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On a Olass of Automorphic Functions. By W. BURNSIDE. He-
ceived and Communicated November 12th, 1891.

1. Introductory.

In a series of memoirs published in the firfjt, third, fourth and fifth
volumes of the Acta Mathcmatica, M. Poincare has developed the
theory of discontinuous groups of linear substitutions and of the
one-valued functions which are unaltered by the substitutions of such
a group.

In this paper T .shall adhere as closely as possible to tho notation
and nomenclature vised by M. Poincare, and it will be convenient to
state thcao at once as regards the substitutions.

A substitution which changes z into -, written f z, •), is
yz + d \ yz + o/

in its normal form when uB — (3y = lt and the real part of a is
positive.

Two points will always bo unchanged by the substitution. If
these are different, it can be written in tho form

t—a _ jr 2 —a

T^l~ z-b'
where a, b are the unchanged (or double) points of the substitution.

When K is real, the substitution is called hyperbolic; when mod K
is equal to 1, it is called elliptic, and in all other cases loxodromio.
If the double points coincide, tho substitution is called parabolic, and
can be written in the form

1 - l 4. i
t—a z — a

If a —1, ft, y, 5—1 are all infinitesimal, tho substitution is called an
infinitesimal substitution; and a group of substitutions is called
discontinuous when it contains no infinitesimal substitution. The
theory of groups of a finite number of different substitutions has been
completely dealt with by, among others, Prof. Cayloy and Prof. F.
Klein, the most detailed accounts of it being contained in tho
memoir " On the Schwarzian Derivative and the Polyhedral
Functionu" by the former, and the "Vorlesungen iiber das Ikosaeder "
of the latter. These groups M. Poincare leaves on ono side, as also
those groups the substitutions of which cannot all be derived from a
finite number of fundamental substitutions.

If all the substitutions of a group preserve one circle unchanged
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(for simplicity this circle can always be taken to be the axis of x)t

and transform the regions inside and outside this circle each into itself,
M. Poincare" speaks of it as a fuchsiun group; in the other case the
group is called kleinian. His method of dealing with groups of
substitutions is a geometrical one. He shows that, corresponding
to a discontinuous group, a division of tlie z-plane, or part of
the plane, into an infinite number of regions can be made, with

the following properties. To each substitution ( z, a'z~*"^~') of the

group will correspond a particular region J2, of the plane, in such

a way that when z is within I?.., — Q will be within 2?,-. The regions

Iif fill either the whole plane or the particular part of it exactly
once, i.e., they neither overlap each other nor leave uncovered
portions. The region li0 (called the generating polygon), and
therefoi-o also the other regions, can always be chosen so that
their boundaries are arcs of circles, which, if the group is fuchsian,
intersect the unchanged circle at right angles. The question as to
whether the regions J?j will cover the whole plane or only a portion
of it (it being understood that li0 does not consist of two or more
detached areas) will, depend upon the nature of the fundamental
substitutions of the group, and this difference leads to a division of
the groups, and of the functions which are unchanged by them, into
two classes* ; namely, a h'rst class, in which the regions 22,- cover the
whole plane, and the corresponding functions exist in the whole plane,
and a second class, in which the functions have what is called a
" natural limit." M. Poincaro considers cases of both these classes
in his memoirs, but deals at considerably the greater length with the
second class. Prof. Klein, in his investigations on the subject, which
are contained in most detailed form in a memoir entitled "Neue
Beitriige zur Riemann'schen Punctionentheorie," (Math. Ann.,
Band 21), limits himself expressly to the second class of groups.

The analytical expressions of the functions which aro unaltered by
the substitutions of a group are obtained in the following way by M.

Poincare. He first shows that if ( z, •-'•-—~ ) be any substitution of
V ytz + SiJ

the group in its normal form, then the series

2 mod (y,«+ «,)"*",

* M. Poincurc distinguishes seven families of groups; of these the first, second,
and sixth form whut I have ventured to call the second class, whilo the rest make
up the first class.
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where m is a positive integer greater than unity, 18 an absolutely
convergent series, except for values of z which make one or more terms
of tho series infinite.

It follows that the series

where H(z) represents a rational integral function, is uniformly con-
vergent, except for particular values of z, and therefore that it defines
a one-valued continuous fuuction of z. Such a function M. Poincar6
calls a fcheta-fuchsian or theta-kleinian function. Its fundamental
property is shown to be the following, viz.: if

then e

(z,aZ \f ] being any substitution of the group.

If now 0 (z), Qx (z) are two such functions, formed with the same m
but different functions H(z), Hy{z), then their ratio, if it is not a
constant, will be a function which is unaltered by the substitutions of
the group.

As regards the theorem that 2 mod(yjz + 5<)~
2"1 is a .convergent

series for integral values of m greater than unity, M. Poincaro does
not, in his memoir on fuchsian functions, give any reasons for not
dealing with the case in = 1; but in a later memoir (" Sur les
Groupcs des Equations Lineaires," Acta Math., Vol. iv., p. 308), he
says : " Toujours dans le cas d'un groupe fuchsien, la s6rie

2 mod (yiZ + tii)-'1

n'est pas convergent."

That this statement is not universally true, may be seen at once
by considering tho group arising from the repetition of a single
hyperbolic or loxodromic substitution. This may be writ ten in the
form

—~ = K — - (mod A > 1),
t — o z — b

or t =
(K-l)z-(aK-b)

E 2
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so that yi,+!, = f$ ."-*r."> r

b—a

and the series in this case is

which certainly is convergent.

M. Poincaro's Rtaternent with respect to the divergency of

then, clearly requires some limitation. I have endeavoured to show
that, in the case of the first class of groups, this series is convergent,
hut at present I have not obtained a general proof. I shall offer two
partial proofs of the convergency ; one of wliich applies only to the
case of fuchsian groups, and for that case is general, while the other
will also apply to kloinian groups, but only when certnin relations of
inequality are satisfied. It follows, from the convergency of

that for the first class of groups, to which all my results are limited,
functions of tho form

exist; and the existence of these functions is shown to lead to a mode
of formation of fuchsian# and kleinian functions (i.e., functions which
are unaltered by tho substitutions of the groups) which is in a certain
way simpler than M. Poincaru's, and which moreover directly connects
these functions with an already well-explored branch of analysis.

I shall host explain tlio nature of tho method aimed at, and tho
paint of view taken, by means of a particular case, wliich is also the
one I have treated in greatest detail. Suppose, then, that tho generating
polygon of tho group is the space outside 2n circles, each of which is
external to all the others. The n fundamental substitutions of the ,
group, which must bo hyperbolic or loxodromic if the group is dis-
continuous, will make these circles correspond in pairs ; and if, by
bonding and stretching, without toaring, the corresponding points on
tho pairs of circles aro brought to coincidence, tho polygon will be

* I huvo uRo.d tho phrnfio " fintomorphic function," as introduced by Professor
Klein, to dcnoto gcnornlly nny function wliich is unchnngod by tho substitutions of
a discontinuous group, whatever bo tho nature of tho group.
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turned into a closed (n + l)-ply connected sui'face. On such a surface
n everywhorc-finite complex functions of position must exist, such
that when a variable point describes any path on tho surface, and
returns to its original position, anyone of these functions will only be
altered by the addition of integral multiples of certain definite periods.
[Considering the closed surface as a Riemann's surface extended in
space, these functions are the n integrals of the first species upon it.]
Also, in terms of ?i-ple ft-functions, with these n functions as their
arguments, any rational algebraical function on the surface can be
expressed.

Corresponding to these n integrals of the first species on the
surface, there must be, on the s-plane, n independent functions
which (ire everywhere finite (except at the singular points of the
group, i.e., the double points of its substitutions),' and which
increnso by integral multiples of certain constant quantities when a
variable point passes from a position z to any one of the correspond-
ing positions " • - - - ' ; or when it describes a closed path surrounding

yz + d
one or more of the circles. When onco these functions are found, it
must follow, from tho correspondence between tho s-plane and the
before-constructed Riemann's surface, that any functions which are
unaltered by the substitutions of the group must bo capable of repre-
sentation by means of multiplo O-functions, .with these particular
functions for their arguments. Following M. Poincaro's method, I
form tho everywhere-finite thota-fuchsian or thota-kleinian functions
of the form

•i.e., the functions which nre only infinite at the singular points of
the gvonp ; and it appears that there are n such functions, and that
their integrals arc tho n required functions which on tho J:-piano
havo properties analogous to the n integrals of the first species ou
the Riomann's surface. I then show how to form functions which
bear exactly the same relations to normal integrals of the second and
third kinds, on the Riemann's surface, that tho n functions just
referred to beur to tho integrals of tho first kind. All tho methods,
then, by which uniform functions of position on the Riemann's sur.
face are expressed in torms of tho Abolian integrals on it, may bo
applied at onco to tho expression of automorphic functions by moans
of tho three classes of functions which are the analogues of tho
integrals of the first, second, and third kinds.
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2. On the Convergency of 2> mod (y,z + ^ ) ~ 2 in certain cases.

First Proof.—The following proof, which is modelled on the lines of
M. PoincareMs first proof of the convergency of 2 mod(yjz + 3,.)~*,

applies only .to the case of fuohsian groups of the first class. I
suppose that the real axis is taken for the unchanged circle, and that
the point z = oo is not a singular point of the group. These suppo-
sitions involve no real loss of generality. Since, by supposition, the
group is of the first class, the generating polygon may be taken to
enclose that part of the real axis which includes the point at infinity.
Describe any circle PQAB, such that the area bounded by it lies
entirely within the generating polygon, and suppose that it meets the
real axis in the points A and B. Let P{ Q, .4,-.Z?,- be the circle into

which the substitution [z, — '-?*) transforms the circle PQAB,
\ yiZ + di/

A(Bi being the segment of the real axis corresponding to ATI, and
P(Qi the circular arc corresponding to PQ.

Then it follows that:—
(i.) 1AiB{ is finite, for it is less than that part of the real axis

which lies outside the generating polygon ;
(ii.) that therefore the sum of tho circumferences of all the circles

is finite, for they all cut the real axis at the same angle ;
(iii.) and therefore that 2P*$,- is finite.

The point —3,/y,, being the homologue of the point at infinity in

the substitution ( z, — -~ \, is a point J{, within the polygon JK,-, and

lying on the real axis. When z lies on the arc PQ, the ratio of the
greatest to the least value of mod (y,z + £i)~2 is the square of the ratio
of the distances between /, and the furthest and nearest points from
it on PQ. Now tho points / , all lie on a finite portion of the axis of
x ; and therefore, if dx and d2 be respectively the absolutely greatest
and least distances of any of the points /< from the arc PQ, the ratio
of the greatest to the least value of mod (y,s + ^,)~2, when z lies on
the arc PQ, is less than ((2,/̂ i)2> whatever i may be.

If z is tho point P, mod (y,-« + t?,-)~2 is the ratio of an infinitesimal
linear element at P,- to the corresponding element at P, and hence,
when z is any point on the arc PQ,
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therefore 2 mod

or, since 2P<Qj is finite, the series is absolutely convergent.

Second Proof. — The proof just given applies only to fuchsian
groups; depending directly, as it does, on the fact that there is a
circle (or straight line) which remains unchanged by all the substi-
tutions. I now go on to give a proof which will apply, when certain
relations of inequality are satisfied, to kleinian groups similar to
the one referred to in the introduction.

Suppose, then, that the generating polygon is the space outside 2n
given circlcR, each of which is external to all the others. The funda-
mental substitutions of the group will be n substitutions, which make
the circles correspond in pairs, and which, since the circles are
external to each other, and the group is discontinuous, are necessarily
either hyperbolic or loxodromic. The various points —5,/Vi are all
inside the given circles, and when z does not coincide with one of
these, points, a quantity M may be found which is leas than

mod (s+ •-'-- ), whatever i may be.
\ yj

It follows that

2 mod (yiZ + S,)-2 < 2 M~2 mod y"2;

and therefore that it Is sufficient to consider the series 55 mod y<"2.

For shortness of statement I deal with the case n = 2, but it will
be clear that the same reasoning will apply, whatever be the value
of n.

Let the 8, 8' be the two fundamental substitutions of the group.

All the substitutions of the group may then be arranged in the
.following way, viz.: — '

S, S', S~\ S'~\ 4 substitutions involving one operation ;

88, S8'tS8'-1: S-}S~\ S-lS'~\ S-lS':

S'S\ S'S, S'S-1: S'-xS'-\ S'-lS~\ 8'-lS:

4 x 3 substitutions iuvolving two operations ;

then 4 x 32 substitutions involving three operations ; and so on.

Now, since the fundamental substitutions are necessarily either
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hyperbolic or loxodronn'c, they will be of the forms

6 - 0

,„ I a'z+P\ , A"*-ff'-* y b'K'-i-a'K'*.
\ y z + oI 0—a b —a

Where mod K and mod 7C are both greater than nnity.

If 0 -

is any substitution of the uth set, then

o o , , = Is, -, - 1,
v yM+i» + o»+i /

where a,,+, =

and y"~^ = y ""- +c = JO y" -»- w-» y»
y» "—a

If 88n is a substitution of the ?4 + ltu set, the last substitution in
8lt must nut bo S~x ; ami I shall now show that this involves that

""- and a lire not within the same one of the fuur circles bounding

the generating polygon.
Call the circles -I, B, A', B\ the four points a, b, a', b' being

Ruppofed inside the circles with the same letters. Then 8 changes
the outside of A into the inside of B ; S' changes the outside of A'
into the inside of ]>'; and S'~l changes the outside of B' into the
inside of A'. Hence, if a,,/y,, is inside A, 8 must be the last substi-
tution of $„, and (writing 8,, = 8S,,_\) a,,.i/y,,_i must be inside A.
The same reasoning may be repeated continually ; but the point a/y
is inside B, and therefore the point ajy,, cannot be inside A, and
must be inside either I/, A' ov.B'. A lower limit, independent of n,
can therefore be found for the modulus of each of the fractions

Jl". _
y..
b—a

which occur in the various ratios y,,+i/y«; and, therefore, if mod K
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and mod K' are sufficiently great as compared with these limits, the
inequality

mod -^i-1 > 7c,

where h is an arbitrarily chosen quantity, can be satisfied, whichever
of the n + lt]i set of the substitutions #,,+t may be, and also whatever
n may be.

Hence, if y be the greater of the two quantities y and y',

or the series is convergent if

When the double points of tho fundamental substitutions are given,
tho series in question can clearly bo made convergent by taking the
moduli of the multipliers sufficiently great; but, again, when the
moduli of the multipliers are sufliciently great, the group given by
tho substitutions is certainly a discontinuous one. Hence this second
proof certainly establinhes the existence of kleinian groups of the
kind considered, for which 2 mod (y^ + e^)-2 is a convergent series,

though it does not prove that the series is convergent for every such
kleinian group.

If one or more of tho fundamental substitutions become parabolic,
in such a way that the corresponding pairs of circles touch each other
externally, the preceding proof may very simply be modified to show
again that there cxiRt, in snoh a case, kleinian groups for which the
series in question is convergent; but it does not seem to me to be
possible to apply it to tho cases in wliich the groups contain elliptic
substitutions. Since, however, the first proof applies to the case of
fuchsian groups containing elliptic substitutions, and, by a suitable
infinitesimal chango of the parameters of the fundamental substitu-
tions, such a group will become kleinian, it would appear very
probable that thero must also be kleinian groups of the first class
containing elliptic substitutions for which 2 mod (y<s + o<)"2 is con-
vergent. By limiting the investigation of this section to tho series
2 mod (y<3 + 5<)~2, I do not intend to imply that the series

i8 necessarily divergent. Indeed, for the group
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formed by a single hyperbolic or loxodromic substitution, it is clearly
convergent; and the second proof just given, for the convergency of
2 mod (y,z + f$<)~2, may evidently be altered to show the convergence

of S mod (y^ + ^j)"1 for certain groups derived from more than one

fundamental substitution. It is not necessary, however, in the
sequel, to consider functions whose existence depends on the con-
vergency of this latter series.

3. On the Functions 8 (z, a) for Groups of tJie First Class.

Having established the convergency of the series % mod (y

for all fuchsian and certain kleinian groups of the first class, I now
propose to consider the properties of the corresponding theta-fuchsian
and theta-kleininn series. In the first place, I deal with such a
group as that described in the introduction; that is to say, a group
derived from n fundamental, hyperbolic or loxodromic, substitutions.
For such a group it follows that the series

q<Z , J) (ViZ + Si)'2

is a uniformly convergent series, except for certain particular values
of z, and therefore that it defines a one-valued continuous function.

It will be convenient to use a special symbol for this series in the
case when H (z) is a function of the first degree, and for this purpose
I define 6 (z, a) by the equation

If (z, j is any particular substitution of the group,

\ y z + d' J i q , (

z±(il

+ S'
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where a, =z

are again the coefficieats of any substitution of the group.

Therefore 9 (a-^4, a) = (yz + S)* 6 (z, a),
\ yz + o I

which is M. Poincare's general property of all such functions.

The function 0 (z, a) has two simple infinities inside any one of the
regions Bit namely, the homologucs of a and co that lie inside R{.

The same statement is true of 0 (z, - ~r\.\, (z, "z v-j beinff again
\ ya + B r \ yz + h I fa °

any particular substitution of the group. It follows that constant
multiples of the two functions can be chosen such that their difference
shall be independent of a.

Now 8 (z H£±/h = S
\ ' ya+8/

put ^ a i - ^

so that a,, /3y, yjy fy are the coefficients of any substitution of the
group, and

a, = aaj+/3y>, y, = y a, + fy,

= ta+±) 5
a

where the right-hand side is independent of a.
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( S \
z, 1, thus introduced, has no poles, its only

y I

singular points being the singular points of the group. For

V' " 7/ ~ *(7^i)"[y(«i'«+A

and in this form it is clear that the residue of the function for
z = — h/y is zero.

The point — $/y is one of the homologues of infinity. Denoting
any one, «,/y,, of these by /,-, the function 6 (z, Jx) is finite everywhere,
except at the singular points of the group. There are clearly an
infinite number of suoh functions, but, as I shall next show, only n of
them are linearly independent. Thus

0(0, Jp)-t) («,/,) = 0 ( i , *L) -6 («. -
x y,> I v y«

and writing, as before,

= - 5

The same process will give

Hence, if 8pi 8t are two of the fundamental substitutions, and J the
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:homologue of infinity formed by any combination of these two, then
0 (z, J) can be expressed in the form

mB(z, Jlt)+nd(z, Ju),

where m and n are positive or negative integers.

It follows from this at ouce that if <S',, #.,, ... Sn are the n funda-
mental substitutions, then, whatever homologue of infinity J may be>
6 (z, J) can always be expressed in the form

wijG (2, Ji) +m.i0 (2, «7s) + ... +m,,0 {z, JH),

where mu w?a, ... mn are positive or negative integers.
Thus, as stated, not more than n of these functions are linearly

independent. That the n functions written above are really inde-
pendent will be proved later on.

4. On the Integrals of the Functions 6 (z, J).

The functions ti (2, J"), being everywhere finite and continuous,
except at the singular points of the group, can be integrated along
any path which avoids these singular points, and their integrals
along any such paths of finite length will be finite.

Thus I 6 (z, J)dz-^ log Ziilii

will represent, when the path from z0 to 2 is assigned (keeping clear
of the singular points), a definite finite quantity, and the given path
will determine the branch of the logarithm that is to be taken.

I first consider the integral when the path is confined to the
generating polygon ; the relation between which and the fundamental
substitutions is to be taken as follows.

The generating polygon consists of the space outside n pairs of
circles 0, and 01, Oa and 0'2, ... 0,, and O'M each external to all the
others. The substitution Sp transforms the cii'cle C'p into the circle
0,,, and tho space outside the circle C'p into the space inside the
circle Op, so that the point Jp is inside 0,,, and the point J x is in-
side O;.
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An element of the integral of 0 (z, Jp) may be expressed as follows :

«(*, J,)dz = Sd. log ( M ± | - / „ )

g | ^

When S( is the identical substitution (z, z), tho corresponding term
on the right-hand side is of a slightly different form, namely,
d . log (z—Jp); hence

0 (s, Jp) dz = d. log (z-Jp) +$d.log"'(g~ t-'y)

where now the identical substitution is not included under the sign
of summation.

Now, as before stated, Jp is inside Cp, and it is easy to see that /f_i
and J^-ip are either both inside or both outside Gv\ hence

f d(z, Jp)dz = 2Tri,

where the integral is taken in the positive direction ronnd a closed
curve within the generating polygon surrounding Op once, and sur-
rounding no other circle.

Again, Jp is outside (7p, and J^.i, J^.j are either both inside or both

outside Op, except when i = p, and then Jiml is inside and t7j_i is
outside; hence

td(z,Jp)=-2m,
P

where the integral is taken positively round O'p.

For any other circle Oq or O'q, Jp is outside and Jiml and J^ip are
always either both inside or both outside.

Hence f 0 (z, Jp) = f 0 (z, Jp) = 0.
J Cq )C'q

These results prove incidentally that the n functions
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are linearly independent of each other, and that they are not mere
constants.

If Ap, A'p be two corresponding points on 0p and C'p, and JBP, B'p any
other pair of corresponding points on the same two circles, and if
APA'P, BPB'P be joined by paths AVMA'P, BPNB'P, which do not enclose
any of the circles, then

J (*, J) dz,

round APMA'PBPNBPAP, vanishes, since the integrand is finite and
continuous at all points within the contour. Therefore

\]APMAP )BVNB¥ )APBP )APBP

Now, if Zj, Zj are corresponding points on the circular arcs A'PB'P,
APBP,

therefore " 6 (*8f J ) = (y,, zx + ZPY 0 (*lf / ) ,

and dz2 = (yp zx + Sp) ~
2 dzt;

therefore ft (zit J) dz2 = 0 (ax, J) dzv

It follows that

f d(z,J)dz-\ ft (z, J) dz,
)APBP )A;BP

the integrals being taken along the circular arcs, and therefore

fd(z,J)dz.

Hence the integral

f " » (*, J) dz,

where z0 is any point on the circle C'p, is independent of the particular
position of the point, the path varying continuously without passing
outside the fundamental polygon.

Now let the points AXA\, A^A'^, &c.... be joined by lines of any
form, which neither cut themselves nor each other, and which do not
leave the generating polygons ; and regard these lines, as well as the
circles, as part of the boundary of the polygon. In the figure so formed
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the integral of & (z, / ) , when the lower limit has an assigned value, is
a one-valued finite continuous function.

Let

and

H (z, Jq) dz = agp,

0 (z, Jp) dz — am

so that the quantities a,m apq, &c, are the constant values of the
integrals just discussed. When the variable paths between the
corresponding points are chosen so as to be reconcilable with the
barriers Avi[, A2A'2 ..., I shall show that

For this purpose, let definite lower limits be chosen for the integrals
(they need not yet be expressed), and write

Then, as stated, within the polygon with the barriers,

are everywhere one-valued, finite and continuous.

If the positive side of the barrier A'vAp is that which one would
first reach by starting from any point of the circle Op and moving
round it iu the direction opposite to that of the hands of a watch, then
the value of <j>p at any point on the positive side of A'PAP is greater by
2vi than its value at the corresponding point on the left-hand side ;
while the values of </>a at corresponding points on the right and left-
hand sides are the same.

Since <f>p, ^»q are finite and continuous everywhere inside the polygon
with barriers, it follows that

extended round the complete boundary, is zero.

The complete boundary consists of the n contours made up of the n
pairs of circles and the two sides of thu barrier connecting each pair.

The values <(>,„ d<pqi at corresponding points on Or1 C'r, are given by



1891.] Automorphic Functions. . 65

and, at corresponding points on either side of A'rAr, <pp and d<pq have the
same values. Hence the integral round the contour formed of these

lines is apr dfg — 0.
]C'r

The contour formed by Gv, O'p and A'VAP gives

—2iri I d(ptJ = —2mam

and the contour Oq, O'q and A'qAq gives

—aP<j d% = 2wioO T.

Hence, finally, adding the various parts of the integral,

This proof will be seen to be the same as Prof. 0. Neumann's proof
of the corresponding property of Abelian integrals of the first species.

Suppose, now, that the path of integration passes outside the gener-
ating polygon, and let the homologues of the barriers be drawn for all
the polygons. Then it is at once obvious that, inside any polygon
with its barriers, the integrals are one-valued, finite and continuous,
and also that they are continuous in crossing from one polygon to
another. They are therefore one-valued and finite in the infinite
plane, and continuous except at the barriers, and at corresponding
points on the opposite sides of the barriers they have constant differ-
ences =fc 2TTI or zero. The value of the integrals at any point in the
infinite plane, with the barriers as boundaries, may be determined as
follows:—

Let 0 be any point in the generating polygon li0 and 0, its homo-
logue in B(. It has just been shown that

is independent of the shape of the path between 0 and 0,, so long as
it does not cut the barriers. Join 00{ by any path whatever satisfying
this condition, and suppose that it passes successively through the
polygons JB0, JJO, Rb... lllt B{. Let O0 be the point where it meets the
boundai-y between !?.„ and Ita; find 0,, on the boundary between Ha

and llbi BO that Oa is a homologuo of 00; then 0b on the boundary
between I2t and llc BO that it is a homologue of 0a; and so on. Take

VOL. xxin.—NO. 434. F
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now OO0OaOb... OtOi for the path of integration. The points 0 and 0,,
O0 and Ot are respectively homologues, and the paths 0OOl 0t0i lie each
entirely within one polygon. Therefore

J0(L J]oo,

and tho contributions to the whole value of the integral from 000

and 0t0i destroy each other. Each of the portions 000a, 0a0b... is
reconcilable with the homologue of one of tho original barriers A[AU

A\A%..., taken either positively or negatively. Hence, finally, if among
these homologues that of A\AX occurs nx times, that of A^A^ n.2 times,
and so on,

the positive or negative integers here are definite, depending only on
the particular polygon 12,; the suffix p may have any value from 1
to n.

When, finally, the barriers are dispensed with, and the now many-
valued integrals ai*e considered in the infinite plane bounded only by
the singular points, any path of integration whatever can be made
up by combining the path just considered with a number of closed
loops. Each time such a loop cuts a barrier, =fc 2wi or zero will be
added to the value of the integral. Hence, finally, whatever be the
path of integration,

where p = 1, 2, ... n.

It is now clear that the functions <f> are the analogues in the infinite
plane of the integrals of the first species on the w + l-ply connected
Riemann's surface into which the generating (or any one) polygon
can be deformed by bending and stretching till corresponding points
on its surface are brought to coincide. Also, if each of the 0's is
multiplied by —£, they will directly represent the n independent
normal integrals of the first species; tho 2n sections on the surface
.being the n carves obtained by bringing the pairs of corresponding
circles to coincidence and the n closed curves into which this process
transforms tho barriers.
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To complete the analogy, and make the introduction of the 6-i unctions
possible, it must still be shown that the real part of

is essentially positive.

The proof of this, again, is essentially the same as that of the corre-
sponding theorem with respect to Abelian integrals, and may be
stated shortly.

If <}>p=

then, since 2inp<]>p is finite, continuous, and one-valued in the generatiicg
polygon with barriers,

i
taken in the positive direction round its boundary, is necessarily
positive. The separate terms give at once

I Updvp = 27TO;)J),

updvq = uqdvp =

where a,,p and apq are the real paints of apv and apq; and from these
equations the result follows at once.

5. On the analogues of the Abelian integrals of the second and third hinds.

The function - 1 (y»g+^)~2

has a doublu infinity at the point a and its homologucs; while the
homologucs of % = oo are nofc infinities of the function. Its integral
will therefore be a one-valued function, finite and continuous every-
where except at the point a and its homologues, and at these points
it will have a simple infinity. This function will be denoted by
\J/a (z), so that

where z0 represents the origin of the integration, which can bo chosen
P 2
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at convenience. The expression in brackets can be transformed as
follows:—

zn—z

= 6 (a, zo)-6(a, z).

It follows at once that

and also that

where the integers np arc the same as in the general formula for

^ (i— r-' 1. The functions ^(z, a) are thus the exact analogues of
\ y,z + di I

the normal integrals of the second kind on the Ricmann's surface
corresponding to the division of tho z-plane ; namely, they have one
infinity inside each region, they are one-valued (i.e., they do not
change when the variablo describes a closed path which cuts the
barriers), and, when one of the substitutions of the group is performed
on the variable, they increase by integral niultiplesof definite constants,
which bear the samo relation to the quasi-periods of the ^'s that the
periods of the normal integrals of the second kind bear to those of
the first.

Again, the function

is- finite everywhere except at a and 6 and their homologues, which
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points are simple infinities. It may be supposed, without loss of
generality for what follows, that a and 6 are both within the generat-
ing polygon.

If a and 6 be joined by a barrier, and the homologues of this
barrier be drawn, it is easy to see that the integral of the function in
question will be one-valued, finite, and continuous, except at these
new barriers, having values differing by 2m' at corresponding points
on opposito sides of the new barriers, and, in particular, being con-
tinuous at the original barriers. If the integral from an arbitrary
origin be written xO|& (2)> then, in the infinite plane, as bounded by the
new barriers and the singular points of the group,

a ( b \
>b (.) = a log h - -j—^

where the branch of the logarithm is that which makes

The expression on tho right-hand side can be transformed, as in the
case of t/> (s, a), so as to give

H e n c e

and, for any substitution,

)) = X..» (0 + *", [t, (6)-*, («)]•

It is also clear, by comparing tho two expressions for Xa,b (z)> that,
if the points zu z% be inside the same polygon, then

which is the equivalent of the interchange of argument and para-
meter for integrals of tho third kind.

Just, then, as tho functions \// (z, a) answer in all respects to the
normal Abelian integrals of the second kind, so tho functions xab (z)
are the exact analogues of the normal integrals of the third kind.
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6v On the Functions which are unchanged by the substitutions of a group.

It has now been shown that the functions ^ ( 2 ) , i/'o (s)» XMO5)

behave, on the z-plane, with respect to closed paths surrounding
singular points of the groups and open paths passing from any point
to any one of its homologues, in exactly the same way that the normal
integrals of the first, second and third species on a Riemann's surface
behave when the variable describes closed curves reconcilable with
the a-sections and the fe-sections on the surface; i.e., when the
Tariablo describes any closed curve whatever on the surface. It
follows therefore that the different methods of representing algebraio
functions on the Riemann's surface, in terms of the normal integrals,
may be applied at once to form automorphic functions on the z-plane,
in terms of the functions <j>, \p, and x<

Thus, if zXi z2... zm are ra points, such that no one is a homologue of
any of the others (or, more simply, m different points in the same
polygon), the function

C0 + 2 0r\bt (z)
1 r

will be unchanged by all the substitutions of the group if the n
equations

20,. 6 (zn Jp) = 0 (p = 1, 2 ... n)

are satisfied. When the positions of the ra given points are arbitrary,
these n equations will, in general, be independent, and can therefore
only be satisfied if ra is equal to, or greater than, w+1. Hence, in
general, a function which is unaltered by the substitutions of the
group must take every value n + 1 times at least in each polygon.

Again, if/ (z) be a function which is unaltered by the substitutions
of the group, and alf a2... a,,, its zeros, blf bt... &„, its infinities inside
the generating polygon, it can be shown that

m g-n
2 l<Pp (ar) —<pp (br)j = 2mp7ri+ 2<n'qam, (p = 1, 2 ... w),

•where mp, nq are integers.

For consider the integral

extended round the boundary of the generating polygon, including the
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barriers. It is equal to

or, since

and the path of the second integral is closed, the result is

"where m'pi nq are positive or negative integers.

In the generating polygon with barriers, <pp is everywhere finite, one-

valued, and continuous, and I ^ • is so also,exceptat the points a^Oo...,

6j, &2... 6,,,, and these points are simple infinities with residues + 1
and —1 respectively. The integral in question, then, may be
evaluated again by taking it round infinitely small contours surround-
ing these points in the positive direction, which gives for its value

2 ™ i ( > ; , (a,.)-<?>,, (&,.)],

and, on equating the two values and dividing by 2TT{, the given result
follows.

From this, the expression of an automorphic function, in terms of
the functions x> may be at once deduced. For suppose that au ^...a^
&!, 62... bm are 2m points satisfying the n conditions just investigated.

Then exp [ 3 ^ K (*) + 3<,?„

is a function which in the generating polygon has the simple zeros

ttj, a2... am, and the simple infinities 6,, &2 ••• &>» > it is everywhere one-

valued, and, when °?> 'J- is written for 2, it becomes multiplied by

the factor

exp 13

which is the same as exp [—2m'pTri], or unity. It is, therefore, un-
changed by all the substitutions of the group.

Finally, writing, for convenience,
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and forming the 0-f unction

0 («i, x xn)

H. / e xP [ 6»n» + 2&iswiws + • • • + 6W«J+2«, n, + . . . + 2z,, wn ] ,

the previous results show that the conditions are satisfied for its con-
vergence so long as the arguments xp are finite; and if now these are
replaced by the functions up—cp, where the CPB are any constants, the
behaviour of the 0-function, when any substitution of the group is
performed on the variable, will be exactly the same as that of a
0-function, whose arguments are the integrals of the first kind, on a
Riemann's surface when the variable describes any closed path on the
surface.

It follows that all the various known theorems, with respect to the
representation of uniform functions of position on a Riemann's surface
by means of 0-functions, may be now directly applied to the formation
of automorphic functions in terms of the 0-functions just constructed,
with the UpB as their arguments.

7. On the Symmetrical Case.

When each of the n pairs of circles C[ and Gv G'% and 0it &c,
which form the boundary of the generating polygon, are inverses of
each other with respect to another circle Go, and the fundamental
substitutions which interchange C[ and (?„ C'2 and O,, &c, are all
hyperbolic, M. Poincare calls the group symmetrical. In this case
the substitution 8P, which changes Q'p into Cp, is equivalent to a pair
of inversions performed successively at O'p and C70, and any substitution
of the group is equivalent to an even number of inversions with
respect to the w + 1 circles (7n, C,', 0'2... C'n (or O0, 0u G2... Gn). Con-
versely, an even number of inversions with respect to any of the
circles 6T

0, 0{ ... G'n (or Go, Gx ... Gn), is equivalent to some substi-
tution of the group.

I shall suppose at first that the circle Go coincides with the real
axis, and shall show further on that the results so obtained may be
applied to any symmetrical group whatever.

If On coincides with the axis of x, the fundamental substitutions of-
the group can be put in the form

(z—ap ,;r g — ap\
\z—ap z—a,,/
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where Kv is real, and ap, a'p are conjugate iraaginaries; and it there-
fore follows that the substitutions of the group may be taken in pairs

) and U *i±§),
/ \ yz + B/

such that a,, /3<, y<, B{ and a,, (3'h y\, S'( are respectively conjagate
imaginaries.

If z, z' and a, a are conjugate imaginaries, so also are

and therefore also 0 (z, a) and 0 («', a').

Now Jp and tT .̂! are in this case conjugate imaginaries, and it has

been shown that in any case

whence it follows that

0(2, /p) and -0 (« ' , /„),

are conjugate imaginaries.

Hence, when z is real, 0 (z, JJ,) is a pure imaginary.

Now suppose that z' is any point on O'q, so that z is the correspond-
ing point on Oq; then

mod dz = mod dz\

and arg dz= — arg efos' = 0,

where 0 is the angle that the tangent at z to the circle Oq makes
with the axis of x; but

and therefore dz = -—^—

and (y5

Also, in consequence of the relation between z and z',
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or arg 6 (z, J,,) = - 2^ + arg 6 (z\ Jv) ;

but, since 6 (z, Jp) and —6 (z\ Jp) are conjugate imaginaries,

arg 0 (z, /„) = ff-arg 0 (z, Jp);

7T

therefore arg 0 (z, «7P) = ——<p.

The ratio of any two of the functions 6 (z, J) is therefore real at each
of the circles C|, Gv &c, as well as at Co.

The barriers in this case may be taken as straight lines perpen-
dicular to the axis of x; and since it has been shown that, when z
and z are conjugate imaginaries, so also are 6 (z, J),) and — 6 (/, Jp%
it follows at once that

f »(«,/,) efc ( = o

is real, where am is any one of the n (n— 1) constants.

Finally, since for points on any one of the bounding circles, in-
cluding Ao,

arg 6 («, /„) = -|- -</>,

and arg tZ« = <p,

the variable part of I Q (z, Jt>) dz, or of <pin is a pure imaginary at all

the circles.
To extend these results to the case of any symmetrical group what-

ever, a slight digression is necessary, on the connexion between the
functions of a group St and those of the group S ' ^ . S , where S is
any arbitrary substitution.

If (s, ^-^—rr) be any substitution not contained in the group

(z, q<g ' *'V then the various substitutions given by

Az+n a

Az + B aiGz + D ' '

will also form a discontinuous group, that may be represented by the
accented symbols
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A division of the infinite plane into polygons, for this latter group, is
obtained by transforming the polygons of the first group by the sub-
stitution

By an algebraical process very similar to that used already in dealing
with the function 6 (z, a), the result of making linear substitutions
for z and a in 0 (z, a) is easily obtained. Thus, if

Az+B _Aa' + B
Z Gz' + D' a Ca'+D'

then, with the notation just given,

o(z, a) = «
a D

V + K C

where 6' is a function formed with the substitutions of the new
group.

To the infinities »<° + ft and -HL of 6 (z, a), correspond a'l?+&
yitt + Si y{ . y,a +d,

/ T)m_/3/ ft

-——~~-; while the homologues of infinity in the new group

are not infinities of the right-hand side.

It follows that

and, since • dz =

the integrals being taken along homologous paths. In particular, the
constants am apq for the two groups are identical.

In preoisely the same way it may be shown that

If the generating polygon of the group in which OQ is the axis of
«, be transformed by any linear substitution, the new polygon so
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formed will be the generating polygon of a symmetrical group,, the
substitutions of which can be formed from those of the original one
by the process just investigated ; and in this manner any symmetrical
polygon, and therefore the corresponding group, can be formed.

Hence for any symmetric group the constants a^, apq are real, the
functions <pp have their real parts constant at the circumferences of
the n + 1 circles, and the ratio of any two of the functions 6 (z, J) is
real at the circumferences of the circles.

When the symmetrical group is also f uchsian, the n pairs of circles
are all cut at right angles by one circle, viz., the circle which is un-
changed by the substitutions of the group.

The simplest form in which to consider the symmetrical fuchsian
group is that in which the unchanged circle and Ao are taken as two
straight lines at right angles ; in particular, as the axes Ox and Oy.

If 8 be any substitution of the group, and A represent an inversion
with respect to Oy, then ASA will also be a substitution, and these
two will be of the forms

az+(S\
a n d

where a, /3, y, 8 are all real; hence, pairing the substitutions in this
way,

—a <la,z + ft a a<gP ,

z + a

whence 0 ( —z, —a) = — d(z, a).

Now Jp_, = - J p ,

and 0(z,Jp.l)=-0(z,Jp)i

therefore d (~z, Jp) — B (z, Jp).

Also, sinoe Jp is real, 6 (z, Jp) and 6 (z1, Jp) are conjugate imaginaries,
z and z' being conjugate imaginaries themselves.

Hence, if 6 (z, Jp) vanishes when z = a+i'6, it vanishes for the four
values z = ± a ± ib.

Again, in this case, the function
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which is clearly not identically zero, is a fuchsian function ; for

= 0(a,Jp)-6(-a,Jp)
= 0.

Hence, in the case of symmetrical fuchsian groups, automorphio
functions exist which take every value twice only in the generating
polygon. It follows that the corresponding Abelian integrals are of
the hyper-elliptic class.

8. On the Zeros of 6 (2, J).
The functions d (z, J) have no infinities, except at the singular

points of the group, and hence the integral

taken in the positive direction round the generating polygon, is equal
to the number of simple zeros of 0 (z, J) therein contained.

The barriers clearly give nothing towards the value of the integral;
also, if z is a point of Op, and zp the corresponding point of Opi

and, therefore, when the integrals are taken round the circles in the
directions of watch-hands, so as to make a positive circuit of the
generating polygon,

f dlog6(z, J) + f d\ogd(zt J)
)CP ]CP

= ( [dlogd(z,J)-d\ogd(zp,J)]
Jo-

= - 2 f d log (ypz+$p) = Ami.
Jc

A similar result holds for each pair of circles, and the total number
of zeros in the generating polygon is therefore 2n. Of these zeros the
form of the function shows that two are at infinity; for

-t q,\ _ 1 + (
p z c 1

yP
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and the terms which would give a simple zero at z = oo, obviously
cancel each other.

The relation fl / « £ + & ^ = ( , + a ) , Q (Z>

shows that generally, if z is a zero of 6 (z, J), so also are its homo-
logues; but that this is not true for z = co . Hence the functions 9 (z, J)
have, in any region Bh In — 2 simple zeros, while in the generating
polygon there is, in addition to these, a double zero at z = co .

The ratio of any two linear homogeneous functions of the 9 (z, «7)'s
will be an automorphic function, which generally will take every value
2n—2 times in the generating or any other polygon. By a proper
choice of the constants it is clearly possible always to form in this
way a function which will take every value less than n+1 times, and
on the other hand, the known theory of uniform functions, on a
multiply-connected surface, indicates that any function which takes
every value less than n-\-\ times should be capable of being repre-
sented in the way considered..

It is easy to verify that, in the case of -the symmetrical fuchsian
group, functions taking every value twice may be found in this way;
for consider the function

...+aH0(z, /„)

The double zeros of the numerator and denominator, at z = co,
destroy each other. The 2n— 2 finite zeros of the numerator depend
on the n — 2 ratios of the constants, i.e., on 2?i—4 real constants.
If zQ is a zero of the denominator, two linear relations between the
2n—4 real constants must be satisfied in order that zQ majr also be a
zero of the numerator, and, since

e (-z, j) = e (*, / ) ,

these two relations ensure that the numerator and denominator shall
have two zeros in common. Hence the available constants will enable
2» —4 zeros of the numerator to become coincident with zeros of the
denominator, so that when the constants are thus chosen, the function
is one which becomes infinite (and therefore has every other value)
twice only in any polygon.

The calculation that has been applied to 6 (z, J) will hold similarly
with any function of the form
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whero / (z) is a rational function of z ; so that tho number of zeros of
any such function in the generating polygon oxcceds the number of
infinities by 2w.

9. On Qrowps of the First Olass which contain Elliptic Substittitions.

I now go on to consider shortly tho caso in which a group contains
elliptic substitutions, so that throughout this section it will bo
implied that the group is fuchsian, as tho convergence of

2 mod (yiZ + Si)'2
i

for kleinian groups, with olliptic substitutions, has not been proved.

The essential point in which this caso differs from that hitherto
treated, lies in tho fact that now some of tho quantities

0 (z, ./;,) (p = 1, 2 ... n)
will vanish identically.

That this must bo so, if the previously given theory bo correct, is
obvious at once from geometrical considerations ; for it is clear that
tho closod surfaco formed by bending and deforming tho generating
polygon till corresponding points of tho boundary arc brought to coin-
cidenco will no longer bo «+l-pty connected, when sorno of tho n
fundamental substitutions are elliptic. There will, thorofore, bo less
than n ovcrywhei'o-nnite integrals upon it, and, theroforo, less than n
0-functions in connexion with the group.

Supposo,now,thatan olliptic substitution Sis ono of tho fundamental
substitutions of tho group ; and consider the corresponding 6 (z, / ) ,
defined by / * \ «

Tho term written on the right-hand sido has a simple infinity at

i-, and, if . . . „
7 (rz+V '

_ /

is the term that caucols this, then

<»(-* )+ f t_ l .
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or 8rl S, = S;

i.e., 8, = 8{8.

If, again, the term with suffix k is that which destroys the simple

infinity ^, introduced by the term with suffix j , then

Sk = 8,8 = SiS*.

Now, if m is the period of the elliptic substitution 8,

and therefore the terms in 6 (z, J), corresponding to the substitutions

8ir ftflf, flf,fl", ... fl,S-\

are such that at any point where one of the terms becomes infinite
another takes an equal and opposite infinite value.

Hence the sum of these terms, being a rational function of z which
is nowhere infinite, must be a constant, and this constant is zero, as
may be seen by making z infinite. It follows at once that, since 6 (2, J )
is in any case a uniformly convergent series, it is in this case
identically zero.

[It may be interesting to give the result of a similar grouping of
the terms of a 6 (z, J ) , which corresponds to a hyperbolic substitution.
The series of terms

,..8{8"m
t 8i8-m*\...8u 8i8t...8t8

m
t...

is then infinite, and their sum is easily shown to be equal to

where a and fl are the double points of the hyperbolic substitution.]

Not only will all the functions 0 (z, J) which correspond to elliptic
substitutions, vanish identically, but it will generally happen that some
of those corresponding to hyperbolic substitutions, will also do so.
For when some of the fundamental substitutions are elliptic, there
will generally be certain identical relations, of the form

1 = bm b, ... ,

connecting them ; and when these are used in the equations of the
form

, 6(z, Jp) + 0(z, Jrl) + 0(M, Jp.lq)=0,

established in Section 3, it will be found that the result stated will
follow.
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Owing to the infinite variety of cases that can occur, it seems
almost impossible to consider this matter generally, but the following
simple example will illustrate the property in question.

Consider the fuchsian group formed from a single hyperbolic sub-
stitution 8 and a single elliptic substitution B of period 3. Taking
the generating polygon Bo, as previously, to contain the point at infinity
(and for simplicity assuming the unchanged circle to be the real axis),
the division of the z-plane into regions by the group is given by the
accompanying figure (the upper half only being drawn).

An inspection of the figure shows at once, that SE2 must bo an
elliptic substitution of period 2, or that

1 = 1.

Now 6 (z, J&

by the previously quoted equation ; but, since E~l and SE2 are elliptic
substitutions, the two latter terms of the equation are identically zero ;
hence, also, the first term must be. In this case, then, both the
functions 6 (z, J), corresponding to the fundamental substitutions,
vanish; and this is in proper correspondence with the fact that the
closed surface,formed by bringing corresponding points of the boundary
of Ii50 to coincidence, is simply-connected.

Instead of attempting to treat generally the case of a group with
elliptic substitutions, I propose to continue the discussion of the special
case in which all the 6 (z, «7)'s vanish identically.

The ^-functions, being integrals of the 0 (s, j y s , vanish identically,
or rather, do not exist.

The integrals of the second kind, \pa (z), become in this case auto-
morphic functions, which take every value once in each polygon ; and
hence it immediately follows that they can all be expressed as linear
functions of any one of them. It is both interesting, and "will serve

VOL. xxin.—NO. 435. a
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as some verification of the general accuracy of the preceding investi-
gation, to prove this result by direct calculation.

For this purpose I transform the product 0 (a, z) 0 (a', z) in the
following manner:—

— 0 («t «')»

since 0 (a, ,7) = 0 ;

hence 9 (a, z) 0 (a', z) = 0 (a, a') 0 (a', z) +0 (a', a) 0 (a, a).

In reforence to this formula it is to be noticed that the zero of 0 (a, z)
in the generating polygon is at infinity, and therefore independent
of a.

It has already been shown, in Section 5, that

and thoreforo the formula just obtained is equivalent to a lineo-linear
relation between any two ^-functions. If the zero of the function be
represented in the symbol by writing tya (z, z0), instead of tffa (z), the
explicit relation required will be

Y«' \zi zo) — <f«' (a» zo) T~, ^ T~T~>—\ •

Tho i/'-function in this case corresponds to what Prof. Klein calls a
fundamental function on a simply-connected Riemann's surface; ia
terms of it any automorphic function, with a finite number of infinities,
may bo expressed rationally. Its analytical form is that of an infinite
scries.

But a function with precisely the same properties may bo formed at
onco from the integrals of tho third kind, i.e., from tho functions
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Xn,6 00 • For, since the 0-f unctions are non-existent, it follows at once,
from their previously proved properties, that

_ o

-— —z

= n

H

is an automorphic function with the single zero a and the single
infinity b in the generating polygon. The expressions here quoted
are convergent infinite products, whatever the value of z0, the point
z = z0 being that at which the function takes the value unity. If then
z0 is taken infinite, the function

is the general expression for an automorphio function, which takes
every value once in the generating polygon, in the form of an infinite
product.

The passage from the infinite series to the infinite product form
may be carried out as follows :—

Let x = \j/a (z, b) ;

then
dz

and —-— f = / ( s ) l has simple infinities at a and b, and a zero of the
x dz L J

second order at GO , these being its only zeros and infinities in the
generating polygon ; while also

o 2
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Hence it at once follows that

or, on integration,
x = const. X eXft- ° 'e'

Returning for a moment to the more general case, if the closed surface
formed as before by deforming the generating polygon is w'-f 1-ply
connected, it is to be expected that n—ri of the 0 (z, J)'B will vanish
identically, and that, from the remaining w', a theory can be constructed
in all respects similar to that of Section 4. That this is so in the caso
of any given group may be verified directly. If, among the funda-
mental substitutions of tho group, there are one or more parabolic
substitutions, then, in order that the group may be discontinuous, the
double points of these substitutions, which are singular points of the
group, must be vertices of the generating polygon. It may be shown,
in a manner similar to that used for the elliptic substitutions, that the
functions 9 (s, «7), corresponding to a parabolic substitution, vanish
identically, and the pi*eceding theory is generally applicable ; except
that the vertices themselves, which are the double points of the para-
bolic substitutions, must be reckoned as not belonging to the polygons,
for, being singular points of tho group, they are essentially singular
points of all the functions considered.

10. Conclusion.

The investigations of this paper arose in an attempt to extend to
tho caso of three or more circles the problems solved in a pi'evious
paper " On Functions determined by their Discontinuities and by a
certain form of Boundary Condition," which was printed in Vol. xxn.
of tho Society's Proceedings. By using the method and notation of
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that paper, a series, defined by the equation

w = = •"• _L " -L * j - 1 •"» 1 -"01 1 -^ni

z a z—a z—a0 a—a>i z—an z—a01 z-^-

s—a01,

may be formed, which, if convergent, will represent in the space
external to n+1 circles, each of which is external to all the others, a
function with a single infinity at a, and whose imagiuary part has
constant values at the circles^

If (z, — v1) ... (z, — ~-\ are the n linear substitutions equi-

valent to pairs of inversions at the circles 0 and 1, 0 and 2,. . . 0 and w,

respectively, and (2, — r-') any substitution of the group formed

from these as fundamental substitutions, it may be directly verified
that the above series is

and that it is therefore a convergent series, and docs in fact represent
the function in question. An indirect proof of the accuracy of this
statement will be now given, so that the direct one, which, though
simple, cannot be made very short, may be omitted.

Consider, in the first case of the symmetrical group, namely, that
for which the (w+l) t h circle is taken as the real axis, the function

where A, A', and a, a are conjugate imaginaries.
Regarded as a function of 2, this expression has entirely real

coefficients, and therefore will take conjugate imaginary values when
* does.

Now let z be any point on the circle Gp, so that a'is the correspond-
ing point on Cp>. Then, if

>* (a) =

00 +A'xf,n, OO = P-iQ;

Z ~
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and therefore

A+a(z)+A'+a,(z)-[A<l,a(z
f)+A'+a. (a')] = AB{at Jj+A'e(a\ JP),

or iQ - ±AQ (a, J,,)+W'0 (<*', « )̂-

It follows that, at each separate circular bounding curve of the gener-
ating polygon, tho imaginary part of

has constant values.

If, now, the transformation described in Section 7 be applied to this
function, it becomes

where the i/'-f unctiorts rtre formed with the substitutions of the new
group, while b, b0 are inverse points with respect to the (n-f-l)th circle,
which itself is the result of transforming the real axis by the sub-
stitution [z. —] of tho transformation.

The relations between b, b0 and a, a are

yb + S'

or, since a, a are conjugate imaginarics,

and therefore dh\ = *h'

Finally, if A(yb+hy =

and thorefore, for any symmetric group,

is a function whose imaginary part has constant values at n + 1 givon
circles (each extornal to all the others) and which has a single infinity,
with given residue B, in the space bounded by them.
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On substituting for the ^-functions by means of the equation

and re-writing a and a0 for b and b0, the expression just obtained is
at once seen to differ only by a constant from the previous function w.
A reference to p. 352 of my former paper, already quoted, will show

that Ao = A'—-7, which is the necessary relation between the coefficients.
da

If the point a is at infinity, so that o0 is the centre of the (?i+l)tl1

circle, w — A^^ (z) + A'rfya(i (2),

or, written at length,

1 1

and the real and imaginary parts of w will be respectively the velocity-
potential and stream-function for a uniform streaming motion past
the n-f 1 circles, the speed of the stream at an infinite distance, and
the angle it makes with the real axis, being mod. A and arg. A.

The n functions <pu 0a. . . 0,,, the group being still considered sym-
metrical, are the functions of z whose imaginary and real parts give
the velocity-potentials and the stream-functions for the n independent
circulating motions that can take place about the w-f 1 circles, on the
supposition that the circulation in any circuit enclosing all the n-f 1
circles is zero.

For, if KU *,... K,,+1 are the circulation constants for the n-f 1 circles,
connected by the relation

then the function

is everywhere finite in the space external to the n + 1 circles, while
its real part is constant at each circle, and increases by *r when the
variable describes a closed path which surrounds the rth circle once.
But these are the conditions that u+iv should satisfy if u is tho
stream-function and —v the velocity-potential of the proposed circu-
lating motion.

The two examples just given will sorve to show that the theory of
automorphic functions of the first class may serve to elucidate con-
siderably many two-dimensional physical problems. With respect to
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the general problem dealt with in the previously quoted paper, viz.,
the formation of a function w with given infinities, such that the
imaginary part of wei6r is constant at the circumference of the circle
C (r = 1, 2, ... w+l)i it will be found that, even when the differences
Qr—6, are commensurable with 7r, the terms in the infinite series for«o
which contain the same exponential do not arise from one of them by
the operations of any snb-group of the original group; and therefore,
that w cannot be represented as the sum of a finite number of if/-iunctions
formed from the substitutions of sub-groups in a manner analogous to
that proved to be possible when the group arose from a single funda-
mental substitution.

Note on the Motion of a Fluid Ellipsoid under its own Attraction.

By M. J . M. Hill, M.A., Sc.D., Professor of Mathematics at

University College, London. Communicated in Abstract,

June 11th, 1891. Received January 27th, 1892,

1. In regard to this case of Fluid Motion, it was shown by
Dirichlet that the particles which, at any instant, lie on an ellipsoid
concentric, similar, and similarly situated to the external free surface,
always do so ; or, one family of surfaces, which always contain the same
particles, is a family of ellipsoids which move so as always to be
similar and similarly situated to the boundary.

The following additional results regarding this case of Plaid Motion
were recently communicated to me by Mr. A. E. H. Love.

2. The particles which, at any instant, lie on a tangent plane to one
of the ellipsoids concentric, similar, and similarly situated to the free
surface, always lie on a tangent plane to this moving ellipsoid, and the
same particle is always at the point of contact.

3. The enveloping cylinders of the ellipsoids mentioned above,
whose generators are parallel to the vortex lines, always contain the
same particles. Hence there are two families of surfaces, viz., the
ellipsoids and the enveloping cylinders, which move so as to contain
the same particles, and are such that one particular member of one
always touches one particular member of the other.




