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Generalised Form of Certain Series. By J. W. L. Grasaer,
M.A, FR.S.

[Read May 9th, 1878.]
" 1. The results referred to in the title are consequences of the iden-
tical equation
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and it is convenient to proceed to them at once, leaving the demonstra-
tion of (1) to § 4.

It may be observed that, in (1), if p is equal to a negative mbeger,
say if p=—2i, then in the series that multiplies e~* there will be ¢
wero terms ; for the coefficient of z‘*! involves the factor p+2i¢ in the
numerator, and therefore vanishes, as also does every term up to &%*},
in which the factor p+2¢ first makes its appearance in & denominator,
and can therefore be divided out from the numerator and denominator;
this factor also can be divided out from all the succeeding terms. Thus
the terms in 2!, 2*?, ... ¥ disappear. It follows, therefore, that in

the product
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if p =—2i, there are no terms in z**!, 2°*?, ... o%.

If p = a negative uneven integer, both sides of (1) become infinite :
this case is supposed to be excluded in all that follows.

2. Since the right-hand side of (1) only involves a* it follows that
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where p has any value ; whence
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Putting p = 0 in this expression, the numerator = } (1+4¢*), and
the denominator = } (1+e7>).

Putting p = 0, the numerator and
denominator become respectively = ¢* and e
From (2) we have
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which is true for all values of p. - The cases of p =0 and p= o0
correspond respectively to the formuls

therefore
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For p=1, (8) gives
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whence, putting 2z for =,
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8. From (2) it follows that
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B,, By, By ... being the Bernoullian numbers; whence
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Multiplying up by the denominator of the left-hatid expression, and
equating the coefficients of 4™, we have
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which is true independently‘ of the value of p.

As an example, put 7 =2, and this formula gives
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viz., 2By .p+1.p+3—2"B,.p+4.p+3—(p+6.p+8) }
- =—(p+4.p+6),

viz., 2'B,(p'+4p+38) —2°B, (p*+7p+12) + } (4p*+36p+72) =0;

whence, equating the coefficients of the powers of p to zero,

2B, —2B, +4=0
2'B,.4—2'B,. 7T+3¢8 =0,
2'B,.3—2'B,.12+42=0;

which, since B, =4, B; =4, are at once seen to be true.

4. In order to prove (1), we observe that the coefficient of 2" on the
left-haud side
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and (—)" x the expression in brackets = the coefficient of £° in
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Thus, if n be uneven, the coefficient of 2" is zero; and if.n be even,
the coefficient of 2" : .
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This proof does not apply as it stands when p = —2i, but it can be
extended so as to include this case by taking p = —2i+%, and making
% indefinitely small. The equation (1) can, however, be proved for all
values of p withont the use of limits, as follows :—

Consider the coefficient of " in the product
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First, suppose n even = 2m ; the coefficient of ™™
_ 1,11 1 111
T@m)! T p+12 (2m—2)! " p+1.p+832.2! Cm—4)!""

+ 1 1
T p+1.p+3...p+2m—12" . m!

1 1 - -
T o2m.2m—1 ...m41l p+l.p+3.. p+2m—1
% (p+] p+3 ... p+2m——1+p+3 .. p+2m—1 2m . 2m—1 1

+&c.)e’.

m! (m—1)! m 2
p+5...p+2m—1 2m .. 2m—3 1 1
T 2! mom—1_ P2l
' 2m.2m—1...1 1
-t m! 2’“.m!)’



1878.] a Generalised Form of certain Seriss. ' 201

and the expression in brackets
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and therefore the coeﬁicient of =*™
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Secondly, suppose # nneven = 2m+1, it can be shown, as above, that
the coefficient of «™*!

_ 1 1
T 2m+1.2m...m+1'p+1.p+8 .. p+2m—1"

where T = the coefficient of {” in

om. T,

A= H04 (ntp) t (A= o0t PEEI=F a1 gyieen e,
—_ (l—t)-“p”) (1+ _t:)"'*i= (l—t)-”-m—l-
_ip+m+1l.3p+m+2 ... 1p+2m
Thus T= p+1.p+8 .. P+Zm—l ’

whence the coefficient of @*™*!

=p.pt+2.. p+4m’ 1
p-p+l..p+2m @m+I)T




202 Mr. Robert Rawson on the [June 13,

5. I may mention that the right-hand side of (1) is a Bessel’
function ; for

Pl Z’ zl _ &
@) = ST (st mrsonra )
and we obtain the series in (1) on putting » =} (p—1) and s=ai. It
was, in fact, in connexion with the different particular integrals of the

differential equation

du a’u—""”+1u

s
which is a transformation of the equation of Bessel's functions, that I
met with the equation (1).
A Bessel’'s function is, as is known, a limiting form of a hyper-
geometric series, and the equation (1) may, in fact, be written

Qz %
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where a, a, 3 are each of them infinite; or, if we please,
22\ _. 2
F(a 4p, 2 22) =P (o o i+ £3),

where a is infinite.

On a mew method of determining the Differential Resolvents of
Algebratical Fquations. By RoBeErt Rawson, Associate of ILN.A.,
Hon. Member of the .Literary and Philosophical Soclety,

Manchester.
[Read Jum 13tA, 1878.]

. The theory of differential resolvents of nlgebraical equations appears
to have originated in a short sketch of a theory of transcendental roots
by Sir James Cockle, F.R.S., published in the *Philosophical Maga-
zine”’ for August, 1860. Eighteen months later, the subject was con-
sidered in a series of snggestive papers on the theory of transcendental
solutions, by the Rev. Robert Harley, F.R.S., published in the  * Pro-
ceedings of the Literary and Phllosophlcal Society of Manchester,
Vol. ii., pp. 181 —184, 199—203, 237—241.

The leading idea is, to determire, from a given algebraical equa.tlon,
& linear differential equation which is satisfied by the roots of the given



