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- On a Olass of Automorphic Functions. By W. BurNsiDE, Re-
ceived and Communicated November 12th, 1891,

1. Introductory.

In a series of memoirs published in the first, third, fourth and fifth
volumes of the Acta Mathematica, M. Poincaré has developed the
theory of discoutinnous groups of linear substitutions and of the
one-valued functions which ave unaitercd by the substitutions of such
a group.

In this paper T shall adhere as closely as possible to the notation
and nomenclature used by M. Poincaré, and it will be convenient to
state theso at once us regards the substitutions.

A substitution which changes z into gz-{-/i’ written (z, “Z+B), i8

vz+4 -yz+3
in its normal form when «é— By =1, and the real part of « is
positive.

Two points will always be unchanged by the substitution. TIf
these are different, it can be written in the form

l—a , 2—a
=~ Loy
" where @, b are the unchanged (or double) points of the substitution.
When K is real, the substitution is called hyperbolic; when mod I{
is equal to 1, it iy called elliptic, and in all other cases loxodromio.
If the double points coincide, tho substitution is called parabolic, and
can be written in the form
1 = ~-1—-+A.
l—a z—a
Ifa-1, 3, y, 6—1 ave all iufinitesimal, the substitntion is called an
infinitesimal substitution; and a group of substitntions is called
discontinuons when it contains mno infinitesimal substitution. The
theory of groups of a finite number of different substitutions has been
completely dealt with by, amoung others, Prof. Cayloy and Prof. I,
Klein, the most detailed accounts of it being contained in the
memoir ‘‘On the Schwarzian Derivative and the Polyhedral
Functions’ by the former, aud the “ Vorlesungen iiber das Ikosnéder ”
*. of the latter. Thesc groups M. Poincard leaves on onoe side, as also
those groups the substitutions of which cannot all be derived from a
Ainite namber of fundamental substitutions.
If all the substitutions of o group prescrve one circle unchanged
VOL. XXIL.—nNO. 433. E
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(for simplicity this circle can always be taken to be the axis of z),
and transform the regions inside and outside this circle each into itself,
M. Poincaré speaks of it as a fuchsian gronp; in the other case the
group is called kleinian. His method of dealing with groups of
substitutions is a geometrical one. He shows that, corresponding
to a discontinuous group, a division of the z-plane, or part of
the plane, into an infinite number of regions can be made, with
the following properties. To each substitution (z, ——-—‘;‘i:?') of the
group will correspond a particular region I; of the plane, in such
o way that when z is within I?,, -———‘;’ziﬁ" will be within R;. The regions
I; fill either the whole plane or the particular part of it exactly
once, .., they neither overlap each other nor leave uncovered
portions. The region I, (called the generating polygon), and
therefore also the other regions, can always be chosen so that
their boundaries are arcs of circles, which, if the group is fuchsian,
intersect the unchanged circle at right angles. The question as to
whether the regions It; will cover the whole plane or only a portion
of it (it being understood that I!, does not cousist of two or more
detached areas) will depend upon the nature of the fundamental
substitutions of the group, and this diffcrence leads to a division of
the groups, and of the functions which are unchanged by them, into
two classcs*; namely, a first class, in which the regions I; cover the
whole plane, and the corresponding functions exist in the whole plane,
and a second class, in which the functions have what is called a
*“natural limit.” M. Poincaré considers cases of both these classes
in his memoirs, but deals at considerably the greater length with the
second clags. Prof. Klein, in his investigations on the subject, which
are contained in most detailed form in a memoir entitled *“Neue
Beitrige zur Riemann’schen Functionentheorie,” (Math. Ann.,
Bund 21), liits himself expressly to the second class of groups.

The analytical expressions of the functions which are unaltered by
the substitutions of a group are obtained in the following way by M.

Poincaré. He first shows that if (z, fffgi_";g‘—‘) be any substitution of
YiZT o

the group in its normal form, then the series

= mod (yz+46,)~*",

# M. Poincaré distinguishes seven fumilies of groups; of these the first, second,
and sixth form whut I have ventured to call the second class, while the rest make
up the first class,
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where m is & positive integer greater than unity, is an absolutely
convergent series, except for values of z wnich make one or more terms
of the series infinite.

It follows that the series
a;z+ 0 2m
3 H(Z2E8) (vt a)

where H (z) represents a rational integral function, is uniformly con-
vergent, except for particular values of 7, and therefore that it defines
a one-valued continuous function of z. Such a function M. Poincaré
calls & theta-fuchsian or theta-kleinian function. Its fundamental
property is shown to be the following, viz.: if

0 () = 3 (4248 (04 5,

Yis4+0;
th g.z—._t[—;) —-_ 2’”
en | o (yz+3 (vz2+90)™ 6(2),
az+3 . el gs
(z, 43 being any substitution of the group.
Y

If now O (z), ©,(z) are two such functions, formed with the same m
but different functions H(z), H,(z), then their ratio, if it is not a
constant, will be afunction which is nnaltered by the substitutions of
the group. )

As regards the theorem that 3 mod (y;z+6;)~*" is a convergent

series for integral values of m greater than unity, M. Poincaré does
not, in his memoir on fuchsian functions, give any reasons for not
dealing with the case s = 1; but in a later memoir (*“Sur les
Groupes des Equations Lindaires,” Acta Math., Vol. 1v., p. 308), he
suys: * Toujours dans le cas d'un groupe fuchsien, la série

Smod (y;240,)7"
n’est pas convergent.”

That this statement is not universally true, may be seen at once
by considering tho group arising from the repetition of a single
hyperbolic or loxodromic substitution. This may be written in the
form

E% =K1 (mod K > 1),
_(K=u)z—ab(K-=1)
T (K= z—(aK—b) ’

E2

or
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(KY—K-¥ys—(aK¥~bK- “)

t g4 6=~
80 tha vis+ 6= b—a
and the series in this case is
1 ]
2
(b— a) = mod (] Tk "(z—b))

which certainly is convergent.

M. Poincard’s statement with respect to the divergency of
E‘ mod (y;#+6;) %,

then, clearly requires some limitation. I have endeavonred to show
that, in the casc of the first class of groups, this series is convergent,
but at present I have not obtnined a general proof. I shall offer two
partinl proofs of the convergency ; one of which applies only to the
cnse of fuchsian groups, and for that case is general, while the other
will also apply to kleinian groups, but only when certnin relations of
inequality are satisfied. It follows, from the convergency of

Smod (y,z246)"%
;

that for the firat class of groups, to which all my resnlts are limited,

functions of the form Y
“t"’+’ ~ -2
18 (S (e +2)

exist; and the existence of these functions is shown to lead to a mode
of formation of fuchsinn® and kleinian fanctions (4.e., functions which
are unnltered by the substitutions of the groups) which is in acertain
way simpler than M. Poincaré’s, and which moreover directly connects
these functions with an alveady well-explored branch of analysis.

I shall best explain the nature of the method aimed at, and the
point of view taken, by means of a partienlar case, which is also the
one I have tronted in greatest detail. Suppose, then, that the generating
polygow of the gronp is the space ontside 9 circles, ench of which is
external to all the others. The # fundamental substitutions of the
group, which must be hyperbolic or loxodromic if the gronp is dis-
continnons, will mako these cireles correspond in pairs; and if, by
bending and stretehing, withont teaving, the corresponding points on
the pairs of cireles are bronght to coineidence, tho polygon will he

* T havo used tho phrasa ¢ automorphic function,” s introduced by Professor
Klcin, to denoto genorally any function which is unchanged by tho substitutions of
a discontinuous group, whatever be tho nature of tho group.
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turned into a closed (1 +1)-ply connected surface. On such a surface
n everywhore-finite complex functions of position must ‘exist, such
that when a variable point describes any path on the surface, and
returns to its original position, any one of these functions will only be
altered by the addition of integral multiples of certain definite periods.
[Cousidering the closed surfnce as a Riemann’s surface extended in
spnee, these functions are the « integrals of the first species upon it.]
Also, in terms of n-ple #-functions, with these » functions as their
arguments, any rational algebraical function on the surface can be
expressed.

Corresponding to these = integrals of the first species on the
surface, there must be, on the z-plane, n independent fanctions
which ure everywhere finite (except at the singular points of the
group, t.e., the -double points of its substitutions), and which
incrense by integral multiples of certain constant quantities when a
varinblo point passes from a position z to any one of the correspond-
“ing positions ;‘:i?‘, or when it describes a closed path surrounding

i i

one or more of the circles. When ounce these functions are found, it
must follow, from the corrvespondeuce between the z-plane and the
before-constructed Ricmiann’s surface, that any functions which arve
unnltered by the substitutions of the group must be capable of repre-
sentation by incans of multiple 0-functions, wwith these particular
functions for their arguments. PFollowing M. Poincaré’s method, I
form the cverywhere-finite theta-fuchsian or thota-kleinian functions
of the form

@;z 4% -
SH (S0) (rie+8)
i.e., the functions which are only infinite at the singular points of
the gronp ; and it appears that there are n such functions, and that
Ctheir integrals are the = requived functions which on the z-plane
have propertics analogous to the n integrals of the first species on
the Riemann’s surfaco. I then show low to form fanctions which
bear exnctly the snme relations to normal integrals of the sccond and
third kinds, on the Riemann’s surface, that the n functions just
referred to bear to the integrals of the first kind,  All the methods,
then, by which uniforin functions of position on the Ricmann's sur.
face are expressed in torms of the Abclian integrals on it, may bo
applied at once to the cxpression of nutomorphic functions by means
of the threo classes of functions which are the analogues of the
integrals of the first, sccond, and third kinds.
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2. On the Convergency of 3 mod (y;z+8,)™" in certuin cases.

First Proof.—The following proof, which is modelled on the lines of
M. Poincaré's first proof of the convergency of I mod (y,z+¢6,)"¢,
1

applies only .to the case of fuchsian groups of the first class. I
suppose that the real axis is taken for the unchanged circle, and that
the point z = oo i3 not & singular point of the group. These suppo-

sitions involve no real loss of generality. Since, by supposition, the
group is of the first class, the generating polygon may be taken to
enclose that part of the real axis which includes the point at infinity.
Describe any circle PQAD, such that the aren bounded by it lies
entirely within the generating polygon, and suppose that it meets the
renl axis in the points 4 and B. Lot P;Q;A;B; be the circle into

which the substitution (z, a"z+/3") transforms the circle PQRAD,
viz+6;

A;B; being the segment of the real axis corfesponding to AB, and
P, Q, the circular arc corresponding to PQ.

Then it follows that :—

(i.) 24;B; is finite, for it is less than that part of the real axis
which lies outside the gencrating polygon;

(ii.) that thercfore the sum of the circumferences of all the circles
is finite, for they all cut the real axis at the same angle ;

(iii.) and therefore that 3P, is finite.

The point —3d;/y,, being the homologue of the point at infinity in
@z +f;
yiz+¢
lying on the real axis. When z lies on the arc PQ, the ratio of the
greatest to the least value of mod (y;z+¢;)~? is the square of the ratio
of the distances between J; and the furthest and nearest points from
it on PQ. Now the points J; all lic on a finite portion of the axis of
2 ; and therefore, if d; and d; be respectivcly the absolutely greatest
and least distances of any of the points J; from the arc PQ, the ratio
of the greatest to the least value of mod (y;2+¢;)~% when z lies on
the arc PQ, is less than (d,/d,)? whatever < may be.

the substitution (z, ), is & point J;, within the polygon R;, and

If z is the point P, mod (y;2+46;)~* is the ratio of an infinitesimal
linear clement at P; to the corresponding element at P, and hence,
when z is any point on the arc I°Q,

mod (y;z+8&)7'< ('_l'

dﬂ)QPiQ.’,

PR’
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Y ANRE .
therefore ? mod (y,z+48) < ( i ) 50 SP,Q;;
or, since 3 P,Q, is finite, the series is absolutely convergent.

Second Proof.— The proof just given applies only to fuchsian
groups; depending directly, as it does, on the fact that there is a
circle (or straight line) which remains unchanged by all the substi-
tutions. I now go on to give a proof which will apply, when certain
relations of inequality are satisficd, to kleinian groups similar to
the one referred to in the introduction,

Suppose, then, that the generating polygon is the space outside 2n
given circles, each of which is external to all the others. The funda-
mental substitutions of the group will be n substitutions, which make
the circles correspond in pairs, and which, since the circles are
external to each other, and the group is discontinuous, are necessarily
either hyperbolic or loxodromic. The various points —&;/y; are all
inside the given circles, and when z does not coincide with one of
these. points, a quantity M may be found which is less than
mod (z+ 2 ), whatever ¢ may be.

It follows that

?mod (viz+8)2 < ? M-?*mod y;?;

and therefore that it is sufficicnt to consider the series 3 mod y; 2
For shortness of statement I deal with the case » = 2, but it will
be clear that the same reasoning will apply, whatever be the value
of n.
Let the S, S’ be the two fundamental substitutions of the group.
All the substitutions of the group may then be arranged in the
following way, viz. : — 7
S, 8, 87, 8!, 4 substitutions involving one operation ;
S8, 88, s8-8 S-l, AS'_IJS"-I, S-18°:
Ss, 88, 8’81 &8, 818, S8
4 x 3 substitutions involving two operations ;

then 4 x 3° substitutions involving three operations ; and so on.

Now, since the fundamental substitutions are necessarily either
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hyperbolic or loxodromic, they will be of the forms

§= (5 th), S KK MKCak,

P yz+0 b—a b~a
v a;; +B' . I\T'.— I('-‘ , b'K’-.—G’K" .
b _(Z, 7;z+a')’ Y = ba_ar ] a - b,—ar'

Where mod K and mod X' are both greater than unity.

It 8, = ( % :%:Tﬂ)

is any substitution of the ut" set, then

S8, = ( MR IEE JL )

L ~y : y
Yus12+ 0,41

where Uy = aty+ Py, B = o, +0,,

Yue1 = 7”u+87m a:wl = 7/;,,-}-65,,,
Y _q b—

and Yosl — y o, +o= Kt i o Yu,
Yn Yn h—a -

o,

If 88, is & substitution of the %w+1" set, the last substitution in
S, muost not be S-'; and I shall now show that this involves that
a,
Tn
the generating polygon.

Call the circles .1, B, A, B, the four points «, b, o', ¥’ being
supposed inside the circles.with the same letters. Then 8 changes
the outside of A into the inside of I}; 8 changes the outside of 4’
into the inside of 7)'; and S'-' changes the outside of B’ into the
inside of 4. Hence, if a,/y, is inside A, S must be the last substi-
tution of S, and (writing 8, = 8S,_.)) a,_/y.., must be inside 4.
I'he same reasoning may be repeated continually; but the point a/y
is inside I, and therefore the point a,/y, cannot be inside 4, and
must be inside cither Ii, A' or. B'. A lower limit, independent of n,
can therefore be found for the modulus of each of the fractions

and @ nre not within the same one of the fuur circles bounding

S
Y

b—a

which occur in the various ratios y,,/y.; and, therefore, if mod K
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and mod K’ ave sufficiently great as compared with these limits, the
inequality :

mod X2£' S 1,
7"

where  is an arbitrarily chosen quantity, can be satisfied, whichever
of the n+ 1™ set of the substitutions S,,, may be, and also whatever
n may be.

Hence, if ¥ be the greater of the two quantities y and ¥/,

4, .02
3yeyt [art et

or the series is convergent if
1#>38.

When the double points of tho fundamental substitutions are given,
tho serics in question can clearly bo made convergent by taking the
moduli of the multipliers sufficiently great; but, again, when the
moduli of the multipliers are sufliciently great, the group given by
the substitutions is certainly a discontinuous one. Hence this second
proof certainly establishes the existence of kleinian groups of the
kind considered, for which E‘Zmod (7:2+98)7? is o convergent series,

though it does not prove that the series is convergent for every such
kleinian group.

If one or more of the fundamental substitutions become parabolic,
in such a way that the corresponding pairs of circles touch each other
externally, the preceding proof may very simply be modified to show
again that there exist, in such a case, kleinian groups for which the
series in question is convergent; but it does not scem to me to be
possible to apply it to the cases in which the groups contain elliptic
snbstitutions. Since, however, the tirst proof applies to the case of
fuchsian groups containing elliptic substitutions, and, by & suitable
infinitesimal change of the parameters of the fundamental substitn-
tions, snch a group will become kleinian, it would appear very
probable that there must also be kleinian groups of the first class
containing elliptic substitutions for which 3 mod (y;2+6,)? is con-
vergent. By limiting the investigation of this section to tho series
2 mod (y,2+8)~% I 'do not intend to imply that the series
?mod (yiz+48,)7" is necessarily divergent. Indeed, for the group
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formed by a single hyperbolic or loxodromic substitution, it is clearly
convergent ; and the second proof just given, for the convergency of
‘2 mod (y;z+8,)~% may evidently be altered to show the convergence

of 3 mod (y;z+9;)" for certain groups derived from more than one

- fundamental substitution. It is not necessary, however, in the
sequel, to consider functions whose existence depends on the con.
vergency of this latter series.

3. On the Functions 6 (z, a) for Groups of the First Class.

Having established the convergency of the series = mod (y,2+8,)~?
(4

for all fuchsian and certain kleinian groups of the first class, I now
propose to consider tho properties of the corresponding theta-fuchsian
and theta-kleinian series. In the first place, I deal with such a
group as that described in the introduction; that is to say, a group
derived from » fundamental, hyperbolic or loxodromic, substitutions.
For such a group it follows that the series

(l[Z"'ﬁ_i -2
E‘II (7;2'*‘6[ ) (Y‘z+8‘)

is a uniformly convergent series, except for certain particular values
of z, and therefore that it defines a one-valued continuous function.

It will be convenient to use a special symbol for this series in the
case when H (z) is a function of the first degree, and for this purpose
I define 6 (z, a) by the equation

-2
0(z, a) =3 12+
i oz b
——— . ‘;— —a
Yiz+o;
az+ B\ . . . T
If {2 _‘z_:?;) is any particular substitution of the group,
R4

o (2215, 4) =3[R b ard]

ye 44’ i (az+B3)+Bi(y2+8) _
Yz +B)+8 (y5+¢)

a

— s (:2406)7°
= (r=+3) ?a,-?i/ﬁ_ '

vz +d
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where o = aa;+vf;
By=BatdBe e (A)
y; = ay;+vd;
d; = Byi+39;

are again the coefficients of any substitution of the group.

Therefore 6 (ay::?, a) = (y2+9)*0 (2, a),

which is M. Poincaré's general property of all such functions.

The function 8 (z, ¢) has two simple infinities inside any one of the
regions R;, namely, the homologues of @ and w0 that lie inside R,.
' wif) (, u+h
ya+8 /) \" yz4+d
any particular substitution of the group. It follows that constant
multiples of the two functions can be chosen such that their difference
shall be independent of a.

The same statement is true of (z, ) being again

N 0(z 228y =y O+ dye+d)t
o 0 (s 1a+s) Y @ TP (vatd) — (v + 5 (aa+ B)
put 50;"37.’ =, ayi—7%4=Y;

‘3(3:—433: =p;, ad—yB =g,

8o that a,, B;, v, & are the coefficients of any substitution of the

group, and
a; = aaj+37p Y = 7al+37:"

B = a3+ B3, & = vy0B;+33;.

Then 6 (z, Eﬂg) =3 (ra+) [ ¥ (2+8)+3 (v,2+8)] "

ya+3d J a;z+Bi—a (yz+4)
d (y,24+8,)"?
= +—=)3 'j
(a 7) ; (Ez‘fiﬁ;_a)(wz+,3g+i)
y;%+9; vie+d; vy

=0(z a)—0 (z, - Ti—), :

or , b(z, a)—0{z, %—Z—:g):o(z —%‘),

where the right-hand side is independent of a.
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The function 8 (z, - i), thus introduced, has no poles, its only
. Y

singular points being the singular points of the group. For

°(»=7)
Y

iz 6 |_~/(a z+l3)+° (7,.,+3‘)]

=3 [ rd +57‘ ot e — Yi ] .
i L(y +57)Z+Y/3 1'0“ yiztd,d’

E
'

and in this form it is clear that the residue of the function for
z =—2d/v is zero.

The point —43/y is one of the homologues of mﬁmty Denoting
any one, «;/y, of these by J, the function 6 (2, J;) is finite everywhere,
except at the singular points of the group. There are clearly an
infinite number of such functions, but, us I shall next show, only % of
them are linearly independent. Thus

0(z,J,)—0(s,J,) =0 (z, ';l) -9 (z, (; )

UpYe— U, /n

[7,. (aiz+8) —a, (vis+8) ][ 7o (wi 2+ B)—aq (ris+ 3, )]

and writing, as before,

6pai—B,v: = ApYi— Ve = Vi
5p,3-'—/3y3-' =), 4 —y,0 = Sn
0 (=, Jp)_a (= Jo)
- ' .Y, =dg Y,
’ (1s2+8) [ (7= av,) (2 +5) + (Byvg— Spuy) (v;2+8) ]
(v;2+9,)"?

JwzB _ 6a—1,v,
Yiz+d  —v,a,+a,7,

°®
o (s, etuzBin )
—vpa,ta,v!

=0 (z, Jp'l q).
The same process will give
O(Z,J)——U(Z, —l)'

Hence, if S,, S, are two of the fundamental substitutions, and J the
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*homologue of infinity formed by any combination of these two, then
8 (2, J) can be expressed in the form

mb (z, J,) +n6 (z, J,)
where m and n are positive or negative integers.

It follows from this at ounce that if S,, S,, ... 5, arve the n funda-
mental substitutions, then, whatever homologue of iufinity J may be,
6 (3, J) can always be expressed in the form

m,0 (2, Jy) +my0 (2, )+ ... +m,0 (2, J,),
where m,, m,, ... m, are positive or negative integers.
Thus, as stated, not more than n of these functions are linearly

independent. That the = functions written above are really inde-
pendent will be proved later on.

4. On the Integrals of the Functions 0 (z, J).

The functions # (z, J), being everywhere finite and continuous,
except at the singular points of the group, can be integrated along
any path which avoids these singular points, and their integrals
along any such paths of finite length will be finite.

az+ +p‘
Thus j 8 (z, J) dz = zlogzﬂﬂ_
% i a;za+f3; 7
7-20+8
«-z+;7,-__
= 7:2+79;
logr'I u; zn"’ﬂ‘
Yizy+ 9
will represent, when the path from z, to # is assigned (keeping clear
of the singular points), a definite finite quantity, and the given path
will determine the branch of the logarithm that is to be taken.

I first consider the integral when the path is confined to the
generating polygon ; the relation between which and the fundamental
substitutions is to be taken as follows.

The generating polygon -consists of the space outside n pairs of
circles C, and O, C,and 0}, ... 0, and 0, each external to all the
others. The substitution S, transforms the circle C, into the circle
C,, and tho space outside the circle C, into the space inside the
circle Oy, so that the point J, is inside C,, and the point J, /-1 18 in.
side O,
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An element of the integral of 6 (z, J,) may be expressed as follows:

6(s, J,) de =3 d. log(““’* J,,)

viz+96;

“ (z— x T"r & )
=3d.log —Lr ta
f Vi Z+‘-i)

Yi

a; (z -1 )
=3d.] L4
8 (z -1)

When §; is the identical substitution (z,z), the corresponding term
on the right-hand side is of a slightly different form, namely,
d .log (2—J,) ; hence

0 (z— i-1 p)

(z Jp) dz = d . log (z—J)+Ed lorr

(4—'J 1)

where now the identical substitution is not mcluded under the sign
of summation.

Now, as before stated, J, is inside C,, and it is easy to see that J;_,
and J;_, , are either both inside or both outside Cp; hence

I 0 (2, J,)dz = 2w,
Cp

where the integral is taken in the positive direction ronud a closed
curve within the generating polygon surrounding O, once, and sur-
rounding no other circle.

Again, J, is outside Oy, and J;_,, J;_, p 8Te either both inside or both

outside U, except when ¢ = p, and then J, ;-1 18 inside and J;, pl
outside ; hence
j. , 0 (2, JP) = — 2mi,
Cp
where the integral is taken positively round O,.
For any other circle 0, or 0;, J, is outside and J;., and J;_, p bre

.always either both inside or both outside.
Hence j' 8 (s, J,) = [ 8z ) =0.
OQ 0?
These results prove incidentally that the » functions
0(s ), 0(zJ) ... 0(z, J,)
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are linearly independent of each other, and that they are not mere
constants. '

1f 4,, 4, be two corresponding points on C, and C,, and B,, B, any
* other pair of corresponding points on the same two circles, and if
A,4,;, B,B, be joined by paths 4,MA,, B,NB,, which do not enclose
any of the circles, then

J 0 (z, J) dz,

round A4,MA;B,NB,A,, vanishes, since the integrand is finite and
continuous at all points within the contour.” Therefore

- _ , o
(.LI»MA; jﬂ,.ND;+!A;y; L»BP) (3, J)dz =0

Now, if 2,, z, are corresponding points on the circular arcs 4,B,,
APBP’
2, = a, %, +3ﬂ .

Vo1 0,
therefore 0 (2, J) = (v,2,+96,)0 (2, J),
and dty = (yo0,+35) " doy;
therefore 0 (20 J) dzy = 6 (2, J) d2,.

It follows that

8(2,J)dz=j 0(z, J) dz,
4,8, 4,3,

the integrals being taken along the circular arcs, and therefore
[, eena=[  o6nae
B,NB, 4,004,
Hence the integral

(ap 2+ Bp) /(7o 20 + B0)
j 0 (2, J) dz,

~0
where z, is any point on the circle C,, is independent of the particular
position of the point, the path varying continuously without passing
outside the fundamental polygon.

Now let the points 4,4;, 4,4; &c.... be.joined by lines of any
form, which neither cut themselves nor each other, and which do not
leave the generating polygons; and regard these lines, as well as the
circles, as part of the boundary of the polygon. In the figure so formed
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the integral of 8 (z, J), when the lower limit has an assigned value, is
a one-valued finite continuous function.

Let [ pene=a,
APA&’

and ‘ 8(z,J,)dz = a,,,
4,4,

so that the quantitie. ,, a,, &c., are the constant values of the
integrals just discussed. When the variable paths between the
corresponding points are chosen so as to be reconcilable with the
barriers 4,4;, 4,45 ..., I shall show that

a

g = @,

qm

For this purpose, let definite lower limits be chosen for the integrals
(they need not yet be expressed), and write

¢, = J’ 0(z, J,) da.
Then, as stated, within the polygon with the barriers,

P Pa--. P

are cverywhere one-valued, finite and continuous.

If the positive side of the barrier 4,4, is that which one would
first reach by starting from any point of the circle C, and moving
round it in the direction opposite to that of the hands of a watch, then
the value of ¢, at any point on the positive side of 4,4, is greater by
271 than its value at the corresponding point on the left-hand side ;
while the values of ¢, at corresponding points on the right and left-
hand sides are the same.

Since ¢,, ¢, ave finitc and continuous everywhere inside the polygon
with barriers, it follows that

[¢pd¢m

extended round the complete boundary, is zero.

The complete boundary consists of the » contours made up of the n
pairs of circles and the two sides of the barrier connecting each pair.
The values ¢, d¢,, at corresponding points on C,, C;, are given by
¢ (C) = @t 9,(CL),

d‘Pe (Cr) = _d¢q (0:)1
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and, at corresponding points on either side of 4;4,, ¢, and dg, have the
‘same values. Hence the integral round the contour formed of these

lines is a,,,]’ dpg = 0.
c

The contour formed by C,, C, and 4,4, gives

—21ri]’ de, = —~2wia,,
4,4,

and the contour 0,, C; and 4,4, gives

—ap,,j , dp, = 2wiay,.

Hence, finally, adding the various parts of the integral,
g—ag, = 0.

This proof will be seen to be the same as Prof. C. Neumann's proof
of the corresponding property of Abelian integrals of the first species.

Suppose, now, that the path of integration passes outside the gener-
ating polygon, and let the homologues of the barriers be drawn for all
the polygons. Then it is at once obvious that, inside any polygon
with its barriers, the integrals are onc-valued, finite and continuous,
and also that they are continuous in crossing from one polygon to
another. They are therefore one-valued and finite in the infinite
plane, and continuous except at the barriers, and at corresponding
points on the opposite sides of the barriers they have constant differ-
ences == 2w1 or zero. The value of the integrals at any point in .the-
infinite plane, with the barriers as boundaries, may be determined as
follows :—

Let O be any point in the generating polygon K, and O, its homo-
logue in R;. It has just been shown that

P» (O.) 7 (0):

is independent of the shape of the path between O and O,, so long as
it does not cut the barriers. Join OO, by any path whatever satisfying
this condition, and supposo that it passes successively throngh the
polygons Ry, B,, R, ... It, B;, Let O, be the point where it meets the
boundary between R, and R,; find O, on the boundary between I,
and I, so that O, is a homologue of O,; then O, on the boundary
between I, and I, so that it is a homologuc of O,; and so on. Take
VOL. XX111.—NO. 434, ¥
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now 00,0,0, ... 0,0, for the path of integration. The points O and 0,
0, and O, arercspectively homologues, and the paths 00,, 0,0; lie each
entirely within one polygon. Therefore

j‘ d¢, = [ d,,
00, 0:0,

and tho contributions to the whole valuo of the integral from 00,
and 0,0; destroy each other. Kach of the portions 0,0, 0,0, ... is
recoucilablo with the lhiomologue of one of the original barriers 4;4,,
AzA, ..., taken either positively or negatively. Hence, finally, if among
thesc homologues that of 474, occurs #, times, that of 4;4, n, times,
and 50 on,

a;z+8;
¢P (:y:m) - ¢P (Z) = e, +nia'y'l +... +nn Qs
the positive or negative integers here are definite, depending only on
the particular polygon R;; the suffix p may have any value from 1
to n.

*When, finally, the barriers are dispensed with, and the now many-
valued integrals are considered in the infinite plane bounded only by
the singular points, any path of integration whatever can be made
up by combining the path just considered with a number of closed
loops. Each time such a loop cuts a barrier, & 2% or zero will be

added to the value of the integral. Hence, finally, whatever be the
path of integration,

i + i "y
¢ (;—.zz"l'—%) — 9 (z) = 2mp7r'b+nlapl+n2ap3+ R

where p=12 ..n

It is now clear that the functions ¢ are the analogues in the infinite
plane of the integrals of the first spccies on the n+1-ply connected
Riemann’s surface into which the generating (or any one) polygon
can be deformed by bending and stretching till corresponding points
on its surface are brought to coincide. Also, if each of the ¢’s is
multiplied by —3, they will directly represent the u independent
normal integrals of the first species; tho 2n sections on the surface
Jbeing the n curves obtained by bringing the pairs of corresponding
circles to coincidence and the % closed curves into which this process
transforms the barricrs.
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To complete the analogy,and make the introductionof the §-functions
possible, it must still be shown that the real part of

Snia,,+23n,n,a,,
is essentially positive.

The proof of this, again, is essentially the same as that of the corre-
sponding theorem with respect to Abelian integrals, and may he
stated shortly.

It ¢p = tp+1ivy,

then, since 3n, ¢, is finite, continuous, and one-valued in the generating
polygon with barriers,

[ 5n.30, 0,

taken in the positive direction round its boundary, is necessarily
positive. The separate terms give at once

ju,,dv,, = 2ma,,,

ju,, dv, = [uq dv, = 2way,,

where «,, and a,, are the real parts of a,, and a,,; and from these
equations the result follows at once.

5. Onthe analogues of the Abelian integrals of the second and third kinds.

_s (yiz+38)*
Y Y
‘ (a,-z-}-ﬂ,-_a)
vz + 0

The function

has a double infinity at the point @ and its homologucs; while the
homologucs of 2 = w are not infinitics of the function. Its integral
will therefore be a one-valued function, finite and continuous every-
where except at the point a and its homologues, and at these points
it will have a simple infinity. This function will be denoted by
Vs (2), 80 that

1 n!
\p" (z) = % <".’Z+ﬁ._ - “izo+ﬂl >’
B L e L )
Yiz+9, Yi%+6;

where z, represents the ovigin of the integration, which can be chosen
F 2
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abt convenience. The expression in brackets can be transformed as
follows : —
w(3) =3 0 TE
¥e (%) i [aiz+Bi—a (yi2+0) J[aiz0+ Bi—a (viz,+6)]
=3 (=7:@+0.)" (2—2)
{

(2ot ) =)

1 1
=3 9;)"? - .
3 (YJat+ .') <a-tl+ﬁ~_z a'a+l3 —z>
va+d ° ya+d

= 0 (a, 2,)—0 (a, 2).
It follows at once that

# () v =0 0ma(o 2528)

=—0 (a" J;,)
(4
- (%)

twa

and also that

@z 8\ _ < do, .
b () =ve @ 3m (3). .0
where the integers n, are the same as in the general formula for

a;z+B;
*(525s
the normal integrals of the second kind on the Riemann’s surface
eorresponding to the division of the z-plane; namely, they have one
infinity inside each region, they are one-valued (i.., they do not
change when the variable descrihes a closed path which cuts the
barriers), and, when one of the substitutions of the group is performed
on the variable, they incroase by integral multiplesof definite constants,
which bear the samo relation to the quasi-periods of the ¢'s that the
periods of the normal integrals of the second kind bear to those of
the first.

Again, the fanction

1 1
E 3 -2 —
, (ysz+ 4) <a‘z+ﬁ,-_a a‘z+[_3:-_b)

viz+ 6« 7;2+3c

is-finite everywhore except at a and b and their homologues, which

). The functions ¢ (z, @) are thus the cxact analogues of
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points are simple infinities. It may be supposed, without loss of
generality for what follows, that a and b are both within the generat-
ing polygon.

If @ and b be joined by & barrier, and the homologues of this
barrier be drawn, it is easy to see that the integral of the function in
question will be one-valued, finite, and continuous, except at these
new barriers, having values differing by 2x¢ at corresponding points
on opposito sides of the new barriers, and, in particular, being con-
tinuous at the original barriers. If the integral from an arbitrary
origin be written x,,; (2), then, in the infinite plane, as bounded by the
new barriers and the singular points of the group,

(sthe_) (st _y)

=1 viz+8; Y-zo'f' ]

=308
—_ —u

viz+ 8 Yi%o+ 8
where the branch of the logarithm is that which makes
Xa,0 (%) = 0.

The expression on the right-hand side can be transformed, as in the
case of Y (z, a), so as to give

(‘,’i.‘."_i','_@i —z) (ﬂj——g’ —zo)

_ y;e+5; ¥;b44; )
Xa» (2) = 3log (a,.aﬂf,_z IE OB )
via+4; 71b+af
+
Hence (s%”) Xa.b (2) = ¢, (b)—9, (a),

and, for any substitution,

a; + 3‘ n
Xes (228 = o s @)+ [, ), (@],

It is also clear, by comparing the two expressions for x,, , (z), that,
if the points z,, z, be inside the same polygon, then

Xa,b (zﬂ) —Xa,b (zl) = Xzpn (a) = Xzst (b)g

which is the equivalent of the interchange of argument and para-
meter for integrals of the third: kind.

Just, then, as the functions § (2, @) answer in all respccts to the
normal Abelian integrals of the second kind, so the functions x, 5 (z)
are the exact analogues of the normal integrals of the third kind.



70 Mr. W. Burnside on a Class of [Nov. 12,

6. On the Functions which are unchanged by the substitutions of a group.

It has now been shown that the functions ¢, (), ¥4 (2), Xa,s (2)
- bebave, on the z-plane, with respect to closed paths surrounding
singular points of the groups and open paths passing from any point
to any one of its homologues, in exactly the same way that the normal
integrals of the first, second and third species on a Riemann’s surface
behave when the variable describes closed curves reconcilable with
the a-sections and the b-sections on the surface; t.e., when the
variable describes any closed curve whatever on the surface. It
follows therefore that the different methods of representing algebraio
functions on the Riemann’s surface, in terms of the normal integrals,
may be applied at once to form automorphic functions on the z-plane,
in terms of the functions ¢, ¥, and x.
Thus, if z,, 2, ... z,, are m points, such that no one is a homologue of
any of the others (or, more simply, m different points in the same

polygon), the function
Co+3 O, (2)

will be unchanged by all the substitutions of the group if the =
equations

%0,.9(;;,., J) =0 (p=1,2..n)

aro satisfied. When the positions of the m given points are arbitrary,
these = equations will, in general, be independent, and can therefore
only be satisfied if m is equal to, or greater than, n+1. Hence, in
gencral, a function which is unaltered by the substitutions of the
group must take every value n+1 times at least in each polygon.

Again, if f (2) be a function which is unaltered by the substitutions
of the group, and a,, ay ... a,, its zeros, by, b, ... b, its infinities inside
the generating polygon, it can be shown that

m gen
3 [0 () =0 (b)] = 2m,mi+ Emt (p=1,2...m),

where m,, n; are integers.

For consider the integral

£G)
j”f@)“

extended round the boundary of the generating polygon, including the
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barriers. It is equal to

e f:_(z)_ lz- 3 Md .
i 1J“‘;Apf("')d aa'”.[oqf(Z) “

or, since f(4,) =f(4,),

and the path of the second integral is closed, the resnlt is
2mi [2m;, mi+ S, a,,],

where m, n; are positive or negative integers.

In the generating polygon with barriers, ¢, is everywhere finite, one-
valued, and continuous, and 5 ((:)) is 80 also,exceptat the points a,,as...,
by, by ... b, and these points are simple infinities with residues +1
and —1 respectively. The integral in question, then, may be

evaluated again by taking it round infinitely small contours surround-
ing these points in the positive direction, which gives for its value

2mi3 (9, (a) — 0 (5],

and, on ecquating the two values and dividing by 274, the given result
follows.

From this, the expression of an automorphic function, in terms of
the functions x, may be at once deduced. Tor supposc that a,, a,... @,
by, b ... b, are 2m points satisfying the n conditions just investigated.

Then exp [Ellxan 5, (2)+ Eln,’,q),,],

is a function which in the generating polygon has the simple zeros
@y, @y ... @y, and the simple infinities b,, b, ... b,, ; it i3 everywhercone-
valued, and, when y2t+f, is written for 2, it becomes multiplied by

Yp2+C, .
the factor

exp § 39, ) =0 (@) ] +3n5a, ],
which is the same as exp [ —2m, =], or unity. It is, therefore, un-
changed by all the substitutions of the group.
Finally, writing, for convenience,

—_ 1 — 1 _—
_é¢p = Up —"_T,a;:p - bpm —3Qpy = bpq’



72 Mr. W, Burnside on a Olass of . [Nov. 12,
and forming the f-function

0 (2, a4, ... 2,)

= ( 3 ) exp [b“n:+ bty ...+ byynp+ 22y + ... +2a'..'n,.],

the previous results show that the conditions are satisfied for its con-
vergence 8o long as the arguments z, are finite; and if now these are
replaced by the functions w,—c,, where the ¢,’s are any constants, the
behaviour of the 6-function, when any substitution of the group is
performed on the variable, will be exactly the same as that of &
6-function, whose arguments are the integrals of the first kind, on &
Riemann’s surface when the variable describes any closed path on the
surface.

It follows that all the various known theorems, with respect to the
representation of uniform functions of position on a Riemann’s surface
by means of f-functions, may be now directly applied to the formation
of automorphic functions in terms of the 8-functions just constructed,
with the u,’s as their arguments.

7. On the Symmetrical Case,

When each of the n pairs of circles O and C,, C; and O,, &e.,
which form the boundary of the generating polygon, are inverses of
each other with respect to another circle C,, and the fundamental
substitutions which interchange C; and C,, C; and O,, &c., are all
hyperbolic, M. Poincaré calls the group symmetrical. In this case
the substitution S,, which changes C; into (,, is equivalent to a pair
of inversions performed successively at C;, and C,, and any substitution
of the group is equivalent to an even number of inversions with
respeet to the n+1 cireles C,, C;, 0; ... C,, (or Cy, C,, Gy ... C,). Con-
versely, an even number of inversions with respect to any of- the
circles C, 0] ... C; (or C, O, ... C,), is equivalent to some substi-
tution of the group. .

I shall suppose at first that the circle C, coincides with the real
axis, and shall show further on that the results so obtained may be
applied to any symmetrical group whatever.

If O, coincides with the axis of , the fundamental substitutions of-
the group can be put in the form

’

(z—a‘,” sz—ae)’
z—a, z—a,
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where X, is real, and a,, a, are conjugate imaginaries; and it there-
fore follows that the substitutions of the group may be taken in pairs

(321w (53,

such that a;, B, vy, &, and a;, B;, vi, & are respectively conjugate
imaginaries.

If 2, 2’ and q, a’ are conjugate imaginaries, so also are

(et (id+8)7

az+B aig +B; —a',
viz+3i yid 46
and therefore also 6(2,e) and 0(7,d’).

Now J, and Jp-1 are in this case conjugate imaginaries, and it has
been shown that in any case
6 (3 Tp) = 0 (3 J,),
whence it follows that
8(sJ;) snd —0(z, 7)),
are conjugate imaginaries.
Hence, when z is real, 0 (2, J,) is a pure imaginary.

Now suppose that 2’ is any point on O, so that 2 is the correspond-
ing point on 0, ; then
mod dz = mod dz’,

and arg dz = —arg dz’ = ¢,

where ¢ is the angle that the tangent at z to the circle C, makes
with the axis of z; but

’
5= 9,2 +h,

= yqz’-,-aq 1]

and therefore dz = -—L—;
(Yqz + 57)’

and (y,,z’+8q)’ = g~ %,

Also, in consequence of the relation between z and 2’,
6 (5 ) = (v,5+6,)'0(z, J,)
= e~ 4 (7, J,),
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or arg 0 (z, J,) = — 2¢p+arg6 (¢, J,) ;
but, since 8 (z, J,) and —6 (2, J,) are conjugate imaginaries,

arg 0 (z, J,) =wr—arg0 (s, J,);
therefore arg 0 (z, J,) = —72'- —¢.

The ratio of any two of the functions 6 (2, J) is therefore real at each
of the circles 0, 0,, &c., as well as at C,

The barriers in this case may be taken as straight lines perpen-
dicular to the axis of z; and since it has been shown that, when z
and 7 are conjugate imaginaries, so also are 6 (z, J,) and —6 (2, J,),
it follows at once that

[PPRICEALICTS

is real, where a,, i3 any one of the n» (n—1) constants,
Finally, since for points on any one of the bounding circles, in-
cluding 4,
arg 0 (z, J,) = —;- -0,

and arg dz = ¢,

the variable part of !0 (2, J,,) dz, or of ¢,, is a pure imaginary at all
the circles.

To extend these results to the case of any symmetrical group what-
ever, a slight digression is necessary, on the connexion between the
functions of & group S; and those of the group =-'S.%, where 3 is
any arbitrary substitution.

If (~ A‘“'B) be any substitution  not contained in the group

? Cz4D
daz‘*‘ﬁi
" yiz+6;

b33

), then the various substitutions given by

u.Az-i‘]?
Az+ B ‘Cz+D
C:+D’ Az+13

Vi Cat D +9;

+Bi

will also form a discontinuous group, that may be represented by the
accented symbols
(z iz +ﬁé)
Tyie+oi /)
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A division of the infinite plane into polygons, for this latter group, is
obtained by transforming the polygous of the first group by the sub-

stitution
(z Az + B) )
' Cz+.D

By an algebraical process very similar to that used alveady in dealing
with the fanction  (z, a), the result of making linear substitutions
for z and a in 0 (2, a) is easily obtained. Thus, if
_AZ+B 0= Ad'+DB
C7+D' Cd' +D’

then, with the notation just given,

‘ ’ 7 ’ 2 1
6 (s, a) =(az+p)z_;(7,.z+a,.)--< — cey >
- ——-_}-3 e viZ+8, + C

= (C# + D) [6' (, a)—6¢ (z', - —g )],

where 6" is a function formed with the substitutions of the new
group.

To the infinities ;‘%’_;—-’g: and ; of 0 (s a), correspona m‘; J;K;a
nd ;‘.]b) g'g i while the homologues of infinity in the new group

are not infinities of the right-hand side.
It follows that
(5 7,) = (C/+ D)0 (<, 7,)
and, since dz = (07 +D)-*dd,
¢ (2) = ¢, (),

the integrals being taken along homologous paths. In particular, the
constants a,,, a,, for the two groups are identical.

In precisely the same way it may be shown that
‘l’a (z) = (Ga,'i"D)ﬂ \b:x’ (z’)’
and Xa,b (2) = Xa,v (2).

If the genemting polygon of the group in which Q, is the axis of
@, be transformed by any linear substitution, the new polygon so
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formed will be the generating polygon of a symmetrical group, the
substitutions of which can be formed from those of the original one
by the process just investigated ; and in this manner any symmetrical
polygon, and therefore the corresponding group, can be formed.

Hence for any symmetric group the constants a,, a,, are resl, the
functions ¢, have their real parts constant at the circumferences of
the n+1 circles, and the ratio of any two of the functions 6 (z, J) is
real at the circumferences of the circles.

When the symmetrical group is also fuchsian, the » pairs of circles
are all cut at right angles by one circle, viz., the circle which is un-
changed by the substitutions of the group.

The simplest form in which to consider the symmetrical fuchsian
group is that in which the unchanged circle and A4, are taken as two
straight lines at right angles ; in particular, as the axes Oz and Oy.

If S be any substitution of the group, and 4 represent an inversion
with respect to Oy, then AS4 will also be a substitution, and these
two will be of the forms

(= 555) = (= 555)

wheve a, 8, v, & are all real ; hence, pairing the substitutions in this

way,
0 (3, a) = 1 + (viz+8)™ ( 7-z+8)u
—a 02+ﬁ, —a a;ﬂ—ﬁ‘ —a
'y,z+3 —7‘z+3,
0(—z —a) = (—y:2+8) (vi2+38)° ;
(=2 ~a) -—z+a+ 4<a¢z ﬁ + a‘z+B.+
7iz—'8t vz + 8
whence 0 (~z, —a) =—0(z a).
Now Jp—l = —J'p,
and 0 (Z, -1) =-0 (zr p) H
therefore 0(—z J,) =0(z J,).

Also, since J, is real, 6 (z, J,) and 0 (7, J,) are conjugate imaginaries,
zand z bemg conjugate imaginaries themselves.

Hence, if 6 (z, J,) vanishes when z = a +1b, it vanishes for the four
values z == a 4 7b.

Again, in this case, the function

\l‘a (z)—‘l’-a (Z),
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which is clearly not identically zero, is a fuchsian function ; for
°EZ+B!: _ al,z-}-ﬁp _ -
v ('ypz+5,, ) ¥-o (-y,,z-{-B,,) [¥e () =¥-a ()]
=0 (a, J;)—=0(—qa, J))
=0.
Hence, in the case of symmetrical fuchsian groups, automorphic
functions exist which take every value twice only in the generating

polygon. It follows that the corresponding Abelian integrals are of
the hyper-elliptic class.

8. On the Zeros of 6 (2, J).
The functions 6(z, J) have no infinities, except at the singular
points of the group, and hence the integral
1

5 [dlogO(z. J),

taken in the positive direction round the generating polygon, is equal
to the number of simple zeros of 8 (z, J) therein contained.

The barriers clearly give nothing towards the value of the integral;
also, if z is a point of O, and z, the corresponding point of O,

0 (20 J) = (v52+3,)" 0 (2, J) 5
and, therefore, when the integrals are taken round the circles in the

directions of watch-hands, so as to .make a positive circuit of the
generating polygon,

I dlog 8 (z J) + l’ dlog (2, J)
c, c;

=f [d10g 8 (s, J)—dlog (s, J) ]
[+d
=—2j dlog (v,2+3,) = 4m.

c

A similar result holds for each pair of circles, and the total number

of zeros in the generating polygon is therefore 2n. Of these zeros the
form of the function shows that two are at infinity ; for

6 (z, ﬁ) S (7,2+8,)? +3 (viz+6,)~?

= T artl, ma anth

Y %+l vpmmevistd v,

1 1 +2_(7.~z+5.~)" ;
=% i % veEtBi_a
e e viZi+d ¥,



78 Mr. W. Burnside on a Class of [Nov. 12,

and the terms which would give a simple zero at z = w, obviously
cancel each other. '

The relation a;z+f3;
0 J) = (v;z+9,)? J
(7.Z ) 4 T) (viz+9.)0 (2, J)

shows that generally, if z is a zero of 6 (z, J), so also are its homo-
logues ; but that this is not true forz = . Hence the functions 8(z,J)
have, in any region R;, 2n—2 simple zeros, while in the gencrating
polygon there is, in addition to these, a double zero at z = .

The ratio of any two lincar homogeneous functions of the 6 (z, J)’s
will be an automorphic function, which gencrally will take every value
2n—2 times in the generating or any other polygon. By a proper
choice of the constants it is clearly possible always to form in this
way a function which will take every value less than n+1 times, and
on the other hand, the known theory of uniform functious, on a
multiply-connected surface, indicates that any fuunction which takes
every value less than n+1 times should be capable of being repre-
sented in the way considered.

It is easy to verify that, in the case of -the symmetrical fuchsian
group, functions taking every value twice may be found in this way ;
for consider the function

a, 0 (2, J,))+a,0 (2, J)+...+a.0(z, J,,)
0 (2, 1)

The double zeros of the numeratox and denominator, at z = w0,
destroy each other. The 2n—2 finite zeros of the numerator depend
on the »—2 ratios of the constants, ¢.e., on 2n—4 real constants.
If z, is a zero of the denominator, two linear relations between the
2n—4 real constants must be satisfied in order that z, may also be a
zero of the numerator, and, since

0(—2J0)=0(J),

these two relations ensure that the numerator and denominator shall
have two zeros in common. Hence the available constants will enable
2n —4 zeros of the numerator to become coincident with zeros of the
denominator, so that when the constants are thus chosen, the function
is onme which becomes infinite (and therefore has every other value)
twice only in any polygon.

The calculation that has been applied to 8 (z, J) will hold similarly
with any function of the form

¥ () evir
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whero f (2) is a rational function of z; so that the number of zeros of
any such function in the generating polygon oxcceds the number of
infinitics by 2n.

9. On Groups of the First Olass which contain Elliptic Substitutions.

I now go on to consider shortly the caso in which a group contains
elliptic substitutions, so that throughout this scction it will be
_implied that the grounp is fuchsian, as tho convergenco of

Zmod (v:2+9,)~*

for kleinian groups, with olliptic substitutions, has not been proved.

The essentianl point in which this case differs from that hitherto

treated, lics in the fact that now some of the quantities
0 (2, J,) (p=1, 2...%)
will vanish identically.

That this must bo so, if the previously given theory bo correct, is
obvious at once from geomotrical considerations; for it is clear that
the closed surfuce formed by bending and deforming the generating
polygon till corresponding points of the boundary anre brought to coin-
cidenco will no longer be n+1-ply connccted, when some of the #
fundamental substitutions are elliptic.  There will, therefore, bo less
than n overywherc-finite intcgrals upon it, and, thevefore, less than »
¢-functions in connexion with the group.

Suppose,now, that an elliptic snbstitution Sis oneof tho fundamental
substitutions of tho group; and consider the corresponding 8 (z, J),
defined by -2
0z, J) = x (Feztd)

Pzl 7
yiz+d
The term writbon on the vight-hand side has a simple infinity at
N
=yt ()™
“j“"ﬂi —J
iz +§;

is the term that caucels this, then

4 (“%) +5; —y
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or 87'8,=38;
‘1:-9., Sj S 8.

If, again, the term with suffix & is that which destroys the simple
fnfinity — £, introduced by the term with suffix j, then

¥i :
Sk = S,S = S,‘S’.
Now, if m is the period of the elliptic substitution S,
8" =1;

and therefore the terms in 6 (2, J), corresponding to the substitutions
S,-, S(S, S.'Si, es S‘S'"-l', )

are such that at any point where one of the terms becomes infinite
another takes an equal and opposite infinite value.

Hence the sum of these terms, being a rational function of z which
is nowhere infinite, must be a constant, and this constant is zero, as
may beseen by making z infinite. - It follows at once that, since 8 (z, J)
is in any case a uniformly convergent series, it is in this case
identically zero.

[It may ke interesting to give the result of a similar grouping of
the terms of a 6 (z, J), which cor responds to a hyperbolic substitution.
The seues of terms

e 887, 88 L8, 88, ... 88", ...
is then infinite, and their sum is easily shown to be equal to
S S '
Z—S.' a &— S.' }3’
where a and 8 are the double points of the hyperbolic substitution.]
Not only will all the functions @ (z, J) which correspond to elliptio
substitutions, vanish identically, but it will generally happen that some
of those corresponding to hyperbolic substitutions, will also do so.

For when some of the fundamental substitutions are elliptic, there
will generally be certain identical relations, of the form

1=8"8S;...,
connecting them ; and when these are used in the equations of the

* form

N 0(2, J;>)+0(z! Jq-l)"'o (z’ Jp—l q) = 0!

established in Section 3, it will be found that the result stated will
follow.
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Owing to the infinite variety of cases that can occur, it seems
almost impossible to consider this matter generally, but the following
- simple example will illustrate the property in question.

Consider the fuchsian group formed from a single hyperbolic sub-
stitution S and a single elliptic substitution B of period 3. Taking
the generating polygon R, as previously, to contain the point at infinity
(and for simplicity assuming the unchanged circle to be the real axis),
the division of the z-plane into regions by the group is given by the
accompanying figure (the upper half only being drawn).

An inspection of the figure shows at once that SIP’ must be an
elliptic substitution of period 2, or that

(SEH = 1.
Now 0 (z, JS_,)+A0‘ (2, Jg-1) +0 (2, Tgg) = 0,

by the previously quoted equation ; but, since B! and SE® are elliptic
substitutions, the two latter terms of the equation are identically zero ;
hence, also, the first term must be. In this case, then, both the
functions 6 (z, J), corrcsponding to the fundamental substitutions,
‘vanish ; and this is in proper correspondence with the fact that the
closed surface, formed by bringing corresponding points of the boundary
of R, to coincidence, is simply-connected.

Instead of attempting to treat generally the case of a group with
elliptic substitutions, I propose to continue the discussion of the special
case in which all the 6 (z, J)’s vanish identically.

The ¢-functions, being integrals ‘of the 0 (2, J)'s, vanish identically,
or rather, do not exist.

The integrals of the second kind, Y, (z), become in this case auto-
morphic functions, which take every value once in each polygon; and
hence it immediately follows that they can all be cxpressed as linear
functions of any one of them. It is both interesting, and will serve

VOL. XXIIL—NO. 435, G
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as some verification of the general accuracy of the preceding investi-
gation, to prove this result by direct calculation.

For this purpose I transform the product 6 (a, z) 6 (@, 2) in the
following manner :—

N (via+9)"? (7’,;‘1”'*'8.5)-2
6(a,2)0(a’,2)= E§ (a-‘a+ﬁi_z) (aia.'-{-ﬁ,- -—z)

yia+d; y;a'+6;
=33 (via+38)? (y;4'+8)"? 1 _ 1 .
i aat+f a4+ q,~a.'+[i,_z a;a+0; ./
viatd  va'+8  Vya'+4 v+
(ysa+8)? _ a;a’+;
Now ? aa+Bi _ad+B 6 (a., -y,-u’+3,-)
va+d  v;a'+d;
=0 (a, a’),

since : 0(a,J)=0;
hence 0 (a,z)0(a,2) =0(a,a’)8(c,2)+0(d,a)b(a,z).

In reforence to this formula it is to be noticed that the zero of 6 (a, 2)
in the generating polygon is at infinity, and therefore independent
of a.

It has alrcady been shown, in Section 5, that
Vs (z) =0 (“’1 zo)—o'(al z),

and therefore the formula just obtained is equivalent to a lineo-linear
relation between any two y-functions. If the zero of the function be
represented in the symbol by writing ¥, (z, 2,), instead of y, (2), the
explicit relation required will be

'il’n (z, zn) _‘l‘n (z('h zo).
Yo (2, 2)) =V (@', 2)

The y-function in this case corresponds to what Prof. Klein calls a
Sfundamental function on a simply-connected Riemann’s surface; ia
terms of it any automorphic function, with a finite number of infinities,
may be expressed rationally. Its analytical form is that of an infinite
serics.

But a function with precisely the same propertics may be formed at
onco from the integrals of the third kind, 7.6, from the functions

Vo (2, 2) = Yo (a, 2)
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Xa,5 (2). For, since the ¢-functions are non-existent, it follows at once,
from their previously proved properties, that

st _ s =) Gt =)
(eE ) (5235 )
I )
)

is an automorphic¢ function with the sirgle zero a and the single
*infinity b in the generating polygon. The expressions here quoted
are convergent infinite products, whatever the value of 2, the point
z = z, being that at which the function takes the value unity. If then
2, is taken infinite, the function

“iz+ﬁi _

a

on vt ,
‘ az+,3
Yt &

is the general expression for an automorphic function, which takes
every value once in the generating polygon, in the form of an infinite
product.

The passage from the infinite series to the infinitc product form
may be carried out as follows :~—

Let 2=y, (2 b);
dz (y:z+6;)?
then 7 ? (a;z T ﬁ‘—a),,
viz+ 9
and -l—@ [ f (z)] has simple infinities at a and b, and & zero of the

second order at oo, these being its only zeros and infinities in the
generating polygon ; while also

i (7’;’5’) (470
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Hence it at once follows that

lde_ 1 1 }
@ dz }‘:(a-’z'f'ﬁi '._b_ ;24 5; )(7‘z+36) ?

_— —a

yiz 46 yi2+6

=(—i¢; [Xb,a(z)] H

or, on integration,
2 = const. X ¢Xb.a )

aiz+ﬂ|’_b
—omYetd |
- GI;I a;z+13% —a

yin+6;

Returning for a moment to the more general case, if the closed surface
formed as hefore by deforming the generating polygon is »'+1-ply
connected, it is to be cxpected that n—=’ of the 0 (z, J)'s will vanish
identicully, and that, from the remaining », a theory can be constructed
in all respects similar to that of Section 4. That this issoin the case
of any given group may be verified directly. If, among the funda-
mental substitutions of the group, there are one or more parabolic
substitutions, then, in order that the group may be discontinuous, the
double points of these substitutions, which are singular points of the
group, must be vertices of the gencrating polygon. It may be shown,
in & manucr similar to that uscd for the elliptic substitutions, that the
functions 6 (z, J), corresponding to a parabolic substitution, vanish
identically, and the preceding theory is generally applicable ; except
that the vertices themselves, which are the double points of the para-
bolic substitutions, must be reckoned as not belonging to the polygons,
for, being singular points of the group, they are essentially singular
points of all the functions considered.

10. Oonclusion.

The investigations of this paper arose in an attempt to extend to
tho caso of three or more circles the problems solved in a previous
paper *“ On Functions dectermined by their Discontinuities and by a
certain form of Boundary Condition,” which was printed in Vol. xxu.
of the Society’s Proceedings. By using the method and notation of
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that paper, a series, defined by the equation -

w=-A Ay A A Ay | An
z—a  z—ap 2z—0, z—a, z—ay 2-—ay

ot —= Auy +ooto,
2=y
may be formed, which, if convergent, will represent ih the space
external to n+1 circles, each of which is exfernal to all the others, &
function with a single infinity at a, and whose imagivary part has
constant values at the circles:

It (zlnz_"'fi) (, auz+B,

) are the » linear substitutions equi-

7]z+él ’ Vnz+ n
valent to pairs of inversions at the circles 0 and 1, 0 and 2, ... Oand »,
a;z+ b, + B

respectively, and ( ) any substitution of the group formed

viz+6;
from these as funda.menta.l substitutions, it may be dlrectly verified
that the above series is

AE ('Y‘a'*'a') +A by (vs0,+6)72
_ae+f; a,a,0+ﬂ
ia+5c ' 7-“0"'54

and that it is therefore a convergent series, and does in fact represent
the function in question. An indirect proof of the accuracy of this
statement will be now given, so that the direct one, which, though
simple, cannot be made very short, may be omitted.

Consider, in the first case of the symmetrical group, namely, that
for which the (n+41)th circle is taken as the real axis, the function

Ay, (2) + A'Yar (2),

where 4, 4, and a, o’ are conjugate imaginaries.

Regarded 'as a function of z, this expression has entircly real
coefficients, and therefore will take conjugate imaginary values when
z does.

Now let z be any point on the circle 0y, s0 that 2’is the correspond-
ing point on C,.. Then, if

AV, (2) + 4V () = P+iQ,
Ae (2) + A’y () = P~iQ;

but 7= 222 5 7+R
Vp2 +5
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and therefore
Ay (2) + AV (2) — [ AY (2) + AVe () ] = 40 (a, J;) + 40 (2, ),
or 1Q = 340 (a, J,) + 340 (¢, J,).

It follows that, at each separate circular boundmg curve of the gener-
ating polygon, the imaginary part of

Ay, (2)+ Ao (2)
has constant values.

If, now, the transformation described in Section 7 be applied to this
function, it becomes '

A (yb+8)* ¢, (2) + 4’ (vbo+8)* s, (2),

where the y-functions nre formed with the substitutions of the new
group, while b, b, are inverse points with rcspect to the (n+ 1)t circle,
which itself is the result of transforming the real axis by the sub-

stitution (z, az+ 3
vz+38

) of tho transformation.

The relatious between b, b, and a, a’ are

or, since @, a’ are conjugate imaginarics,

aby+B _ V4B
'yb +8  ¢V+ o+8

db ay
and therefore 0 = .
' (htdy (7O +0)
Finolly, if A(yb +3)! = B,
] ’ [ — ’ 'ybn+ 8 db
then A (yby+3)' =B (7——,1),+8,) gk

and therefore, for any symmetric group,
B () + B0, )

is a function whose imaginary part has constant values at n+1 given
circles (each external to all the others) and which has a single infinity, _
with given residue I, in the space bounded by them.
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On substituting for the y-functions by means of the equation
¥ (2) = 6 (b, 2,) —0 (b, 2),
and re-writing @ and ¢, for b and b, the expression just obtained is

at once seen to differ only by a constant from the previous function w.
A reference to p. 352 of my former paper, already quoted, will show

that 4, = A'—Z%, which is the necessary relation between the coefficients,
If the point a is at infinity, so that a, is the centre of the (n+ 1)tk
cirole, w =AY, (2) + A'r3ya, (2),
or, written at length,
i G R i e e )
viz+d 0 yim+d

and the real and imaginary parts of w will be respectively the velocity-
potential and stream-function for a uniform streaming motion past
the n+1 circles, the speed of the stream at an infinite distance, and
the angle it makes with the renl axis, being mod. 4 and arg. 4.

The » functions ¢,, ¢, ... ¢,, the group being still considered sym-
metrical, are the functions of 2 whose imaginary and real parts give
the velocity-potentials and the stream-functions for the n independent
circulating motions that can take place about the n+1 circles, on the
supposition that the circulation in any circuit enclosing all the n+1
circles is zero.

For, if x,, &; ... x4, are the circulation constants for the n+1 circles,
connected by the relation

K Fkgt oo+ Ky = 0,
then the function K10+ Ky P+ oo +K, 0,

is everywhere finite in the space external to the n+1 circles, while
its real part is constant at each circle, and increases by x, when the-
variable describes a closed path which surrounds the #*" circle once.
But these are the conditions that «+<v should satisfy if « is the
strenm-function and —o the velocity-potential of the proposed circu-
lating motion.

The two examples just given will sorve to show that the theory of
automorphic functions of the first class may serve to elucidate con-
siderably many two-dimensional physical problems. With respect to
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the general problem dealt with in the previously quoted paper, viz.,
the formation of a function w with given infinities, such that the
imaginary part of we®®r is constant at the circamference of the circle
0.(r=1,2, - n+1), it will be found that, even when the differences
6,—0, are commensurable with =, the terms in the infinite series for w

~ which contain the same exponential do not: arise from one of them by
the operations of any sub-group of the original group; and therefore,
that w cannot be represented as the sum of a finite number of -functions
formed from the substitutions of sub-groups in a manner analogous to
that proved to be possible when the group arose from a single funda-
mental substitution.

Note on the Motion of a Fluid Ellipsoid under its own Attraction.
By M. J. M. Hill, M.A., Sec.D., Professor of Mathematics at
University Colléege, London. Communicated in Abstract,
June 11th, 1891. Received January 27th, 1892,

1. In regard to this case of Fluid Motion, it was shown by
Dirichlet that the particles which, at any instant, lie on an ellipsoid
concentric, similar, and similarly situated to the external free surface, -
always do 8o ; or,one family of surfaces, which always contain the same
particles, is & family of ellipsoids whick move so as always to be
similar and similarly situated to the boundary.

The following additional results regarding this case of Flaid Motion
were recently communicated to me by Mr. A. E. H. Love.

2. The particles which, at any instant, lie on a tangent plane to one
of the ellipsoids concentric, similar, and similarly situated to the free
surface, always lie on a tangent plane to this moving ellipsoid, and the
same particle is always at the point of contact.

3. The enveloping cylinders of the ellipsoids mentioned above,
whose generators are parallel to the vortex lines, always contain the
same particles. Hence there are two families of surfaces, viz., the
ellipsoids and the enveloping cylinders, which move so as to contain
the same particles, and are such that one particular member of one
always touches one particular member of the other.





