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576 Mr. F. L. Hitehcock on 

disintegrate the molecule into positive and negative ions. The 
apparent masses of the ions therefore depend on the ratio of 
the electric force to the pressure. 

10. The results of these experiments throw some light on 
the constitution of molecules of gases. We are led to con- 
clude that : - - I t  is possible to detach a particle from the 
molecule of a gas which is small, as regards mass and linear 
dimensions, compared with the molecule of hydrogen, also 
the particles produced from molecules of different gases are 
identically the same. 

The mass of the negative ion coming from a zinc plate was 
previously shown by Professor Thomson ~r to be small com- 
pared with the molecule of hydrogen. The method which 
he adopted did not involve any of the principles underlying 
the present investigations, 

A considerable number of phenomena connected with the 
electric discharge in gases may be explained in a general way 
by taking into consideration the physical properties of these 
negative ions. Thus some of the effects of variation of 
pressure, electric force, and distance between the plates can 
be accounted for. Also the high conductivity of gases under 
rapidly alternating forces may be due to the fact that the 
negative ions traverse a long distance before they are dis- 
charged by the electrodes. There are, however, many 
phenomena for which these physical properties supply no 
explanations: such as the appearance, at the electrodes, of 
the constituents of compound gases. 

The experiments with ultra-violet light show thai in car- 
bonic acid the conductivity may arise from the genesis of 
small negative ions. I am at present continuing the researches 
with other gases and vapours, so as to obtain some additional 
evidence on this point, as it is to be expected that similar 
phenomena may occur with other compound gases. 

LXVII .  On Vector Diferentials. 
By FRANK LAUI~EN HITOHOOCK ~. 

1. 1 N  studying physical quantities we are led to make a 
I distinction between those which ha~ e by their very 

nature a direction in space, aad those which, on the other 
hand, may be thought of as mere numbers. Directed quan- 
tities are conveniently called vectors, and non-directed ones 
8ca~r8. 

~ J. d. Thomson, Phil. Mag. December 1900. 
�9 Communicated by the Author. 
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Vector Differentials. 577 

The mathematical connexion between these two kinds of 
magnitudes is extremely intimate: if we have any scalar 
function continuously distributed through a portion of space, 
there is a vector function immediately derivable from it by 
the operator V, which derived vector was called by Maxwell 
the space-variation of the original scalar. 

The object of the present paper is to study briefly the 
differentiation of vectors, a subject inseparably bound up wi~h 
the quatsrnion operators V and qb. I shall assume that the 
reader has some slight acquaintance with the calculus of 
Hamilton, and shall occasionally refer to Tait's ' Quaternions,' 
3rd edition, 1890. 

2. From the definition 

follows the very general proposition that a differential is a 
linear ;function : both q and Fq are~ in general, quaternions ; 
but one or both habitually "degenerate" into vectors or 
scalars. In an). case d(Fq) is linear in dq. 

It  follows that if P is any scalar function of a point p~ then 
dP is linear in dp. 

Now every possible scalar term linear in ttp may, by very 
elementary transformations, be put in the form SXdp, where 
X is of course a vector function of O. If  there are several 
such terms we may assume that N~.= - V P ,  where the minus 
sign is introduced in order that our results may agree with 
Hamilton's original definition of ~]. Therefore 

d P =  --Sdp~7P, . . . . . .  (1) 

which is a fundamental equation. 
From this, remenlbering that d o may, like any other vector, 

be thought of as the product of a scalar and a unit-vector, we 
have 

dP 
. . . (3) 

by writing do=edh and then dividing both sides by dh. 
d 

Here d-/~ may be thought of as an operator. It signifies 

differentiation with regard to any direction whatever in 
space, and ~ is the corresponding unit-vector, either a con. 
sgant or a function of p. 
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578 Mr. F. L. Hitchcock on 

We have also 

d P =  --SdpVP 

= + Sdp(iSiVP + / S j V P  + kSkVP) 

/idP .UP kdP~ =-Sdo  ~ ~ +3 ~ + dz ]' bY ( 2 ) ,  

_ dP dP dx-I- dP dy + dz, - 

because dx----Sidp, &c. 
From (1) it appears that if dP be given, V P  can be written 

by inspection. 
3. Taking next • any vector function of p, we have 

da=~bdp, . . . . . . .  (3) 

where ~ is a linear and vector function. And, directly, 

dv =~be . . . . . . . .  (4) 

For  a fascinating account of the various types of these 
functions, see the last chapter of Keliand and Tait's ' Intro- 
duction to Quaternions.' The function ~b is there considered 
as a homogeneous strain, and it seems convenient so to speak 
of it, even in those cases where it could not exist in a physical 
sense ; for exampl% when the sum of the roots of the strain- 
cubic is zero. 

To show that ~7o" may be written by inspection when dcr is 
given~ we may put 

q = +j j + kOk; 

and, if ~b consists of several terms, we may consider each oI 
them as a separate linear and vector function, call them 
r ~b2, &c. ; to these will correspond ql, q2, .- . ,  whose sum, 
since q is linear in ~b, must give the q of the whole function r 

But Vo'=q, by (4) ; thus we can write down V ~ i f  we know 
the part of q contributed by each term of ~. 

Taking special cases, a term of the form BSak, which we 
may call ~bl, and where X is any vector whatever, gives 

q =i s.i +j S i + kZS.k  

and in a similar manner the forms Vak, VaX~, and .qk give, 
in order, 2a, Sa~, and --3g. Any other terms that may 
occur are to be treated in this way, and the sum of the results 
taken. 
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Vector Di]erentials. 579 

We have thus the means of finding 6he effect of V on any 
function, scalar or vector, by merely differentiating it. 

4. The following useful formulm will be familiar to students 
of Tait :-- 

d(FP) 
V(FP) = -TF- VP, 

and 
V (PP1) = P1VP + PVP1, 

in which the order is not important, and also 

V(P~) = VP. ~ + PV~, 

where the order is vital. Here P and P1 are scalars, FP  is a 
scalar function of P~ and q is a vector. 

To find the effect of V on the product of any two vectors 
r and T we may adopt the notation do----~bdp and dT----0dp ; 
whence 

d(r = d~. T + ~ .  d~ 

= ~ d p .  m" + (r. #dp. 

From the scalar part of this differential we have 

dSav= Sdp(~q'-+ O'o'), 
whence by (1), 

V s ~ =  - ~ ' ~ - e ' ~ ;  . . . . .  (5) 

and from the vector part, 

dVo'~" = VaOdp -- V~-dpdp, 

each term of which, by the last artiele, contributes its portion 
of VV~rv. If  we take q)l=VtrO, we have 

qx = iVaOi +jVaOj + kVaOk 

= - - S .  a V T - a S V r - 0 a ,  (Tait, w167 89, 90) 

by the ordinary transformations. 
Similarly the part corresponding to --V'rdpdp is 

+ S .  ~Va + TSVr + ~T ; 

by adding the vector parts of these two quaternions we have 

VVV~T = T S V ~ -  ~SVT + ~T-- 8~, (6) 

and by adding the scalar parts, 

SV(a~') -- S .  v V a -  S .  qVv ; . . . .  (7) 
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580 Mr. F. L. Hitchcoek on 

we have thus the three parts of ~7(cr~'). Combining them 
gives 

V ( ~ )  = ~ s v ~  + ( ~ -  ~') �9 + s .  ~ V ~  

- a S V T - - ( 0  + 0~)~ - S .  aV~ ; 
but we have, identically, 

v .  v v ~ .  �9 = ( r  . . . .  (8)  

by Tait, w 186 ; accordingly the first three terms of V(r  re- 
duce to ~7r % and the last three, similarly, to - - r  Vr-- '28a; 
whence, finally, 

V ( a v ) = V ~ .  ~ - - a V v -  20~ . . . . .  (9) 

It  may be noticed that - -6a is the same as Sa~7.7. 
I f  r and q are any two quaternion functions of p we have 

V(qr) = V q .  , ' - q V r  + 2S~. V," + 2S(VqV)r, (10) 

which follows on combining (9) with ~7(Pa), &c, and which 
the reader may verify with ease. 

5. It is convenient to classify vectors by the effect of ~7 
upon them: if u vanishes, q is derivable fl'om a scalar 
potential and its distribution is irrotational; if S~Ta vanishes, 

is derivable from a vector potential, and its distribution is 
solenoidal; while if both these conditions are fulfilled at once, 
so that ~7~=0, then the distribution is JLaplacean. These 
distinctions are of fundamental importance in Physics. 

There hre al~o vectors which, though they do not directly 
satisfy the equation u  yet do so when multiplied by 
a variable scalar. Hamilton and Tait showed that we then 
have SaVe '=0 .  The simplest example is a unit-vector 
normal to a series of surfaces, and capable, therefore, of being 
written U~TP. 

Taking the two vectors ~TP and U~TP, we shall adopt the 
notation : 

dU V P = dv = xdp, 

d V P  =d(tv) = ~ d p  ; 

the operators ~ and X are then vector differentials, functions 
of p, and always linear in dp : their properties appear to be of 
considerable interest. 

If a and/~ are any two constant unit-vectors, we shall have 

= - -SadVP,  because a is constant, 

= - S~q~do ; 
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Vector Differentials. 581 

whence by putting ~dha for dp, 

d2p 
dhodh~ = - Sar  = - SB~a, (11) 

where a and f~ are perfectly interchangeable, because either 
of them is any constant unit-vector whatever. 

One consequence is that 

dP d V~ =~= ~V e, . . . .  (12) 

which may be extended to a vector by the usual method 
d 

(Tait, w 149). Thus the operators V and ~-~ are commu- 

tative, provided the direction h is constant. A single case of 
the same kind will presently be exhibited where the direction 
of differentiation is not constant. 

6. The function X, found by differentiating U~TP, or v, 
owes most of its peculiarities to the fact that the differential 
of a unit-vector is always at right angles to the unit-vector 
itself (Tait, w 140, (2)) ; this is expressed by the equation 

SvxE=O , . . . . . . .  (13) 
where e is any direction whatever. Thus the strain X turns 
every vector into the tangent plane to the surface P-----const. 

If we form the strain-cubic in the usual manner we find 
that the absolute term vanishes, so that 

X(x:--m2x T ml) --O 

for any direction whatever. Thus the cubic has a zero root ; 
for another way of finding it we have, k and /~ being any 
vectors whatever, 

xVz ' XX' ~=0 ,  Tait, w 157: (2). 

By interchanging :E and X' in this last equation we obtain 

~'v=O, . . . . . . .  ( 1 4 )  

for u is parallel to v, by (13). It appears from these 
results that that direction for which x = O  is at right angles 
to the plane into which X' turns every vector; and vice vers& 

Whence, by taking a special ease ot (8), 

( X - X ' ) v =  V(VVv)v,  
dv the left side reduces to Xv, that is~ ~nn; and remembering 

that v satisfies the equation Sv~Tv=O~ we see that v, Xv, and 
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582 Mr. F. L. Hitchcock on 

VV~ are mutually at right angles, while T:~v=TVVv. These 
facts are expressed by the equation 

vXV=V~v . . . . . . .  (15) 
d 

Writing, as above, dnn for differentiation along the normal 

to the surface P=const .  we shall have 

d[dP'~ = - d ( S v V F )  
\~-n-n ] 

= - s v ~ @ -  s (tv) x @  ; 

the last term vanishes by (13), and ~ is self-conjugate by 
(11), hence 

d p 
dP =q~v ~nn V , (16) ~73~- = . . . . .  

an equation which should be compared with (5) and with 
(12), from the former of which it may be deduced by 
applying (14). 

7. We are now able to examine the criterion that the 
vector v shall, besides being derivable from a scalar potential 
by means of a scalar factor, be derivable from one particular 
scalar potential which shall satisfy Laplace's equation ; to 
find, in other words, the condition that a scalar t can be found 
such that ~7(tv) = V~P=0. 

dP 
Remembering that ~ =t,  we shall have 

~@=d(tv)  

= vdt + tdv 

=--vSdp~Tt + txd p 

= - - v S d p d ( ~  +txdp, by (16), 

= -- ~nVSVdp--tvSxvdg + txd p 

= - ~, ,S , ,do - tx,,s,,de + t)ddp, 

where the last step follows because ~ is self-conjugate. 
By inspection of this result it is evident that, upon any 

vector in the tangent plane, the strain ~ has the same effect 
as X/, with the sole dift~.rence that ~ allongates the vector by 
the factor t. There are important geometrical applications of 
this fact, some of which will be found in the examples a~ the 
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Vector Differentials. 583 

end of this paper. But we are now concerned to get an 
expression for V(tv) .  I t  is proved above that 

dt 
~dp  = -- ~ vSvdp -- tvSxvd p 4- txd p, 

dt 
where, by Art. 3, the first two terms give -- dn and -tvxv,  

and the last term gives tVv. Thus if P satisfies Laplaze's 
equation, then 

dt 
dn tvzu + t~Tu=O; 

the vector part gives an independent proof of (15); the scalar 
part is 

dt 
d-n = tSVv,  

and since it has already been proved that, in general, 

d(tv) dt 
V t =  - ~ -  =V ~n n +txv,  

we have, provided P satisfies Laplace's equation, 

Vt=t(vSVv4-xv)  . . . . . .  (17) 
The vector vSXTv + Zv may be written Vv.  v ; and because 

~72t is a scalar, 
VV(tVv. v ) -  0 

= v  ,Vt(Vv. v) + t v v ( v v ,  v); 
which reduces at once to 

VV(V~. ~)=0 ; 
from (10), putting ~Tv for q and v for r and taking vectors, 

v(V~v)~-V(Vv) ~ + 2svv.  v v ~ -  ~ x v v ~ =  o, 

where the second and third terms destroy each other, so that 
finally 

VvV2v+ 2xV~Tv=o, . . . .  (18 a) 
which is the required condition. 

The same essential fact is expressed by saying that XTv. v 
must be integrabie without a factor, or that there must exist a 
scalar--call it u--such that 

u = V - l ( V v .  ~) . . . . . . .  (19) 

8. To examine the properties of zV~Tv, we may write, as a 
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584 Mr. F. L. ttitchcock on 

special case of (8), 
(x-x')vvv=o, 

which means that )~ and its conjugate have the same effect 
on V•v. But it was shown in Art. 6 that :g turns every 
vector into a certain plane, and X' turns every vector into 
another plane ; hence XV~v lies along the line of intersection 
of these two planes. 

If  v' be a unit.vector such that )&'= 0, it follows that 

~VVv=xVw'; 
to determine the unknown scalar x, take a and ,! two unit- 
vectors such that X~--ge and XV=g~V; it may be easily 
shown that e, '1, and v will then form a rectangular system 
(see Ex. 2); and they may be taken so that e~--v. It  is 

then legitimate to write dv in the following form (Tait, 
w 176): 

Svv ~. X v=--geS~v'-gffISrlv'; 
operate by Vv, 

SvvWVv = -g , lSed  + g~eS,#, 

and by using again the same form of X, 

--xVVv= "qg~ J --eSvd + ,ISav'} 

- S-~v Vdv,  

where ml is the coeMcient of )~ in the strain-cubic. Thus if 
l be the angle between v and v', the tensor of )~VVv is 
ml tan I. 

9. If, further, ~ be any vector in the tangent plane, so 
that at all points S~v=0,  then by (8) 

(r ~')v + V v V V ~  = 0; 

de 
hero (by may be written dn ;  by (5) we obtain 

V S ~ v  = 0 = - ~ -  ~'v ; 

the values of ~bv and r give by substituting,-- 

d 
d-~ + X~ + VvV~7 = 0, . . . . .  (90) 

provided the operand be at right angles to v. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
2:

32
 2

9 
Ju

ne
 2

01
6 



Vector 1)if~','entlals. 585 

�9 Operating on V~7v and snbstituting the result in (18a) 
gives 

V. vVSVv= ( d  - -X)  V~7v. (18b) 

Again, by using the value of V~Tv from (15), 

d a~v 
~/~ V~Tv = VV~n ~, 

and this, combined with the result of the las~ article: gives 

�9 Y ' ~ t 2 y  1 I 

V PVSVv=~ 1/(71,/2 --,//II*/S - yv). (18o) 

One other transformation is obtained from the XV of the 
last article by putting tot/= --.ql*lSrlv t -  .q/Seal, so that the com- 
ponent of v t at right angles to v is Sdv~oJ-1XV , and this gives, 
by substituting in (18c),-- 

u [d2v -ldV--~78~7v) =0 (18d) 

that is, the vector in parentheses is normal to the surface 
P=const .  Here it is noteworthy that both the vector 
VvVS~Tv and the linear and vector function m~to -1 are nume- 
rically determinate all over a given surface P=P0. Thus 
(18) shows the character of v, provided V~P=0,  in the 
immediate neighbourhood of the given surface. 

If  v be so given as to satisfy (18), P may be written \7-X(tv), 
and is determined by (19), since u = l o g t  by (17). 

E.vamples. 

i. Give in terms of X the curvature of a normal section of 
the surface P=const.  (Tait, w 350, where v is the tv of this 
paper.) 

2. Show that two of the roots of the cubic in X correspond 
to the sections of greatest and least curvature. 

3. I f  d correspond to the other root, show that if v, v t and 
XV are coplanar, X~V is parallel to XV. Of what class of 
surfaces is this a property ? 

4. Show that if P is a homogeneous function of x, y, 
and z, any straight line through the origin cuts the surfaces 
denoted by P at a constant angle. 

5. Show that if P is a homogeneous spherical harmonic, 
V- l (Vv.  v) --const. is the equation of a cone. 
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586 Prof. Pollock and Mr. Vonwiller : Experlme~ts 

6. For what class of surfaces may v t lie in the tangent 
plane ? 

7. For what class of surfaces is X self-conjugate ? (Tait, 
w 332). 

8. Discuss the pure and the rotational parts of the strain X" 
9. Prove the identities :--  

(a) X~r=V. vxVVv-SVv .  Xv, 

(b) x ' x~=x~ , -~ (x~ )  ~. 
10. Discuss the pure strain X + X  I. 

d 
11. Interpret TVVv and ~ U V V v .  (Tait, w167 299, 300.) 

12. Show by (1].) of Art. 5 that V 2 is the negative of 
Laplace's operator. 

d d 
13. Show tha tch  and ~]~ are commutative when applied 

to P, h being parallel to VVv. 
14. With everything as in Art. 4, prove 

V(o~') = V o ' .  T--V T. ~ -  ~0'~. 

15. Show by (7) that V V X  v lles in the tangent plane. 
16. Use (6) of the same article to find V~7(vSVv +Xv). 

LXVIII .  Some Experiments on Electric Waves in Short Wire 
Systems, and on the Specific Inductive Capacity of a Specimen 
of Glass. By J. A. POLLOCK, Professor of _Physics, and 
O. U. VO~WlLLm% JDeas- ~l homson Sclwlar in Physics in the 
University of Sydney % 

T HE experiments described in the following paper include 
observations of the waves along free wires, and also of 

the vibrations in the two systems formed when the wires are 
bridged at various points. In the former case it is shown, 
that when the electrical vibrations of the wire system are 
forced, they are in that mode whose free period is near to that 
of the vibrator oscillation, and therefore the distance between 
the nodes along the wires does not vary continuously with 
change of the period of the condenser discharge In the 
other case an explanation is found which accounts for the 
varying heights of the maxima deflexions observed when 
the bridge is moved along the wires. A method for find!ng 
the specific inductive capacity of solid dielectrics ~ith 

Communicated by the Authors. 
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