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1. Discussions of true maxima and minima of integrals with
variable limits, as distinguished from merely stationary solutions,
are rare in the standard text-books. Moigno has none; Jellett,
Todhunter, and Carll have each obtained different and erroneous
results in the one example they all give, that of the maximum solid
of revolution for given superficial area (see Jellett, Gal. of Var.,
pp. 161-165; Todhunter, History of Cal of Var., p. 408; Carll, Gal
of Var., pp. 122 and 129). The only other problem with variable
limits I can find attempted in those text-books is one selected by
Mr. Todhunter in his History, p. 328, in order to show that the
ordinary method is insufficient when the limits themselves enter into
the quantity to be integrated. Mr. Carll adopts Mr. Todhunter's
view, insisting even more strongly on the inadequacy of the ordinary
method. But the ordinary method, though clumsy, is in every case
adequate.

The absence of examples is doubtless due to the fact that writers
on the calculus of variations have considered the variability of the
constants as introducing only a problem of the differential calculus,
and have contented themselves by saying that, if the stationary value
of the integral be expressed in terms of the arbitrary constants, the
rule for ascertaining whether the solution is a maximum or a mini-
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mum is well known. But the direct solution springs so naturally
from the equations of the calculus of variations that reference to the
differential calculus is superfluous.

2. Following the notation on pp. 242-244 of Proc. of the Lond:
Math. Soc, Vol. XXIII., I use A to denote variations of the limiting
Values of x and y. Then, if V be the integral, we may 'write the
reduced form of the first variation as

'~"Mtydx ...(1).

Now, if we suppose .8 to be the stationary value of the integral
expressed as a function of the limiting values of x,y,y, ... y*"'1', then
the change in the stationary value as we pass from one set of
limiting values to another is clearly

f; Aa + | Atf + ̂  Ay + &c.+ - 4 f S i Ajf C--iV-...(8).
dx .dx.. dy . dy (n' " •

Since therefore each stationary value makes -M == 0, we get from
comparing (I) and (2) the following values of the partial differential
coefficients of S Avith regard to limits :—

dS „ dS , A" dS . At o

Hence -r-^, -, &c, are obtained by differentiating these values,
dx dx dy

and the ordinary method of calculating the stationary values by
direct integration, and then finding by differentiation the first and
second partial differential coefficients, requires us to take a lot of
trouble to obtain what the equations of the calculus give us at once.

3. If the stationary value S is a maximum for fixed limits, and if
8 itself is a maximum when the limits are variable, then evidently S
is a true maximum among all neighbouring values of the integral.
But if while 8 is a maximum among integrals with the same limits,
it is a minimum among stationary integrals with consecutive' limits, then
it is neither a maximum nor a •miriimum among" all consecutive
integrals.
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4. Example I.—To find the curve which generates the solid of
revolution of maximum volume for given superficial area, one
extremity x'y to lie on the axis of revolution, and the other x'y" to
lie on the curve y = 6 (a1.). (The references to Jellett, Todhunter, and
Carll on this problem have already been given.)

Here, taking y = 0 as the axis of revolution, we get for U

a being Euler's multiplier, and from SU = 0 we get

^+-^==0 (3);

but, since y = 0, we get (7 = 0, which gives for the solution

ys+(x-6)8 = a2,

and the Jacobian condition, as extended to this case (see Proc. Lond.
Math. Soc, Vol. xxui.,p. 249) shows that for fixed limits U is a true
maximum.

The limiting terms are

" I (y' + ay^T+f) Ax+ ^L.iAy-yAx)] (4)-,

and when we substitute for y its value v/a* —y*/y, from (3), the
coefficients of Ax' and Ax" disappear, and, since Ay' is always zero by
the conditions of the problem, the limiting terms reduce to

ay"f/</!+$"> Ay"-,

or y"Ja*-y"%Ay".

But, if 27r&8 be the given value of the superficial area, we have

, _
a

and therefore, finally,
*8
dy"

a - 2 j p

Hence y" = 0 and y" =s ± k give us stationary solutions. To
ascertain if the stationary solutions give maxima values to the

J3Cf

integral, t a k e - - ^ , and substitute these values. Now the sign of
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tPS/dy"* is easily seen to be the same as that of

in which the positive sign is to be given to the square root. Hence
y" = 0 gives a minimum value to 8, and therefore neither a maxi-
mum nor a minimum value to U, but y"= k gives a maximum value
to 8, and therefore also to U.

So far, we have not considered the form of the limiting curve
y = 6 (x). To find for what values of x" we get maxima values of
U we must express 8 as a function of x". Of course, we get

d8__±d8_ &£_ff( "x d§[
dx" dy" dx" ^ }dy"'

Hence we get stationary values for the same values of y" as before,
and also when & (x") = 0. Again,

K ' dy" L K ' J dy"*

Therefore, if the curve y = 0 (a) has at any point P a minimum
ordinate greater than k, or a maximum ordinate less than k, then
these ordinates give maxima values to 17, for dS/dy" is negative if
y>kt and positive if y< k.*

Example II.—To find the brachistochrone for a particle descending
from a curve y' = B (x') to another curve y" = <f> (x")t the initial
velocity being that due to a height h.

Mr. Todhunter gives this as a problem in which the fact that the
limit appears in the quantity to be integrated introduces a difficulty
not provided for in the ordinary method, and after three pages of
work he leaves the second variation in a form which cannot be calcu-
lated because it still contains arbitrary variations under the integral

* Prof. Jellett's result is that, if the ordinate of y = 0 (x) be a minmniTnt the
volume will be a true maximum, while, if the ordinate be a maximum, tbe volume
will only be a maximum compared with others obtained by the revolution of a
circular arc. He does not give his work, nor does he give the value y = k at all.

Mr. Todhunter, in amending Prof. Jellett's conclusions, seems to have forgotten
that, if 5 be a minimum, U is not also a minimum, a point which Prof. Jellett evi-
dently had in view, and he must also have made some error in his clerical work,
eince his result is that, if y = k be a maximum or a minimum ordinate, U is also a
maximum or a minimum respectively, whereas y = k always makes U a maximum,
independently of the curve y = 6 (x).

Mr. Carll, in reproducing Mr. Todhunter's result, says that he has carefully
checked the work, but he also has fallen into some clerical error in calculating his
d*vjdx* (p. 130), which does not change sign, as he states, but is always negative.
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sign. He then abandons the problem as insoluble by known methods
(see his History, p. 328).

Taking the axis of x vertically downwards, the velocity at any
point x is proportional to */h+x—x\ which I shall write as
Hence the problem is to make

a minimum.
The stationary curve gives

( 4 ) >

where a is a constant of integration; and the limiting conditions give

Ay' = 0' (a?') Aa;' and Ay" = ^' (a:") Aa;".

Hence, eliminating if' and y" from the limiting terms by means of (4),
we easily reduce SUto the form

Hence « « -
daj

and it is only necessary to find —— , --, „ , and -r -^ , and put their
. . . ax ax ax ax

values into
#8 <PS ( d*S \ '
daj^ da;"8 Vdaj'da;"/ '

in order to complete the solution. Thus the work of the calculus of
variations is complete.

But the further differentiation is very complicated, because the
constant a is a function of x and x" determined by the condition that
the solution passes through the points x'y and x"y". The equation
which determines a is

i n - 1 ^ - vershr1 ^) = 0 ...(6),
a a /

and the utmost simplification we can make is to get rid of transcen-
dental functions of a from the second differential coefficients ; a itself
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cannot be eliminated completely. I have calculated them out in this
form, but, as the result is still extremely complicated, it is not given
here.

The ordinary method appears to promise well. The time along
the stationary curve is

t = y/a I versin ' versin ' — I,
\ a a I

and the problem is to make this a minimum where a is a function of.
x and x" determined by (6). The problem is more difficult than it
looks, however, the work required to find even the first differential
coefficients.in.(5) being.very long.

5. The criteria for distinguishing maxima and minima values
for fixed limits of x and y when s is the independent variable, and
the length of the curve is not given, were not included in the previous
paper in Vol. XXIII., and the discussion there promised must now be
given.

Let 77 = uds;
JQ

then the extended Jacobian criterion only applies when we suppose s,
as well as the ay-limits, to be unchanged by the variation given, and
therefore even for fixed limits of P and Q it is necessary to investi-
gate the effect of a variation of s. The paper referred to enables
us to ascertain whether the stationary curve is a maximum when
compared with any other curve of the same length, and there-
fore, if we express the stationary value, 8, of the integral for a curve
of given length with the given ay-limits, we have only to ascertain
whether that stationary value is a maximum when the length be
varied, that is, we have to find the signs of

-z-z and
da" \dsds") da'* efc"3"

We can see, too," that this must include that part of the criterion for
fixed ay-limits which relates to the conjugate point (see Vol. xxnr.,
p. 247). For the value of t*he integral, taken along a stationary
curve from any point to the conjugate point, differs only from its
value - taken along a consecutive stationary curve by terms of the
third order. Hence the portion quadratic in As must vanish
when the integration extends from any point to its conjugate,
i.e., the second differential coefficients of 8 with regard to the s-limita
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change sigh, and, if the maximum property held within those limits,
it holds no longer when the integral is extended beyond them.

The following problem illustrates this.
Example III.—To find the minimum surface of revolution round

an axis y = 0 which passes through two points whose common dis-
tance from the axis is y'. Here

and Aze', A?/', &c, are zero, since the limits of x and y are fixed,

W— (y—A)As+l < (1 — — (Ay)] $y— — (Arc) <

Hence 1 - - (Ay) = 0, ^- (Ax) = 0,
ds ds

from which we obtain

a, 6, c, and d being constants. Taking the a>axis symmetrically,
d = 0; also 26 =̂  — s"—s', so that we obtain

(y'-o/y = us"-s/r+o' (7),

«"-«' = cC^.-e"^) (8),

y ' - a = X = | - ( ^ + e - ^ ) (9).

From (9) we see that X is positive throughout,.so that, when all
limits are fixed, the integral is a maximum. Again, from the
expression for BU, we have

TT d*S _ da d?S _ _ da_ d*S da _ da.
ce d?*~d7" ds""- 27y d7d7'~JP~~ds~r''

and the sign of the first of these coefficients gives us all we require.

Differentiating (7) and (8), we obtain
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Hence, putting a = 0, and eliminating y by (9), we obtain, after
one or two reductions,

c
ds"1 ds" 2 c(ex''e-e-'")-a;/(e*'"+e-''e)'

The denominator of this fraction is always negative (this is
evident when x is greater than c, and when x' is less than c it may
be seen by expanding). The numerator is the well-known quantity
whose sign distinguishes whether the " conjugate point" has been in-
cluded in the integration, in which case the minimum property no
longer holds.

In the following problem all the limits are variable. It is a modi-
fication of the well known problem of describing the curve which,
with given perimeter, shall contain the greatest area, and is remark*
able in that it has an indefinite number of maxima and minima
solutions.

To make ^"^1 ( 2s + -*-—^—*—db]ds a maximum or a

minimum.

Adding \\ («l+#1 — 1) to the bracket, we get for h U,

Hence, from equating to zero the quantity under the integral sign,
we get

A = 6, x-\y = a (11),

a and b being constants of integration. Combined with

these give readily enough

X = r, x = rcos [ — +c)+a, y = rsin ( — +o | +(b) ...(12).

r, a, b, and c being the four constants of integration, which with B'
and s" enable us to satisfy the six conditions at the limits. Using
(11) and (12) to simplify the limiting terms in (10), and writing, as
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before, 8 for the stationary value of U, we get for the six conditions
at the limits the equations

do n do n s r\
T, — 0, -j-;; = 0, &c. = 0,
as ds

PH) f

x'+x" dS
— = —77

2 <fy'
Hence, for the stationary value, we get, taking »">/ ,

dSf v ., x' x
—; = — Ky = a
dy J 2 2 2

(16).

(The fact that s and s" are given by the same quadratic equation
arises from the constancy of A, and is, of course, a mere accidental
peculiarity in the problem.)

Again, (14) and (15) taken with (12) give us

cos ( ^ +c\ +cos /— +c) = 0 (17),

sin (— +c) +sin (— +0) = 0 (18).

These equations combined give us

S-=^ = (2M + 1) ir (19).
r

From (19) and (16), we get

2 ^ + / r = (2» + l)ra- (20),

from which we obtain approximately, if we take n = 0,

or » = - 4 6 x Z (21),

and, whatever value we take for n, we always get one positive and
one negative root.

When the limits are^'ed, we always get either a maximum or a
minimum value of TJt which is evident geometrically, since the pro-
blem is then to draw between two points a curve of given length
which shall contain with the chord the greatest area, or tho least
area (t'.e., the maximum negative area). The solution, as is well

VOL. xxv.—NO. 498. 2 B
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known, is a circular arc, and when rds or r («"-—«') is positive it
gives the minimum, and when negative the maximum, value. Hence,
by (19), when n is a positive integer the solution is a minimum, and
when n is a negative integer it is a maximum.

There is, however, nothing in the problem to fix the positions or
directions of the axes of x and y coordinates, and it is evidently per-
missible to fix the origin at the centre of the circle which gives the
solution-of the problem, and to take y and y" as zero, i.e., to choose
the y-axis so as to pass through the two extremities of the semi-
circle. If also we choose the positive direction of the x-axis from x'
to x'\ we get for the constants a, 6, and c the following equations :—

a = 0, i = 0 (22),

= 0 (23),

cos ( he 1 = — 1, cos I— -fc) = + 1 (24);

but when r is negative the signs on the right-hand of the equation
(24) must be changed if x" is to be positive, and x' negative. That
the four equations (22) and (23) are consistent is evident either by
the geometry of the solution or from (17), (18), and (19). These
equations, with

x"—x' = + 2y/r3, y"-y' = O (26),

enable us greatly to simplify the work of obtaining the second
differential coefficients of 8. We do not require to determine the
constant c.

In testing whether the solution is a maximum or a minimum, we
JO

must, of course, use the expressions for —, <fec, in (13), (14), and
us

(15) in their unreduced forms, reducing by the values corresponding
to the stationary solution only when all the differentiations have
been performed. Before differentiating (13), (14), and (15), it is
convenient to obtain the differential coefficients of r, a, and 6, with
respect to the limits.

From (12), we get

-y')1 = 2rsin ( ^ ) (27) ;
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therefore 0 = — ( 2 sin cos —-—) —cos —— ;
ds \ r r 2r / 2r

«"— sf

but, by (19), cos —-— = 0,

wherefore, for the stationary value

| l = | ^ = 0 (28),

Again, from (27),

x"—x dr (o<,:~
= 12 sin —

2r r

\~ s"—8'\
cos —-— ,

2r P

which becomes for the stationary value, by (19) and (26),

dx~ a " dx

again, for the stationary value

ar — __ ar — __ y ~ y — o f9Q\

dy dy 4r
Again, from (12), we get

x"+x'—r\ cos f ~ +cj+cos f — +c) = 2a.

Hence

in which the quantities inside the brackets vanish by (23) and (24).

Hence ^L = A = i (30),
ax dx

and, similarly, we show that

-^ = -7 -̂, = 0 (31)-
dy dy

Again, y"+y'-2r fsin (— +c) +sin (— +c)j = 26;

2 B 2
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therefore

— --, I sin I he )+sin he cos I— +c) cos ( he
ax L \ r I \ r I r \ r I r \r / J

Reducing this by (19), (23), (24), and (28), we get

db s"—s' "" "\
dx 4?* ' 4 I
,. (32).
db _ 7r I

dx" 4 /
and, similarly, we may easily show that

* = * = 0 (33).
dij dy

It is now easy to find the second differential coefficients. From
(13), we get

| ; = 2 4 + 2 = 2 = -I = 86ff

ds I I I

(84),

taking the positive root. This is also the value of d?S/ds"2, and
d\S dr n

Again, from (13) and (28), we get

d*S _ <h_ _ _ x _ $S
ds'dx ~ dx'~ 2 ~ ds"dx"

Similarly, we get

and, from (14) and (32),

a

d?S _ d?S _diS _ db _ *•
&x'dx"~ dx"*~ dx'~ 4

while it is easy to 'see that the remaining coefficients, which all have
dy' or dy" in the denominator, vanish.
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Hence, from (34) to (39), the part depending on the limits may be
written as

8

each line of which is evidently positive.

Hence the integral is a true minimum for these values of the
limits.

There are, however, other solutions with » > O o r n < 0 , and these
must be examined. Since we take s"—s positive, it is evident from
(20) that 2ra + 1 and r must have the same sign, and hence, if n be
taken positively, only the positive root of r can be used. If we work
out the condition analogous to (40), we shall find that every positive
root for r got from putting n = 1, 2, 3, &c, in (20) gives a new mini-
mum solution in which the integration extends over an arc 3ir, 5ir,
&c, round the circle, so that the area may be counted many times
over in the integral, while, similarly, each negative value of r got
from (20) by putting n = — 1, » = — 2, &c, gives us a maximum
value of the integral. Thus there are to this integral an indefinite
number of maxima and minima solutions.

As this result is in direct opposition to the principles laid down in
Moigno, Jellett, and other text-books, which state that, if the limits
are all variable, it is impossible that there should be a maximum or
a minimum value, it is well to point out the error in the arguments
used by these authoi's, and thus remove a primd facie doubt as to the
correctness of the above solution. Jellett gives two reasons: first,
he counts the disposable constants and finds them insufficient in
number, but the insufficiency is due to his leaving out the two dis-
posable limits x and a>" (or in the above problem s' and «") ; secondly,
he says that we may see a priori that there can be no maximum or
minimum because the integral must be susceptible of all ranges of
values if everything but its form be arbitrary, an argument which is
obviously invalid, as it would equally show that the expression
(y—a)(y—b)(y—c) had no maximum or minimum. Moigno's reason
is that when all the limits are variable the solution requires x = x'\
and the whole integral disappears, the error here being that he has
omitted all the other solutions which give x different from x"; in
the present example we have taken a root s' different from the s"
root. But, besides this fatal objection, there are two others: first,
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that even if we admit his statement, the resulting value zero for the
integral would be a true stationary value, and might be a true maxi-
mum or minimum; and, second, that there are many integrals in
which the initial and final coordinates do not appear symmetrically.

6. When we examine the maxima and minima of double integrals
with variable limits, we find an entirely new problem before us, be-
cause the ordinary rules of the calculus of variations for ascertaining
the maxima and minima values of single integrals are not applicable
to the single integrals which we obtain as limiting terms in dealing
with double integrals. In fact, none of the rules for the discrimina-
tion of maxima and minima values already given, either in the
present paper or the preceding one, are applicable where y is a single-
valued function of x.

Thursday, June lUh, 1894.

Mr. A. B. KEMPE, F.R.S., President, in the Chair.

There not being the number of members present required by
Rule XLiv. to constitute a " Special " Meeting, Mr. Tucker was called
upon to Communicate abstracts of the following papers which had
been received :—

The Solutions of
8 i n h ( x £ ) "='<*>•

A a Constant: Mr. F. H. Jackson.
A Theorem in Inequalities: Mr. A. R. Johnson.
Some Properties of Two Circles : Mr. Tucker.
Note on Four Special Circles of Inversion of a System of

" Generalized Brocard " Circles of a Plane Triangle: Mr. J.
Griffiths.

On the Order of the Eliminant of Two or More Equations: Dr.
R. Lachlan.

Impromptu communications were then made by Prof. Greenhill
(on a Gyrostatic Top), Dr. Larmor, and Prof. M. J. M. Hill.
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There being at this time a quorum, the meeting was made

SPECIAL.

. The President read out five resolutions which had been approved
by the Council, and invited discussion upon them, and upon the
" Memorandum and Articles of Association of the London Mathe-
matical Society," printed copies of which were put into the hands of
the members present.

After some discussion, the resolutions, having been slightly
amended, were submitted to the meeting and carried unanimously in
the following forms:—

1. That the London Mathematical Society be incorporated under
§ 23 of the Companies Act, 1867, with the Memorandum and
Articles of Association submitted by the Council.

2. That before such Incorporation all the liabilities of the present
Society be discharged by the Treasurer, and all persons dealing
with the Society as creditors be informed that the Society will
be incorporated under § 23 of the Companies Act, 1867, and
the present constitution be terminated.

3. That the Incorporation be effected by the Council.
4. That immediately after the Incorporation of the London Mathe-

matical Society all the property now held by trustees for the
benefit of the Society be transferred to the Society itself, and
that the Council take all necessary steps to effect this transfer.

5. That upon such incorporation and transfer being completed, the
present constitution of the Society shall be terminated.

The following presents were received :—
" Proceedings of the Royal Society," Vol. LV., NO. 333.
"Beibliitter zu den Annalen der Physik und Chemie," Bd. xvin., St. 6;

Leipzig, 1894.
'• Proceedings of the Edinburgh Mathematical Society," Vol. i., Session 1883.
" Berichte iiber die Verhandlungon der Koniglich Siichsischen Gesellschaft der

Wissenschaften zu Leipzig," 1894, I.
" Memoirs and Proceedings of the Manchester Literary and Philosophical

Society," Vol. vin., No. 2 ; Manchester, 1893-4.
"Nyt Tidsskrift for Mathematik," A. Femte Aargang, Nos. 2, 3; and B.

Femte Aargang, No. 1.
" Archives Neerlandaises des Sciences Exactes et Naturelles," Tome xxvn.,

Livr. 4 and 5, and Tome XXVIII., Livr. 1 ; Harlem, 1894.
"Jahrbuch iiber die Fortschritte der Mathematik," Bd. XXIII., Heft 2;

Berlin, 1894.
" Bulletin de la Soci6t6 Mathematique de France," Tome XXII., Noa. 3 and 4 ;

Paris, 1894.



876 Mr. John Griffiths on Inversion of a System of [June 14>

11 Bulletin of the New York Mathematical Society," Vol. m., No. 8 ; May, 1894.
" Rendiconti del Circolo Matematico di Palermo," Tomovui., Fasc. 1, 2, and3 ;

1894.
" Atti della Reale Accademia dei Lined—Rendiconti," Serie 6, Vol. in., Fasc.

8, Sem. 1; Roma, 1894.
D'Ocagne, M.—" Surla CompositiondesLois d'Erreure de Situationd'un Point"

(from Cowptes Jtendtta).
•• Educational Times," June, 1894.
••Indian Engineering," Vol. xv., NOB. 16-20.
•• Royal Society Catalogue of Scientific Papers," Oir.-Pet, Vol. x., 4to; London,

1894.
Mannheim, Le Col. A.—" Principes et D6veloppemente de G6om6trie Cin6mati-

que," 4to ; Paris, 1894.
"Memorie della Regia Accademia di Scienze, Lettere ed Arti in Modena,"

Serie 11, Vol. ix. ; Modena, 1893.

Note on Four Special Circles of Inversion of a System of
Generalized Brocard Circles of a Plane Triangle. By JOHN
GRIFFITHS, M.A. Received May 26th, 1894. Read June
14th, 1894.

Connected with a system of generalized Brocard circles of a
triangle there are four circles—say, J, / „ /„ Jt—with respect to each
of which the inverse of every circle of the system is a circle of the
same system. Or we may briefly say that a system of generalized
Brocard circles is self-inverse with regard to four different centres.

In a note recently communicated by me to the Society (see Pro-
ceedings, Vol. xxv., Nos. 479, 480), it was shown that a triangle ABO
has three systems of what may be called generalized Brocard circles,
or, shortly, G.B. circles. Every circle in each of the three systems in
question possesses properties analogous to the Brocard circle of ABO,
and can be constructed by means of a certain number of points
dependent on a variable primary point 17, taken on one of three given
circles connected with the triangle ABC.

If U be a point on the circular arc BTJO which touches AO in O,#

and the angle UBG be denoted by w, the equation in isogonal coordi-
nates of the G.B. circle of the first system corresponding to U is

OBC (x, y, z, cot en) = Xx f/jj/ + tz — h = 0,

* Sec Fig., page 381.




