— 2klc§ dyd,—2kmegcedi~+2kne, ced, d,+2lme.cyd, d,
+ e &2 —2nc,cpdi+mict d: — 2mncid, d,+n’cld;

= (ke d,—leg dy—mce, d,+ne, dy)?

= 52,
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say. The part of § which is independent of k,, I, m,, 1, is
= Ay Cply— A, Ay Cedy— Ay @ C Ay =+ Qg @y G Ay
= (arct—a; ¢ (aydy—a, dy)

= (&) (yn)(ac)(ad) ;
and therefore

9% = {(@€)(yn)(ac)(ad) — (kgcedy—lycgdy—mycady+n9cady) | 2.
The coefticient of (rf)® (yn)? in the part of 3%, which does not involve
For by 1y g IS = (@0)ud)(be) (bd) ;
or, as (ac)(ad) = (a,cy—ayc) (@, dy—aqd,)
= rcydy—s(cydy+c,dy)+te, dy,

the said coeflicient is
= {rcydo—s (cody+c, dy) +tc, d,}*

= 2 (rt—s%?,
on reduction : consequently, this part of 9* in O is
2(rt—s%? (zé)® (ym)*.
Again, the coefficient of —2k, in 3% ig
= (@) (yn)(ac)(ad) c;dy;
or, since (@c)c; = (a,ca—ay¢)(¢; E1+¢cap) = a (s€y+tE) —ay(rE +5Ey),
this coetlicient is
(@c)cg(ad)dy, = {a,(s€,+E6x) —ag (r§y+3Ep) 1 (@ (smy+tng) —ag (rmy+sm) |
= r(s&Ft€) (smt tng) + b (1€, 4 5E) (rmy +5m5)
—Ss ]'(351+t52)("'h+3'l2)+ ("'E1+3§=2)(3’71+t'12).f

= (rt—sY) {7F, Fy+5(F, Gyt FyG)+tG, Gy ;

hence, taking account of the interchanges which leave O unaltered, we

have the aggregate of terms, which are linear in %y, I, i, 1, and do not
involve ag, by, ¢, @0, o, €o, in the form

—2(rt—s@E)(yn) [ ko 17F 1 Fy+s(F, Go+ F,G)+tG, Gy
—ly 17F) pot s (1 o+ G pa) +1G e
— g (7 Fat s () GoH Y Fo) + 0 G
+rg 17 pats (b1 Va1 $o) + iy gl )
= —2(rt—5Y (¢ G, — Y1 F) (9o Ga— Vo Fo) { kg gty — ly g ay—myyaz a,

+nazayt.
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And the part of 9%, which is of the second degree in ko, Iy my, 1y, While
independent of ay, by, ¢y, @, bo, co, i8
(kycedn—1ycedy—myg e dy+n49¢s ),
which can be expressed immediately in non-umbral forms. Hence
= 20t—5H (¢ Gy— Y F)? (¢ Go— o Fy)?
—2(rt—5%(py Gy — o, F)) (g Go— Yy Fo) (higag an—lyas ay
— Ty AN X @)

+ (kycedy— lyce dy—myco d, +ngczd,).

We proceed similarly with the other terms in © ; denoting their aggregate
by =, we find

= = — (rt—s?) [(yn)? {aodg—%od,dg-{-cod;}
+ (£€)? {aodi—2bodydy+cndy) ]
+2(rt—5") {(gaGa— Vo Fo) I+ (¢, Gy — Y F) J |
— L ag (g @y— Mg @q): — 2 (1@, — Mg ay) (lg @y — kg @) byt (Lo @y— Ko a)? co}
— { o g a,— lya)? — 2 (g a.— ly ag) (mg @, — ko @) bo+ (mg @ — kg ag)® co}
—2[kolco@z—byae)(coay,— boay) — ly(Co @ — by @g) (boay— ao ay,)
— g (Co y— g @) (bo @ — g ag) 4 1 (D@ — g ag) (baay, — agay)]
+ 1@ bs— by (@, be+ by ag) +agas be} | cha,b,— bo (@, by+ byan) + aga, byt
+6,,
where
I = ag{ng(goGy—o F)+mg (G Fi—F,,Gy) |
—bg {ko(Ge Fy—Fy G)) 4+ 1y (py Gy — Yo ) +my (Gy py— Fory)
A + g (o1 —p1 ¥ |
teo 1l (Pa 1 — Vo $)+ Ko (Gagy — Fad) s
J = ao{ng(p,Ga—yn F)+1,(G Fy3— G, F)) !
—bo { ko (Gy Fy— Fy G +my(¢py Go— ) Fo) + 14 (Gy pg— F1 Vry)
(i — i) }
+c {mg ($rra— oY) + ko (Grga—Fry) |
Oy = k2 cqch— 2k ly 6o bh— kg g by ch+ 2Ky 129 b Do+ 205119 bg Do+ I co @

— 1y ng by ag+m aych— 21y G byt nG @y g
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Thus : 0 = ¥+w.
Also

kn—im = kyny—lymy— (kyaza,—lyas ay—mya.a,+nya.a,)

+ (rt—5") gy Gy — V1 F)) (§ Gy— Vo F),
bB—ac = b —ayco+(@ga;—2bgaz ag—cy @) —(rt— s (¢, Gy— v F))?,

b2—a'c’ = bg¥—agey+ () ai— 20 ay ay+cf @2 — (rt—s%) (¢ Gy— Yy ).

Finally, the eliminant is
O+ w) = 4 (kn—1Im)* (> —ac) (b2 —ajch).
When expansion takes place, various sets of terms cancel:. and the terms
of highest and of lowest degrees in r, s, ¢ are indicated in the equation
8(rt—sY% (9 Gr— Y1 F)’ (2 Ga— o Fp)® {(9 Gy— g Fo) I+ () Gy— Y F)) J |
+ ... O —d (kyny—lymy) (D2 —aqcg) (b2 —ayey) = 0,

which accordingly is the form of the partial differential equation.

The temporarily omitted alternatives are the special cases of the
preceding equation,

(@) when F,=G,=H,=0;

OF oG . 0H
s Gi=O05r, Hi=05r.

Some of the special cases, when the integral system is of the form

(B) when F, = 6~——

z, ¢, 2 = funection of « + function of v

so that A, =0, fi, =0, g3 = 0, and therefore ky =1, = my= ny, = 0,
will be considered later (§ 19).

Note—An example of the general case just considered is provided by
the integral system

r=f=—-=V,
Y=g =ve v,
z=h=u4+U—uU+V—oV'.
The quantities 4 and B are given by
4 = 0, —ve Y, —u | =0,
%, —ve”V'y", 1—ulU"

(2 —u
—?—V", e U’ _,UVII
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B = —1y 0, - = 0;
1 = rm "
-, —pe~" ", 1—ulU
)
n _u
—m =V, e v, —o V"

the values of p and ¢ are

- — v,
=, ==

and the partial differential equation of the second order, which is satisfied
by the integral system, is
y(rt—s)+qgr—ps = 0.

Third Sub-case.

14. 1., (8).—In this case, we have 4 = 0 while B is not initially given
as a vanishing quantity : thus

_| ok of a9 | _
S ELAE T/ M i
hy, S T
hg, Jo 9a
The analysis follows a line of development exactly the same as in the
lagt case; as the detailed results can be obtained by interchanging the
variables « and v, they will be stated without proof.
There are three alternatives. In the first, quantities F,, G,, H, vanish.
In the second, the equations
Ok, OF _0G _
au, You, "YU, T 7
H,—pF\—q¢G, =0
are effectively one and the same equation : then

_OF . .G _ L ea
Fi=05p, G=05, Hi=05,

and the first of the alternatives is derived from the second by making
0 vanish. Clearly a non-vanishing 6 involves only the same quantities
as oceur in i, 7, z. Also 4,0 —2b,0+c, = 0,
(Loel_bo — 1)09(;—(:0 — (bz_aoco!%

=4,

_ o o _ dg
- ‘l}(aUm—l P aUm—l q aUm-—l> )

8o that
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Further, my = Ok, ny = 01y;

‘and Vior = — —IB" (Hg“PF2_qG?)’
h= = @+y9
B ’

9o = — 713; (a'+v'p),

with the notation of § 8. And the final differential equation, which
results from the eliminafion, is

' ! _a.L ( af —_ m " e
B+70) (r 5 +55l) —@+yp) (s 5l +50) = v +a"p+B"s,
where the ratios of the coefticients of the various combinations of p, ¢,
r, s, t are functions of x, ¥, and 2 only.

In the third alternative, the two equations

a_h_ oF oG
au. P au, 13U,

are independent of one another: by an argument similar to the earlier
argument, we have

oh _,0F _ 0G
av. Pav, "7,

The circumstances now are precisely the same as in the third alternative
of the second case : the results are the same as before, in § 13, and need
not be restated, either in general, or for the special cases, when the two
new equations are one and the same, and when the second of the new
equations is evanescent.

=0, H —pF,—qG, =0

— 0, HQ—pF‘Z—qGQ = 0.

Fourth Sub-case.
15. 1., 4).—In thig case, we have

4 =0, B =0,
that 1s,

Oh i a9 =0 ol af Ul}
v, Pau, "lou, T L v, Pav, "1,

H,—pF —qG, = OJ Hy—pF,—qGy =10 j

With each pair of equations, we have the three same alternatives as before.
The two first alternatives are that the respective second equations
become evanescent.

The two second alternatives are that the second equation in each
SER. 2. VOL. 5. No. 953. L

=0)_
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pair is effectively the same as the first equation in its own pair. In the
respective cases, we have

og H,=6 oh

P
F=0.4L, ¢ =9 - aU,,,

oUn’
2 ¢W;’ 2—¢8Vn, 2 ¢'aVn'
The vanishing of F,, G,, H, is given by a vanishing 6 ; and the vanishing

of F), G,, Hy, by a vanishing ¢. When the two second alternatives
coexist, while 6 and ¢ do not vanish, we have

@y —20,0+co = 0,  ay¢'—2b,¢+c, = 0;

also ny = ¢my = 0, = ¢k,
Again, writing

p=r (_Qf_)“+23_@£ o9 +1 <_a_9_\2

oU.. oU,. oU, ou,/ ’
/i of 9o , o Og\,,0 Og
=T 8V,.+ <6Um BV,L+ ov, aU,,L)“aUm v’
_ (9 of o9 ,,(0g
T= ’(aVn) +oa57 57t <8V,‘> ’
and a=—ay+p, b = — by+ph, ¢ = —cy+p6®;

@ =—ayt+r, b =—byt1p ¢ =—cy+7¢°;
k= —ky+oa, l = =)+ ¢o, m = — my+ 0o, n = — ny+0¢o,
the three equations, which lead to the partial differential equation, are
alUl \+2bUun+c =0,
a' V2 42V, st =0,
kUpir Vi H U +mV,g+n = 0.

When the values of a, b, ¢; a', b, ¢'; k, I, m, n are substituted, and
when‘ the equations are re-arranged, they take the form

(Un1+0)* (p—a)+28(Viir+6) = 0,
Vit @) (r—a)+284(Vin+¢) = 0,
0 —=kp) (Un41+0) (Vara+¢) = 0,
where A, and A denote the respective quantities
(bi~ayc)? and (b2 —a,c)h

Now, as 6 contains only the quantities which occur in z, y, 2, the relation
Un+1+6 = 0 cannot be satisfied ; similarly, Vas1+¢ cannot vanish.
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Hence the first two equations express Un4:1 and V,., respectively in
terms of z, y, 2, p, q, 7, s, t; and the partial differential equation, which
survives from the third equation, is

O'—ko = 0,
that 1s,
. of Oy Jof o9 , of oy dg o9 _ .
ST a—v,.“(m w. T, aU,,)“’am 57, o

The two third alternatives are that the two equations, in each pair
of relations arising from 4 = 0 and B = 0, are independent of one
another. When these two third alternatives co-exist, we once again have
the set of circumstances considered in §§ 12, 18; the results need not
be restated. When only one of these third alternatives is valid, together
with the first or the second of the alternatives for the other pair of
equations, once again we have particular cases of the general result
just indicated.

16. In the preceding four cases which have just been considered,
the diserimination has been effected by the vanishing or the non-vanishing
of the quantities 4 and B, which are the coefficients of Un.. and of
Visz In by —pfi;—qgy and in hgy—pfa—qgs respectively. It might seem
as if a new set of cases would arise, discriminated by the vanishing or
the non-vanishing of the quantity

& ¥ & |
a Um a Vn ’ a Um a V!L ’ 6 Um. a Vn
Ju (0 Ty
f21 gza ]1'2

which effectively is the coefficient of U,41Vas1 In lyg—pfra—qg:2; but
this possibility is not actually a fact. The essential difference lies in the
property that, whereas U,,,. occurs in the expression for Ay, —pfi—qgn
only (so that, if 4 = 0, the form of the expression is substantially
changed), and similarly for V,,: and hgy—pfos—q9ss, the quantities Us...
and V,,, do occur elsewhere than in a first term in A,—pfie—qgm.
The sole effect of the non-occurrence of the term in the last quantity,
which involves U, 4+1V,+1, is that ky = 0; some simplification thereby
ariges in the preceding formule® ; but simplification, not essential change,
is the sole effect of the conditjon.
The most obvious case arises when
z, 1, 2 = function of u 4+ funection of v ;
to its fuller consideration, not in this reference alone, we shall proceed
(§ 19).
L 2
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17. In several of the preceding discussions, it has been pointed out
that the vanishing of F,, G,, H, modifies the form of the final equation
obtained, and that this final form can be obtained as a limiting case of
a more general final form : and similarly for the vanishing of F,, G,, H,.
Such conditions, however, admit of a simple discussion of the problem
from the beginning.

When F, =0, G, =0, H, =0, then the equation

Iy = pfitqg
becomes, on the removal of a common factor,

oh _ of
U =Py He ao,,,

In this case, 4 vanishes because its value is

aolon ¥

- a (]ﬂl ’ 6 U'u ’ a Um a
Iy, S "
112» fﬂ, g2l

Thus U+ is not expressible in terms of p and ¢ : but it is given by

Ly (%) — 9 a(gu aaqu,, —r(O‘U”m) U2, 26U o = 0.

On the supposition that B does not vanish, the value of 17,,, is given
by the equation

Vi = — % (Hy—pFy—qGa).

Moreover, as F,, G, H, all vanish, we have m, = 0, 2, = 0; hence

koUm+l Vn+1+loUn|+l
= 1fifots(figat 290+ 19192

U'"“["aa—z{m (3 Vot ) e 5 (G Tty

o 1L (2L Vot Go) 4 g L (Vaid-F) |

I U)L m
s0 that
ey O O _ .(?ff g o 09 i) ng
! o aUm OV,, (IU,,, ('I’ M (-)(JY,,; aI’” ()U'm a-Vn nl
= it rFy L 45 (G, L +F“”U)+t
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Substitution of the preceding value of V,.1 leads to a relation of the form
ar+Bs+yt =,

where a, 8, y, ¢ are linear functions of p and ¢, having functions of
z, ¥, 2 for their coefficients.

When F,= G, = H, =0, while 4 is not zero, there is a similar form
of final equation.

When F, =0 =G, = H,, F,=0= G, = H,, the equation
ha— Pfre— 0910 = thfats(fige+ f29)+ 0190

leads to the equation

*h _ Pﬁf _ ('-zg
aU)n 2 Va b ¢ Un eV 7 ¢ U, cVa

. fj ff_ (_‘:I_ cf g > g ;g@_

m V,, +9 ¢ Um aVn + « I/,: C Um (/Uul F n

which is the final form of the equation in the supposed circumstances :
the coefficients of 7, s, ¢, and the term independent of r, s, ¢, are functions

of z, v, 2, p, q.
Note.—A simple and well known example of this last case is provided
by the equations

= 1= U"4+ 20 —=2U+0—-A) V"4 2V -2V,
y = i[—(1+DHU"+ 20U =20+ 1A+ A V"' =20V 4+ 2V],
z2 = 2uU"—2U" 4+ 20V"=2V.

uto . utv
Here we have p = L
=1 7 1—wuv’
on reduction ; also
&L 0 = Af Py
Z Um Z' Vu ; : Um F' Vn, F . U,,; (& V" ’

and the final differential equation is
A=) A=) r—202— ") s+ A+ A+ ¢ = 0,
thet is, (1+¢)r—2pgs+(1+p)t = O,

the equation of minimal surfaces.
It will be noticed that the integral equations are of the special form

z, ¥, 2 = function of « 4+ funetion of v,

80 that 7212 = 0’ f12 = O: 01 = 0.
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18. We know that, by means of Legendre’s transformation,

Z =prt+qy—2
X=p, Y=4q, P=zx Q=y,
an equation f@y 2,pq 715 )=0

i8 transformed into the equation

T L I 0 S

F(P Q@ PXHOY=2, X, ¥, grts, o1, i

hence, when the integral of the former is known, the integral of the latter
can be derived.
Thus, for example, the primitive of the equation

142 r42cys+(1+4yHt =0
can be derived from the primitive of the equation
(14+¢h) r—2pgs+(1+pHt =0;
it is easily found to be expressible by the three equations

_ u+v

T 1=’

I
y 1—ue’

2= 1_1_ {Buv—2)(U'+ V) —4oU~4uV}.
—un
We notice that the form of the integral equations in the primitive of the
new equation is no longer
z, i, z = function of « 4 function of v,

which was the form of the primitive of the original equations.

Equations under Case I., having Integrals of Special Form.

19. In the preceding investigations, the principal aim has been the
construction of the form of partial equations of the second order as
determined by an assumed set of three equations which constitute the
primitive. We now proceed (as promised at the end of § 18 and § 16) to
discuss, in greater detail, some of those equations of the second order the
primitive of which is constituted by & set of the form

z, Y, 2 = tunction of « + function of v.
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The question will be considered by dealing with the differential equations,
which result from using the relation

bia—pf1a—q910 = 71 fats (192t 290+ 19190,

without using either of the relations which respectively give the values
of hu—pfu—q9u, hw—pfaa—qg:. In the present case,

f12 =0, g1z = 0, lne=0;

so that the equation becomes

rfy fats (figat+fag)+19,9, = 0.

As A i8 not zero, and also B is not zero, the ratios of the coefficients are
functions of z, ¥, 2, p, ¢ ; hence the equation may be written

ar+2bs+ct = 0,

where @, b, ¢ are functions of z, y, z, p, q.
Comparing the two forms of the equation, we have a quantity A, such

that .
¢ fifa=Aq, figatfagy = 20, 919 = Ac;
hence, writing 3 = (B®—ac),
we have fig2 = A (049, fagr = A (0—9).
Consequently, b+d_ g — funetion of v only,
a fa
b;—a = ..(;_i = . w on]y;
d (b+d d (b+d
and therefore h T ( 2 )+g‘22—y ( = ) =0,
d (b—38 d (b—8\ _
hige (27) torgy () =0
- d _9o , 0 0 0 _ 0 0 |
where & =¥ T H A 5z~ 5 TPy
da_o . 0,9l ¥ _ o, ol
_— = = — 4t — —_— = =— =
dy 'y+531>+ an d'y ay+qaz}
, d (b8 ;o d (b3 _
that 1s, adz(a)+(b a)dy( a)—o’
d (b—38 d (b—8\ _
a g (Fa) Hotag (570) =o
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Adding, we have

og (o) (@) —oa(2) =0

and, subtracting, we have

i () g (o) - (&) =0

The former gives

250 440
-2 446
owe A (g

and similarly, after slight reduction, the second gives

dj( )H <_)=0'

Having regard to the significance of the operations d/dx, d/dy, we notice
that these conditions are to be satisfied concurrently with the original
differential equation.

20. When b vanishes, so that the equation is ar+c¢t =0, the two

«onditions give c
- = constant ;

the equation is at once transformable into the form
r+t=20,
~haracteristic of two-dimensional potential.
When b does not vanish (and this now will be assumed), we can divige

she partial equation throughout by 2b (or, what is the same thing. we ean
iake 2b = 1) : the equation then is

ar+s+4ct = 0,

and the two conditions become

%(&%%) 1



1907.] ZARTIAL DIFFERENTIAL BQUATIONS OF THE SECOND ORDER. 158

which are to be satisfied co.ncurrently with the partial differential equation.
The former of these conditions is

de¢ _ da da
Iy~ ey
that 1s,
a0 —(@rten® %]
d'y op aq |
da , da (0'a da 0

_ » o oa | _ o |
=~ )@ ((u+ct)%+cl% (m‘+6t)8p+t:731

concurrently with the equation ; and therefore we have
de _ da ¢ da
oy oz dy

de _ da , dal
af“a;) = (ac_1)35+a5§ ,

apparently three relations. Similarly, the other condition leads to the
three relations

c da __ dc a d'c
dz ~ oy o'r
da : cc ¢
c"‘T = (ac—1) — +¢ ==
“q
gCc _ _da  (a
= = v =
C ('q (1)

It is easy to verify that the six relations thus obtained are completely
satisfied in virtue of the four relations

de da a-
C=>= S, t%a,
¢y a'r oy
d'a o'c o'c
Cx— =  F-TA~—
[ « !/ (& y |
)
- ~
dd oc de
d==a= —a~—
- op op aq
dc oa va
a? = = ac = —c—
f dg dp
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which therefore are conditions to be satisfied by @ and ¢ in order that the
equation may have a primitive of the specified type.

21. Consider, first, the case (if any) in which @ and ¢ are functions of
£, y, and z only. The third and the fourth of the relations are ther_l
satisfied identically : and the other two, which are the effective conditions,

can be taken &1 o /e
52 (z) 7 (o) =0
dz\a/  dy\a

7 (3)+ 5 (3) =

As a and ¢ do not involve p or ¢, these equations give

sH=0 5(E)=0 ()= £G)=0

hence « and ¢ are functions of £ and y only. The first of the relations
then shews that some function 0, of = and y, exists such that

1 _ 00
a oy

) Q.
31

c_
a

3

when these values of @ and ¢ are substituted in the second relation, it

takes the form
0’0 00 “20 00 0% _

or?  dy oxoy ' ox oy =0

The primitive of this relation can be expressed* in the form
—_— = p"+a'",
—y = ?\p"—p'—}-,ua'"—a",
0 = Np"—22p' +2p+ule" —2uc’ + 20,
where p is any function of the parameter A, a,nd o is any function of the
parameter u. We easily find

- 0 _
a - A:U” ("Ty— (A+,u)y

Q
S )
o)

80 that S, L= adw
" a

¢ See my Theory of Diffevential Equations, Vol. vi., p. 343.
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Consequently, the differential equation is
r+A+u) s+Aut =0,
where (changing the signs of p and &) A and u are functions of z and y,
given by the equations
z = p"+d”,
Yy = Ap"—p'A-po’"—a’;
and, for our purposes, p and o are any functions of A and u.
This equation of the second order possesses two intermediate integrals,
in the forms g = (", ptug =¥ (@,
where ® and ¥ are arbitrary functions: and then
dz=pdz+qdy
= (p+Ag) p'"" dAA+(p+uq) o' du,
80 that the primitive is given by
z = ®@E)+¥ (@
|
where ® and ¥ are arbitrary functions of their argument, and p and o
are specific functions of A and .

As the equation possesses two intermediate integrals, it is known* to
be transformable to s = 0 by contact-transformations.

22. Consider, next, the case in which a and ¢ do not explicitly involve
z, y, or z: we have

aca—c —c? da = aa—c

op ~op og

ac da da
—a"’ +ac =

og p

when @ and ¢ are functions of p and ¢ only, as the full equations for the
determination of @ and c. ‘

The first gives %(log %) =- 8% (%) )

* Theory of Diffevential Equations, Vol. vi., p. 295.
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. 0 a 0(1
and the second gives 3 (log —c—) = - % (E)
Take a quantity 0 such that
1__#
c  op¥
50 that, from the modified first relation,
log & = %0
°a dpdg’
~o
Hence log L 6 ;
¢ op dq
and therefore, from the moditied second relation,
1_
a cq )

If now we write temporarily

g0 ==zy,z2

[Jan. 10,

the equation for 8 (=2), in terms of p and ¢ as the new independent

variables, is

that 1s, r+te*=0.

28. This equation can be integrated by Darboux’s method.

. u be the roots of the equation
pPtpte+e =0,
8o that Adu=—tes, Ap = e %

For either of the quantities A and x, we have

(@p+te7) =E +pe=t =0,
— aP -3 -8 —
(20+te );? —pte?—e™' = 0.
()

Hence (Cu—+i279) <,o: (—Zﬁ —_— (l) = ulte*Hue " +tue?

ds  of
= — 1A +u)+ 2 u

== #2 (x_'/u)’

Let \ and
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du _ Ou __

thatis, 0 e —a =- 2
ab1s, s 0t ”
And @+t (A %" ?ﬁ) = Aut41) e+ pe=
= Aute”"+A+u) e=*
= 0,
u_w_
8o that A ST 0.
. O
Similarly, A i A4
oA oA _
M 5-':;- - W - 0.
Let u(Z, Y, 2, p,q, r, 5, t) =0
be an equation compatible with
r+te”* = 0.
The equations to be satisfied* by the form of » are
ot Ou | Ou _
Por TP T ot 0.

and (as the original equation does not involve z, y, z, p, q)

d_u+ ,du =0,

where p and p’ are A and u in either of the two arrangements.

157

Now r can be removed from u by means of the original equation :

hence we can take the equations for « in a form

N ou _ ou —0
as ot ’
du du _
Tthg =0

The latter is
ou ou ‘Ou

ow au
FPE S rd ap+ 5q +“( te 5_+Sap+t3—>—0

* Theory of Diffevential Equations, Vol. vi., § 261 ; the method is Darboux’s.
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and A, u« are functions of r, s, ¢ only. The condition that the two should

co-exist 18 . 2\ d 5 3 ]
Cu (1 U (] u ou
Lo i) Rpadhadil 1) N (i =) —u— =
(g 8t)dy+ <8q +”ap) hog = O
that is, a—m%+M%=Q
oq p
or A=) = Fe= 2 =0
uq p

That this may co-exist with the first, we must have

Y oY ~ ~ Y
(s.é A _,\ 9&>‘£‘_M—s‘£‘=o,

‘s ot ~os ' 0t/ aog dp
“that 18, A e =0,
aq op
Hence = 0, K= o.
oq op

That these may co-exist with the second, we must have

ou
r\_—’ = 0.
cz

Hence the equations for « are

=0 =0 Z=o ?_Q
op «©q cz ?
AR
vs ot

Two independent integrals are u, y—ux: hence we take
y—uz = function of u = u®F" (u),

as an equation compatible with the original differential equation.

Similarly, from the other system, we have a compatible equation

y—Az = NG" (\).
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Here F and G are arbitrary functions of their arguments: and

AFu=—tet=r

A =¢e* L
1,1 _ J
ATu =
Now d(rz+sy—p) = xdr+yds
_ dX d_#)
= z@+dw—y (5 +%
= — £1'—)3\(3/—50)\)— %—‘(g—xu)
= — ANG"dA\—uF"du,
so that , rztsy—p = — AG'+G—uF'+F.
Again, d(sz+ty—gq) = zds+ydt
= (R de du
- ‘E()\+#)+ (A2+ >
= Gu—a+ % s
= G”d7\+F"d,u,
g0 that sz+ty—q = G'+F'.
Further,
d (rz®+2szy + ty®)
= 2*dr+ 2zyds+y2dt+2 (rz+sy) de+2 (sz+ty) dy,
so that :

d (rz?+ 2szy + ty* — 22)

159

= 22 dr+42zyds+y dt+2(c+sy—p)de+2(sc+ty—q) dy.

But 2%dr+42zyds+ydt = 2* A\ +du)— 2zy (‘i

= (y— M‘)2 +(J ux)’

— A2G:nd7\+#2Fnﬁ d,u..

+cf:.¢>+y ((D\

Al

%)
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And
Vz+sy—pldz+(sz+ty—q)dy
= (G+F)dx—W\G' +puF") dz+(G'+F') dy
= (G+F) dz+G' (dy—Nde)+ F' (dy — udz)
= (G+Fydx+(G d\+F' du) x
+ G NG 4 2AG") AN+ F' (W3 +2uF") du
=d{(G+F)z! +G NG +27AG" A\ + F'(W3F"" 4 2u"F") dy.
Consequently,
A(ret+2sey+tit—22) = NG AN+ F? du+2d {(G+F) z}

+2G' \*G"' +2AG" AN+ 2F" (W2 F"" +2uF" du ;
hence

ret 42y +ty*—2:—2(G+F)r
— 2A2G’G"+2M21’"F"‘—J AQG"QCD\'—J M‘JFn‘zdlu.

When 7, s, ¢ are eliminated from this equation by the relations
Mu=r w=e, o~ i=—y
Ao

the resulting value of z i1s 8: and \, x are expressed in terms of = and y

by the equations J—Az = NG, M

0%z 0%z
For our puarpose, we want ==, =3,
Ry

in this notation : where «, y stand for original p and g. Thus

1 _ ’322, _

TETw T T

1 Pz__ Afw

a o Aw
where qg—Ap = NG, q—pp = uF".

Thus the equation, being  ar—+s+4ct = 0,
hecomes Aur—A+u) s+t = 0,
where A and u are expressible* in terms of p and ¢ by relations

(]—7\}) —_ 7\2G", q—up = ,U'QF”-

* The equation of minimal surfaces is given by
ARG =i (1A, P =i (L
other equations are given by taking other specific forms for /' and G.
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24. The primitive of this equation can be obtained in the same way,
due to Ampeére, as the primitive of the equation of minimal surfaces.*

Substltutmg o = q'—ty', r = pl_qul_l_tyls’

in the equation, and making it evanescent in ¢, we have
A (@' —q'y)—A+u g’ =0,
Ay + A+ y'+1 = 0.
From the second equation, we have
Ay +1 =0, uwy'+1=0.
Taking Ay'+1 = 0, we have the first equation in the form

—q'+up' = 0.
But q—up = u’F",
so that w =0;

thus u is constant for the set of equations.
Similarly, the other system possesses A = constant as an integral.
We therefore take » and A as new independent variables.

NOW y, = - ‘;— )
when u is constant : that is,
gy _ _ 1 oz
oA~ X ox’
.. 0 1 oz
Similarly, %Y - _ 9%
imilarly ™ Pt
0 (1 0z\ _0 (1 oz
Consequently, " (—-x- ﬁ) = (-; 8;;‘)'
. oz
that is, - =0:
8 oA Ou
hence z = function of A+ function of u
= N’ A+ ()
— AQ(}')l +I‘2\/"7
, 1 oz 1 oz
8ay. Then d’y = — T é'x' ad\— 7 8—; dM.

= — (\¢"+2¢") AN — (P +2¢") du,

¢ See my Theory of Differential Equations, Vol. v1., p. 277.

S8ER. 2. VoL, 5. No, 954. M
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so that - y=—Ap'—¢p—u'—.
Finally, we have
dz = pdz+-qdy
= {pN'¢"+20¢") —q (\p"+2¢) | AN
+ {2 W+ 2uy") —q (" +24") } du
= —(\¢"+2¢) N2 G" A\ — (u" + 2¢") u*F" dps.

Modifying the specific functions F and G, we can state the result as
follows :—

The primitive of the differential equation
Mar— ) s+t = 0,
where A and u are functions of p and ¢ determined by the equations
g2 =f0,  g—wp =g,

f and g denoting specific functions, is given by the three equations
oz = N Y,
—y = \p'+op+u' +,
—z = j (7\¢"+2¢')f(>\)dk+§' (" +2¢") g (u) du,

in which ¢ and  denote arbitrary functions of A and of u respectively.

Note.—It is easy to verify that the equation
!(Ng+M»—P*: r—2 {(Np+L)(Ng+M)+PQ| s+ {Np+L’—@*} ¢t = 0,

where L, M, N, P, () are constants, is a special example of the preceding

equation ; the functions f(A) and g (u) are linear functions of A and of u
respectively.

25. Consider, next, the case (if it can arise) in which the coefficients
a and c in the equation art+s+ct = 0

can be functions of z, y, p, ¢, subject to the condition that the integral
equivalent of the equation is of the specified type.
The relations to be satisfied by a and ¢ are

-

22 0] @A -0

LR +E(E)=0]
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In the first pair of equations, the quantities p and ¢ are parametric.

‘We know that the equations are satisfied by taking
1 1 1 1

— =utv, —=—+4—,
a c u v

where_ z = fw+g' W), y = uf' (W) — f (w)+vg' (v)—g W),
the functions f and g being any whatever: hence, taking account of the
posgibility that ¢ and ¢ (and therefore » and v) can involve p and g, as
well as z and y, and writing

f=75up, 9, g9 =90, p, 9,
then the first pair of equations are satisfied by

v, A
v 811, o'u y=u3 j+v &
Lot l=l+— L = w;
a c w @

and, so far as the first pair of equations are concerned, the new functions
f and g can be any whatever.

The functions f and g are to be determined so as to satisfy the second
pair of equations. When the values of 1/a, 1/c, c/a are substituted in
them, we have Ou_ 0v_ 1 ou__ 1 cv _

R
cp Op w g v oq
_1 w1 1w, 100
W dg v og w op ' v Op ’
that is, the relations in the second pair are satisfied, if
ou __ ou v _ cv
U= =, v = .
p  oq cp  oq

Now u and » are given as functions of z, y, p, ¢ by the preceding
two equations which express z and y in terms of f and g; hence f and g,
as involving p and ¢, must be such that the two equations in » and v
just obtained may be satisfied. But

P Py P
T 0wt dp | v dp | cudp C'v?-p’
0=ux= —Z Ju +v i—(lz 24w AL..‘(._A
cu® op cv? op cucp cv«p

‘_7_[8“.'_ _+LL+L(/_

5 =

ou' dg ' O0v* og = cudg = dveq
0=ug-£au+vg-ﬂav u o L9 —Qf—iﬂ.

il

~ ’

»

_f_cg
op

cut cq cv® Oq cudg ov?'q ¢ cq
N 2
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Thus there are six equations in which the four first derivatives of » and v
occur linearly ; when these are eliminated, we should have two equations
satisfied by f and g as functions of p, q, %, v. These are easily found

to be W f _f _of g g _og _

814,81) Oudq 8p+”m dvdoqg Op ’

— g _ FgN, o O 09 dg_
(u v)( ovadp m> to _——0’

" %
which accordingly are two equations for the determination of f and g.
Remembering that f does not involve v, and that g does not involve u,
we have, from the first of these two equations,

“ oudp auaq - 3};

where 0 is a function of p and ¢ alone; and then the second of the two
equations becomes

of _of _ g _

0 = 0.

—(u—0) 0+v == ap % +u op aq

Differentiating the last with regard to « and to v separately, we have

i of 49 _
V=—7—— = -
cudp oudq = Op

dg g o _ .
6-}-1&% 8v8q+ap_0'

?

and then, differentiating the former of these with respect to v or the
latter with respect to «, we have

of L Pg _
audp Twop
that is, we may take au'gp =T "% gp ’

where ¢ is a function of p and ¢ only, so that the latest deduced equations

are dg P _
o Ot ataq =0
op v Ogq
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The earlier equations give

S oot O —
op +6 u¢+au8q =9,

g-" —0+vp+ 5= ”9 =0;
Ff ag _
hence dudg  ovog =¥

where V- is a function of p and ¢ only ; and so we have

L = up—w+0),
g— = — vpt+p+6),

from the preceding relations. These satisfy

f __ Py _
oudp  ovop ¢-
2 ~9
Proceeding from 82 5 =y =- 6(11; gq ,
of _ o _
we have 5g = Wtx g = T vbte

where x and o are independent of % and ». When we substitute in the

relation
—(u—v)(9+v—-Z 9[ +u ag

dp cp og =9

we find x+« = 0; hence we have

l = up—+6) L= uytx [
ag ’ o9 _ J ‘
= = ( 0 = = Uy —
2= —vpt+0 2= —p—x
In order that these may co-exist, we must have
Qo w_
og op  opdgq’

oW+0) _ _x - Fo

cq op Odpdq’
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where p and o are functions of p and g only. Hence
f = up—o+F(u),
g =—vp+o+GW),
where F and G are arbitrary functions of « and of v respectively. Now
= F'()+G' (),

0 o
y= 1ta'—£—f+vg%—9

= uF'"(uw)—Fw)+vG' (v)—v;

in other words, # and v are functions of = and y only, that is, if » and v
involve z and ¥, they do not involve p and gq.
Consequently, we have two classes of equations

ar+s+ct =0
having an integral system of the required type, such that
z, ¥, z = function of w + function of v ;

in one class, a and c are appropriate functions of « and y alone : in the
other class, a and ¢ are appropriate functions of p and q alone.

It is easy to see that the two equations, when subjected to Legendre’s
transformation, lead to equations of the same form ; but, when this
transformation is applied to either integral, it leads to new integral
gystems of a different type. An example has already (§ 18) been given.

26. We may summarise the results of the preceding investigations
as regards an equation ar+bs+ct = 0

where a, b, ¢ involve no derivatives of order higher than the first, the
equation being supposed to have an integral system represented by

z, ¥, z = function of « 4 function of v ;
as follows :—

(A.) When & = 0, then a and ¢ are constant : the equation can be
transformed to r4t = 0.

(B.) When b is not zero, then we can (by division) replace it by unity.

Then a and ¢ can be functions of x and y alone; and they can be
functions of p and ¢ alone; but they cannot be functions of z, y, p, ¢
simultaneously.



1907.] PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 167

When a and c¢ are functions of z and y alone, then, taking two para-
meters A and u, and any two functions p and ¢ of those parameters
respectively, we express A and u in terms of x and y by the relations

T = P"+o,"’ y P AP"*P,_*'MOJ'—O'I ;
the partial differential equation is
r+A+u)s+Aut = 0,
and its primitive is 2 = PN +Y¥(w),
where ¢ and ¥ are arbitrary functions.

When a and c¢ are functions of p and ¢ alone, we take two para-
meters A and u, and any two functions f and g of those parameters, and
we determine A and u« in terms of p and g, by the relations

g—=Ap =fN).  q—up=gW;
the differential equation is
Aur—QA4u)s+t=0;
and its primitive is
Tz = )\2¢r+'u2\/,l’
y =\ +p+up +y,
—z = [(\¢"+2¢) F N A+ | (" +2y) g () du,

where ¢ and y are arbitrary functions.

Case IL.: with Sub-cases.

27. In this case, the functions f and % involve both « and v, together
(possibly) with the arbitrary functions U and V'; while g involves only
v and the arbitrary function V, with (possibly) the derivatives of the latter.

There are, as before, sub-cases according to the non-evanescence or
the evanescence of the quantities 4 and B. Most of the initial forms
of the results for the present case can be deduced as special forms of the
results in the preceding sections; we shall therefore not deal with the
sub-cases in the same detail as before. For all the sub-cases, we have

g1 =0, g2 = 0, gn = 0;

h I Jfaly
lso =1, =242
. P i 1 (D) J192

II., (1).—Proceeding as’ in the least restricted of the former sub-cases
(§ 8), in which the values of 4 and B do not vanish, being

b _ o _ O _ o 9
A= —Pag. B 7w Py l3v
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we have Ugpyy = — —}I (H,—pF), fi= % (F1 %1 —Hl%),
and V,.,, f; have the same formal values as before. We proceed from
the equation lna— pfra—q912 = 7fifats(h gaHfa 90+ 1919,
which now is Tne— pfie = i fo+ 51925
and we find, on substitution, the equation
g+o)r—(pt+a)s = w,
o =G 3¥) = ey~

9 _o ¥\ ¥ g o
b-(FﬁaVn Gﬁan) By —Fa gy

where a (F2

and w is a polynomial in p and ¢, of degree two in p and degree one

. . 1 of 1 odg .
in ¢: and where it is assumed that F, o7, GV, 18 not zero. The

quanfities a and b, as well as the coefficients in w, involve only the
magnitudes which occur in z, ¥, z: hence, if an equation of the second
order is to be the equivalent of the integral system, these quantities must
be functions of z, y, z alone.

We evidently have . o _ ig_ - o ,
aVn aVn aVn

aFy+bGy, = — Hy;
dz dx dy __
so that d—v-i-a%-{-b%—o.

28. The application of Ampére’s method to the equation
@+dr—(p+a)s=w
requires the substitution of
r=p =gyt  s=q—ty;
and the modified equation is made evanescent in ¢. Thus
@+dy*+@+a)y =0,
@+o(@'—q'y)—(p+a g = w.

The former equation gives either
y' =0,

or @+ y'+(p+a =0.



1907.] PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 169

Hence there are-two subsidiary systems of equations, viz.,
y=0, (@+op'—(pta)g¢ =w  =p;
and  (g+b)y'+(p+a) =0, @+ p' = w, 2 = p+qy'.
Consider, in particular, the special case when w is zero, so that the
equation is @+ r—(p+a)s=0

and we set aside, as trivial, the instances (i.) when « and b are constants;
(i) when a is a constant, and when b is a function of y only. The
first group of subsidiary equations then gives

y = constant,

when (3 is variable : that is, we take

y=a
and then (q+b) 3B (p+a)%g8 =0,
a_z_ _ a.z:
B~ Pos

Similarly, from the second set of equations, we have
) » = constant,

when a is variable : that is, we take

p =8,
and then (q+b) +(p+a) g_x =
dz __ oz ay
da P oa +q

Accordingly, as connected with the equation
g+ r—(p+a)s =0,

we can take y and p as the independent variables : and the aggregate of
equations then is

q+b—(p+a)gg— = ‘
+b+(p+a)a
a——z _ aﬁ > .
o pap
oz __
oy~ Poy )
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From the first and the second of these, we have

which is the condition of coexistence of the third and the fourth. Con-
sequently, a function (say ¢) of y and p exists such that

_0 __ 9.
=3, g=-2

and then, from the third and the fourth of the equations, it follows that

Il
Z2=Dp ap .

The function ¢ then satisfies the equation

de , gt+db _ 0

yop TpFa
when for ¢, and for z and 2 in @ and b, we substitute their values. From
the nature of the case, ¢ must be an explicit function, expressible in a
form that is free from partial quadratures; and, consequently, the

equation must be integrable by Darboux’s method. Now, when we
change the notation for the variables, the equation can be written

s'+f@, ¢, 2,0, q9)=0;

and the cases in which this equation is integrable by Darboux’s method
have been discussed by Goursat:* we need not therefore consider the
equation further, for the case in which w = 0. The general case still
remains.

29. One special form of the case discussed arises, when the integral
system is of the form

z, 2 = function of »—+funetion of v,
y = function of v.
We then have Jiu=0, g =0, hg =0,
so that w = 0; and the partial equation is
Sifar+figas =0,
that is, Sar+ges = 0.

* See chapter viii. of his treatise quoted at the beginning of this paper; also Annales de
Toulouse, 2¢ Sér., t. 1. (1899), pp. 31-78, 439-463.
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Now 92 = function of v only
o
” y only
= 1/Y,
say ; 8o that, writing Y'dy = dy',

the equation becomes reduced to
2 0’z
oz? + oxoy' 0,
and its primitive is easily obtainable in the form

z—Fy) = G@—y),

where F and G are arbitrary functions.

80. II., (2).—In this sub-case, we have B = 0; and there are two
alternatives. In the first of them, the two equations
oh __of _ o9 _
7, Pav, v, = @
Hy,—pF,—qG, = 0,
are effectively one and the same, so that

0 0 oh
F = —L y = _g _— e ®
=05y, BTty BT ey
the circumstances, when F,, G, H, vanish, are given by ¢ = 0. The
quantities a and vy of §8 vanish, owing to the form of g, which is a
quantity independent of %; and thus the degenerate expression of the
equation of § 11 becomes*

r4+as = ¢,
where a and ¢’ are functions of z, y, z, p, ¢. But this form assumes that
of/0V., is not zero; if it should vanish, the equation is

s =c.

In the other of the two alternatives, we have 4 = 0 as well as B =0;
we shall proceed to this almost immediately as the last of the sub-cases to
be considered.

* An instance of this possibility is (taking account of the interchange of variables covered by
the explanations in § 2) provided by
z2=¢"(4), y=(u+0)*¢"()=2(u+0)¢' (W) +20 () +¢Y (¢), z=nu+v;
the equation is s+t 4 29% = 0,
and its primitive is easily obtained by quadratures.
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81. II., (8).—In this sub-case, we have A4 = 0: again, there are two
alternatives. The second of the alternatives is, for the moment, deferred
until the discussion of the similar alternative for the last sub-case.

In the first of them, the two equations

oh __of _

5U. PoU.
can be only one and the same equation ; and it gives the value of p. As
B is not zero for this alternative, the partial equation is

H,—pF, =0,

(,8'+‘YIQ) 7.% —(a'+')”p)saoU — yul_'_anlp_*_ﬂmq’

that is, @+b)r—(p+a)s=w,.

where now w is linear in p and in ¢; but otherwise the final equation is
the same as in § 27.

82. II., (4).—In this sub-case, we have 4 =0, B = 0; it thus includes
the two alternatives respectively deferred from the consideration of the
last two cases.

oh

We must have H, =26 T Fi,=20

99 .
oUn’
if it should happen that

h 0
H2=¢§_'ns F2=¢§aLVn’ Gﬂ:‘ﬁagn’

then, by § 11, we easily see that the final partial equation is
r4s = k,
where k is a function of z, y, 2, », ¢ at the utmost : the equation is trans-
formable to
st+f(x, y, 2, 9,9 =0
and therefore (having regard to the integral system, which is derivable by
Darboux’s method) it belongs to the class already considered by Goursat
(p. 170, foot-note).
If it should happen that the relations

= 4.0k =09 — s

H?"‘Pa—-V:’ F2—¢8V,,’ G2—¢8Vn

are not satisfied, either for a non-zero value or for a zero value of ¢, then
we bave the alternative considered in § 13 ; and the result for the present
case can be deduced from the result there obtained by putting

G, =0, Y =0;:
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the result is of the form
{('rt—s“)(a'r-l-Bs-{-yt-l-J)-{- U}ﬁ va { "—-(’I't—s2) ﬁn}’

where a, 3, v, 6, 8" are functions of z, y, 2, p, ¢; U is a polynomial in
7, s, t, 1 of the second degree, and o', B, «” are polynomials in 7, s, ¢, 1 of
the first degree only.

If, in particular, while g is a function of v only, and the assumptions
as to the conditions under which 4 = 0 and B = 0 are satisfied still hold,
it should happen that

z, 2 = f, h = function of » +' function of v,
so that ky=0=1, = my =y,
it is easy to deduce (from earlier results) that the final equation is of the
form rt—s? = 0.
This conclusion can be verified from the fact that the two independent

equations oh af g

Hy=pFy—9Gy = 0. spm —pyp-—d5y- =0

determine p and ¢ as functions of v alone, so that we have

x@ @) =0;
and therefore rt—s? = 0.

Casg III. : with Sub-cases.

83. In this case, f is a function of « only, g is a function of v only.
while 4 is a function of « and v, the arbitrary function U and its deriva-
tives occurring with u, and likewise for ¥ and v.

We thus have  f, = 0, =0, fu=0;

9.=0, g =0, gu = 0.

Lf the quantity 4, which now is %— pa(}c

Oh _ 9
v, 15,

does not vanish, and.
if similarly B, which now is , which does not vanish, then

—qGy),

(Gg-ﬁh _Hg’\_ag_)‘

Upp1=— :}(Hl—pFl), Vay1 = —

wll—‘ b;jlr—a

oh of )

_ 1 of —
fl - A <F1 8 Um Hl a Um ’ 92 =
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where p and ¢ are given by the relations
hy = pfy, hy = ¢9s
The equation hyy—pfra—qg12 = frfar+ (192 +/29) s+19a¢

now becomes hiy = f1925;
and, on substituting the values of U, and V.41 in %, and reducing, we
find the equation

1 s = a+Bp+yg+{py,

where a, 8, v, { are functions of z, y, z only ; and the value of { is given by

(5 ) (6 7 =8 ¢

o*h cg c(8'h) af :)(_) af
=h6apay. Py om, %o o, T

in the notation of § 11.
This differential equation is to have an integral equivalent of the form

aq ,

\4)

z = function of %, y = function of v,
2 = function of % and v.

The problem of the determination of the different forms of the equation
with their respective integral equivalents is similar to the problem pro-
pounded by Moutard, and solved by Lloyd Tanner and Cosserat;* the
necessary modifications of the analysis are omitted from the present
communication.

When 4 is zero but not B, or when B is zero but not A4, the final
differential equation is easily seen to be

s = a+bp+cg,

where a, b, ¢ are functions of z, y, z alone: it is only a particular case of
the preceding form.

34. There remains the sub-case, for which 4 = 0 and B = 0, that is,

/i
= P cU 0, H,—pF =0,
% —q ——I% =0, Hy—q¢Gy, = 0.

% See my Theory of Differential Equations, Vol. v1., ch. xv.
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The form of the final differential equation might be deduced from the
result of § 18, by inserting the appropriate simplifications ; it is as easy
to proceed directly from the equations

hy—pfu =fxs7': hie = f1928, hoy—qgay = yﬁt,

which, on writing

a = — ¢’r+a, ' o =—yit+ag
b =—¢¢pr+by b = —n\lrt-{-b&l ,
c=— & +c ) ¢ =— 't +c{,)
k=—¢pstk |
= —¢ns +1, l
m = — s +m°J ’
n =— nfs +mn,
where ¢=_a_avjv'_’ \/f‘:aavg ’ $=F1, ’7=G21

and where ag, by, ¢y, ao, bo, Co, ko ly, My, 1, have their former signification,
become U2, +2bUnir +¢ = 0,
a' Vi +20'V,ate =0,
kUwir Var H Ui +mV+n = 0.

"The final equation is the result of eliminating Un.: and V.. between
these three equations. Let

ay = kgén—lL & —mynp+n, ¥,

By = 4y’ —2by€p+eo’,

y1 = aon’ —2bomy+co?,

E = (ao, —bo, co L Lof—no, keé—my¢)*,

G = (ag, —Dby, o Y lon—mg\r, kgn—mg )2,

F= kylegp—Dbod)cor—bom—1y (cqp—b,&)bpyyr—agn)
— g (by — @y €) (Y — byn) +114 by p— 1y €) (Do Y — o),

2 s
0, = kycoco— ... +npayao,
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a8 before; then the eliminant, being the final equation, is
O = 4 (a;5—kymy+lymy)? (B3 —ayco+ B, 1) (b2 —ag ¢+ 1 8),
where 6 = alrt+B,ys*—Er—2Fs—Gt+0,.

The aggregate of terms of the highest degree in this equation is made up
- of those of degree 4 ; it is

(@} rt—B, s

Simpler forms, however, occur for special forms of the functions. Thus,
in particular, if the integral equivalent is

2z = function of «, y = function of v,
h = function of « + function of v,
the equation reduces to s =0,

a8 (obviously beforehand) should be the final form.



