PAPERS

PUBLISHED IN THE

PROCEEDINGS OF TIHE LONDON MATHEMATICAL SOCIETY

ON SUB-GROUPS OF A FINITE ABELIAN GROUP

By Harold Hilton.

[Received October ith, 1906.-Read November Sth, 1906.]

1. Let H be a sub-group of order p^{r} in a finite Abelian group G whose order is p^{α} (p prime). Let t_{1} of the invariants of H be $1, t_{2}$ be $2, \ldots, t_{m}$ be m. Let u_{1} of the invariants of G be $1, u_{2}$ be $2, \ldots, u_{m}$ be m. The quantities $t_{1}, t_{2}, t_{3}, \ldots, u_{1}, u_{2}, u_{3}, \ldots$ are zeros or positive integers ($u_{m}>0$).

Then

$$
\alpha=u_{1}+2 u_{2}+3 u_{3}+\ldots, \quad r=t_{1}+2 t_{2}+3 t_{3}+\ldots ;
$$

let

$$
u=u_{1}+u_{2}+u_{3}+\ldots, \quad t=t_{1}+t_{2}+t_{3}+\ldots
$$

We first find the number (X) of ways in which a base $\left[g_{1}, g_{2}, g_{3}, \ldots\right]$ can be chosen for a sub-group of G of the same type as H.

Let $\left[h_{1}, h_{2}, h_{3}, \ldots\right]$ be a base of G. Then G contains $\left(p^{\prime \prime m}-1\right) p^{a-n_{n \prime}}$ elements of order p^{m}; namely, $h_{1}^{\beta_{1}} h_{2}^{\beta_{2}} h_{3}^{\beta_{3}} \ldots$, where at least one of $\beta_{1}, \beta_{2}, \ldots, \beta_{u_{m}}$ is prime to p.* Therefore g_{1} can be chosen in $\left(p^{u_{m}}-1\right) p^{a-u_{m}}$ ways.

When g_{1} is chosen $\left[y_{1}, h_{2}, h_{3}, \ldots\right]$ may be taken as a base of G. Then G contains $(p-1) p^{a-\mu_{m}}$ elements of order p^{m} whose p^{m-1}-th powers are in $\left\{g_{1}\right\}$; namely, $g_{1}^{\beta_{1}} l_{2}^{\beta_{2}} l_{3}^{\beta_{3}} \cdot:$, , where $\beta_{2}, \beta_{3}, \ldots, \beta_{u_{1}}$ are multiples of μ, β_{1} is prime to p, and $\beta_{n_{m+1}}, \beta_{u_{m+1}+\ldots}, \ldots$ are any integers. Therefore G contains

$$
\left[\left(p^{u_{m}}-1\right)-(p-1)\right] p^{\omega_{1}-u_{m}}=\left(p^{u_{m}-1}-1\right) p^{1+a-u_{u} .}
$$

[^0]elements of order p^{m} whose p^{m-1}-th powers are not in $\left\{g_{1}\right\}$; i.e., g_{2} may be chosen in $\left(p^{n_{m}}-1\right) p^{1+a-n_{m}}$ ways when g_{1} is given.

Again. when g_{1} and g_{2} are chosen $\left[g_{1}, g_{2}, h_{3}, h_{4}, \ldots\right]$ may be taken as a base of G. Then G contains $\left(p^{2}-1\right) p^{a-u_{m}}$ elements of order p^{m} whose p^{m-1}-th powers are in $\left\{g_{1}, g_{2}\right\}$; namely, $g_{1}^{\beta_{1}} g_{2}^{\beta_{2}} h_{3}^{\beta_{3}} h_{4}^{\beta_{4}} \ldots$, where $\beta_{3}, \beta_{4}, \ldots, \beta_{u_{\mathrm{m}}}$ are multiples of p, β_{1} or β_{2} is prime to p, and $\beta_{n_{n}+1}, \beta_{u_{n+1}+2}, \ldots$ are any integers. Therefore G contains

$$
\left[\left(p^{u_{m}}-1\right)-\left(p^{2}-1\right)\right] p^{a-u_{m}}=\left(p^{u_{m m}-2}-1\right) p^{2+a-u_{m}}
$$

elements of order p^{m} whose p^{m-1} - th powers are not in $\left\{g_{1}, g_{2}\right\}$; i.e., g_{3} may be chosen in $\left(p^{u_{., n}-2}-1\right) p^{2+a-u_{m}}$ ways when g_{1} and g_{2} are given.

This reasoning may be continued to show that the first t_{m} generators of the base may be chosen in $\frac{f\left(u_{m}\right)}{f\left(u_{m}-t_{m}\right)} p^{t_{m}\left(a-u_{m}\right)+\frac{2 d}{2} t_{m}\left(t_{m}-1\right)}$ ways; where $f(k)$ denotes $\left(p^{k}-1\right)\left(p^{k-1}-1\right) \ldots\left(p^{2}-1\right)(p-1)$ and $f(0)=1$.

Now, when $\left[h_{1}, h_{2}, h_{3}, \ldots\right]$ is a base of G every element of order p^{m-1} in G is contained in the group whose base is

$$
\left[h_{1}^{p}, h_{2}^{p}, \ldots, h_{u_{m}}^{p}, h_{u_{m}+1}, h_{u_{m}+2}, \ldots\right]
$$

and conversely. Hence, by reasoning precisely similar to that used above, (r contains $\left(p^{u_{m}+u_{m-1}}-1\right.$) $p^{\alpha-u_{m-1}-2 u_{m}}$ elements of order p^{m-1}, and the p^{m-2}-th powers of $\left(p^{t_{m}}-1\right) p^{a-u_{m-1}-2 u_{m}}$ of these elements are in $\therefore g_{1}, g_{2}, \ldots, g_{t_{m}} \vdots$. Hence, as before, $g_{t_{m}+1}$ can be chosen in

$$
\left(p^{u_{m}+u_{m-1}-t_{, \ldots}}-1\right) p^{t_{m}+a-u_{m-1}-2 u_{m}}
$$

ways when $g_{1}, g_{2}, \ldots, g_{t_{m}}$ are given.
Proceeding as before, we see that $g_{t_{m}+2}$ can be chosen in

$$
\left(p^{u_{m}+u_{m-1}-t_{m}-1}-1\right) p^{1+t_{m}+a-u_{m-1}-2 u_{m}}
$$

ways when $g_{1}, g_{2}, \ldots, g_{t_{n}+1}$ are given. Thus we show that the first $t_{n}+t_{m-1}$ generators of the base may be chosen in

$$
\begin{aligned}
& \frac{f\left(u_{m}\right)}{f\left(u_{m}-t_{m}\right)} \frac{f\left(u_{m}+u_{m-1}-t_{m}\right)}{f\left(u_{m}+u_{m-1}-t_{m}-t_{m-1}\right)} \\
& \quad \times p^{t_{m}\left(a-u_{m}\right)+t_{m-1}\left(a-u_{m-1}-2 u_{m}\right)+\frac{1}{2}\left[t_{1}\left(t_{1}-1\right)+t_{2}\left(t_{2}-1\right)\right]+t_{m} t_{m-1}}
\end{aligned}
$$

ways.
Proceeding in this way, we get

$$
\begin{aligned}
& X=\frac{f\left(u_{m}\right)}{f^{\prime}\left(u_{m}-t_{m}\right)} \frac{f\left(u_{m}+u_{m-1}-t_{m}\right)}{f\left(u_{m}+u_{m-1}-t_{m}-t_{m-1}\right)} \\
& \quad \times \frac{f\left(u_{m}+u_{m-1}+u_{m-2}-t_{m}-t_{m-1}\right)}{f\left(u_{m}+u_{m-1}+u_{m-2}-t_{m}-t_{m-1}-t_{m-2}\right)} \cdots p^{c} \\
& {\left[c=\frac{1}{2} t(t-1)+u_{1}\left(t-t_{1}\right)+u_{2}\left(2 t-t_{2}-2 t_{1}\right)+u_{9}\left(3 t-t_{3}-2 t_{2}-3 t_{1}\right)+\ldots\right] .}
\end{aligned}
$$

To find the number (Y) of distinct bases of any sub-group of G of the same type as H we put $u_{1}=t_{1}, u_{2}=t_{2}, u_{9}=t_{3}, \ldots$ in X. The total number (N) of sub-groups of G of the same type as H is then

$$
\begin{aligned}
& \begin{aligned}
\begin{array}{r}
Y
\end{array}=\frac{f\left(u_{m}\right)}{f\left(t_{m}\right) f\left(u_{m}-t_{m}\right)} & \frac{f\left(u_{m}+u_{m-1}-t_{m}\right)}{f\left(t_{m-1}\right) f\left(u_{m}+u_{m-1}-t_{m}-t_{m-1}\right)} \\
& \times \frac{f\left(u_{m}+u_{m-1}+u_{m-2}-t_{m}-t_{m-1}\right)}{f\left(t_{m-2}\right) f\left(u_{m}+u_{m-1}+u_{m-2}-t_{m}-t_{m-1}-t_{m-2}\right)} \cdots p^{d} \\
{\left[d=\left(u_{1}-t_{1}\right)\left(t-t_{1}\right)+\right.} & \left.\left(u_{2}-t_{2}\right)\left(2 t-t_{2}-2 t_{1}\right)+\left(u_{3}-t_{3}\right)\left(3 t-t_{3}-2 t_{2}-3 t_{1}\right)+\ldots\right] .
\end{aligned}
\end{aligned}
$$

The above reasoning shows that the necessary and sufficient conditions for the existence of sub-groups such as H are

$$
u_{m}+u_{m-1}+\ldots+u_{m-q+1} \geqslant t_{m}+t_{m-1}+\ldots+t_{m-q+1} \quad(q=1,2, \ldots, m)
$$

i.e., the k-th invariant of H is not greater than the k-th invariant of G $(k=1,2,3, \ldots)$. *
2. To find the total number (M) of sub-groups of order p^{r} in G, we have only to find every set of values of $t_{1}, t_{2}, t_{3}, \ldots$ satisfying the relations

$$
u_{m}+u_{m-1}+\ldots+u_{m-\imath+1} \geqslant t_{m}+t_{m-1}+\ldots+t_{m-q+1}
$$

and

$$
r=t_{1}+2 t_{2}+3 t_{3}+\ldots .
$$

Then M is the sum of the corresponding values of N. A general formula giving M for every value of r would probably be somewhat complicated. We can, however, find the simple expression $\frac{f(u+r-1)}{f(r) f(u-1)}$ for M when $r \leqslant$ the smallest invariant of G. In this case

$$
u_{m}=u, \quad u_{m-1}=u_{m-2}=u_{m-3}=\ldots=0
$$

for every sub-group considered, while

$$
\begin{gathered}
N=\frac{f(u)}{f(u-t) f\left(t_{1}\right) f\left(t_{2}\right) \ldots} p^{d} \\
{\left[d=u(r-t)-r t+t_{1}^{2}+\left(t_{2}+2 t_{1}\right) t_{2}+\left(t_{8}+2 t_{2}+3 t_{1}\right) t_{3}+\ldots\right] .}
\end{gathered}
$$

We have to prove $\quad \frac{f(u+r-1)}{f(r) f(u-1)}=\Sigma(N)$,
the sum being taken for all positive integral or zero values of $t_{1}, t_{2}, t_{3}, \ldots$

[^1]such that
$$
t=t_{1}+t_{2}+t_{3}+\ldots \leqslant u, \quad t_{1}+2 t_{3}+3 t_{3}+\ldots=r
$$

This is obviously true when $u=1$. We assume it true for all values of u less than the one considered, and use induction to prove the theorem true in general.

Now $\frac{f(u+r-1)}{f(r) f^{\prime}(u-1)}$
$=$ the coefficient of x^{r} in $p^{-\frac{4}{2}(r+1)}(1+p x)\left(1+p^{2} x\right) \ldots\left(1+p^{u+r-1} x\right)$, i.e., in

$$
\begin{aligned}
p^{-\frac{t}{t}(r+1)}(1 & +p x)\left(1+p^{2} x\right) \ldots\left(1+p^{u} x\right)\left(1+p \cdot p^{u} x\right)\left(1+p^{2} \cdot p^{u} x\right) \ldots\left(1+p^{r-1} \cdot p^{u} x\right) \\
& =p^{-\frac{3}{d r(r+1)}} \sum_{t} p^{\frac{3}{t(t+1)}} \frac{f(u)}{f(t) f(u-t)} p^{(r-t) u+\frac{1}{2}(r-t)(r-t+1)} \frac{f(r-1)}{f(r-t) f(t-1)} .
\end{aligned}
$$

But, by our assumption,

$$
\begin{gathered}
\frac{f(r-1)}{f(r-t) f(t-1)}=\Sigma \frac{f(t)}{f(t-\tau) f\left(\tau_{1}\right) f\left(\tau_{2}\right) \ldots} p^{e} \\
{\left[e=t(r-t-\tau)-(r-t) \tau+\tau_{1}^{2}+\left(\tau_{2}+2 \tau_{1}\right) \tau_{2}+\left(\tau_{3}+2 \tau_{2}+3 \tau_{1}\right) \tau_{3}+\ldots\right]}
\end{gathered}
$$

for all integral values of $\tau_{1}, \tau_{2}, \tau_{3}, \ldots$ such that

$$
\tau=\tau_{1}+\tau_{2}+\tau_{3}+\ldots \leqslant t, \quad \tau_{1}+2 \tau_{2}+3 \tau_{3}+\ldots=r-t .
$$

But, if we put $t-\tau=t_{1}, \tau_{1}=t_{2}, \tau_{2}=t_{3}, \tau_{3}=t_{4}, \ldots$, we have

Hence

$$
t=t_{1}+t_{2}+t_{3}+\ldots, \quad t_{1}+2 t_{2}+3 t_{3}+\ldots=r
$$

$$
\begin{gathered}
\frac{f(u+r-1)}{f(r) f(u-1)}=\Sigma \frac{f(u)}{f(u-t) f\left(t_{1}\right) f\left(t_{2}\right) \ldots} p^{\prime} \\
{\left[f=e+(r-t) u+\frac{1}{2}\{t(t+1)+(r-t)(r-t+1)-r(r+1)\}\right]}
\end{gathered}
$$

for all values of $t_{1}, t_{2}, t_{3}, \ldots$ such that

$$
t=t_{1}+t_{2}+t_{3}+\ldots \leqslant u, \quad t_{1}+2 t_{2}+3 t_{3}+\ldots=r
$$

We readily verify $f=d$, which completes the proof.
3. We may illustrate the result of § 1 by finding an expression for the number of normal (self-conjugate) sub-groups of index p^{2} in any group G. Let $H_{1}, H_{2}, H_{3}, \ldots$ be these normal sub-groups, and let D be their greatest common sub-group. Since $G / H_{1}, G / H_{2}, G / H_{3}, \ldots$ are Abelian (being of order p^{2}), the commutant of G is contained in $H_{1}, H_{2}, H_{3}, \ldots$, and is therefore contained in D. Hence $\Gamma \equiv G / D$ is Abelian. Moreover, the p^{2}-th power of every element of G is in $H_{1}, H_{2}, H_{3}, \ldots$, and is therefore in D. Hence the p^{2}-th power of every
element of $\Gamma=1$. It follows that Γ is an Abelian group of the type $(2,2,2, \ldots, 1,1,1, \ldots)[y 2$'s and $z 1$'s] whose order is a power of p.* The number of normal sub-groups of index p^{2} in G is the same as the number of sub-groups of index p^{2} in Γ.

Now, by $\S 1, \Gamma$ contains (i.) $\frac{f(z)}{f(2) f(z-2)} p^{2 y}$ sub-groups with y invariants 2 and $z-2$ invariants 1 ; (ii.) $\frac{f(y)}{f(2) f(y-2)}$ with $y-2$ invariants 2 and $z+2$ invariants 1 ; (iii.) $\frac{f(y) f(z+1)}{f(1) f(1) f(y-1) f(z)} p^{y-1}$ with $y-1$ invariants 2 and z invariants 1 . The factor-group of Γ with respect to $\frac{f(y)}{f(y-1) f(1)} p^{y+z-1}$ of the sub-groups (iii.) is cyclic ; the factor-group of Γ with respect to the remaining $\frac{f(y+z)}{f(2) f(y+z-2)}$ sub-groups of index p^{2} is non-cyclic. This is readily proved directly or by considering the reciprocal sub-groups. ${ }^{\dagger}$

Hence the factor-group of G with respect to $\frac{f(y)}{f(y-1) f(1)} p^{y+z-1}$ normal sub-groups of index p^{2} is cyclic, and the factor-group with respect to the remaining $\frac{f(y+z)}{f(2) f(y+z-2)}$ normal sub-groups of index p^{3} is non-cyclic.

The total number of normal sub-groups of index p^{2} in G is therefore $\frac{\left(p^{y+z}-1\right)\left(p^{y+z-1}-1\right)}{\left(p^{2}-1\right)(p-1)}+\frac{p^{\prime \prime}-1}{p-1} p^{y+z-1}$, where y and z are zero or positive integers. As an example we may take the group

$$
a^{m^{\prime a-1}}=b^{p}=1, \quad a b=b a^{1+p^{a-2}}
$$

for which $y=z=1$.

[^2]
[^0]: * See Netto's Alyehra, Vol. II., p. 246.

[^1]: * In the notation of Burnside's Theory of Groups, $\oint 47, n_{t} \leqslant m_{t}$. Since the above was written Prof. Burnside has informed me that this corrected form of his result was communicated to him by Prof. E. H. Moore, of Chicago, in 1899.

[^2]: * See M. Bauer, Nouv. Ann. Math. [3], Vol. xix. (1900), p. 508.
 \dagger Weber's Algebra, Vol. r., p. 56.

