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On In-and-Circumscribed Polyhedra. By Prof. A. R. Forsyra.
[ Read Nov. 9¢th, 1882.]

This paper is intended to solve for quadric surfaces a problem
which corresponds to the porism of polygons in-and-circumscribed to
two conics, the case considered here being that of polyhedra which
are circumscribed to one quadric and have pairs of opposite edges
lying along the surface of another. It will be seen that the method
here adopted is the natural generalisation of that used by Prof.
Cayley in the discussion of the porism of polygons in-and-circum-
scribed to two conics ;* the limited case when the conics are both
circles had been previously discussed by Fuss, Steiner, Jacobi,
Richelot, and Minding.$

Consider two quadrics and refer them to their common self-conju-
gate tetrahedron, then their equations may be taken as

U=as*+by*+ca*+dw’ = 0,

V=2"+y'+2'+ »* =0,
and any quadric through their curves of intersection will be given by
UHEV =0 vvvvririnnienniinnnnnnnennnanns(1),

in which  may be looked upon as a parameter defining the surface.
Any plane will touch three of the surfaces, say those given by &, n, {;
and n and { may be looked upon as parameters of the positions of
points lying on the surface &, these being the points of contact of tan-
gent planes to £ It is not difficult to prove that the equation to
such a plane is

e(a.a+i.atn.a+l)+y(b.b+E.b+n. 0+ 0}
+z(c.ct+é.c+n.c++z(d.d+E. d+n. d+ )t =
where a, b, ¢, d are given by the equations, -

a+ b+ e+ d=0
aa+ Wb+ cc+ dd = OE
aa+bb+cde+dd=0

verrenrareene(2),

® Phil, Mag., Ser. 4, Vols. 5, 6,7, 1853 and 1854 ; Phil. Trans., 1861,
+ For particular references, ¢f. Cayley’s papers just cited.
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say, a=—b—c c—ad—b,
b=+ c—dd-aa—c,
¢c=—d—aa—?b -4,
d= a—b b—¢ c—a,
or, if b-c=4, ¢c-a=DB, a-b=0,
o a—d=F, b—-d=@, ¢~d=0H,
then a=AHG, b= HBF, o= GF0, d=4B0, .
. The parameter of the quadric ¥ =0 is w; let 6, ¢ be the para-
meters of a point on it; then the coordinates &', ¥/, 2’, w’ are given by
iy
=(a.a+0.a+9):(b.b+0.b+¢): (c.c+b.c+9):(d.d+0.d+9)h
‘Suppose now that ', ¢’ is some othér point of ¥'; the coordinates
of any point on the straight line joining them may be taken as
A(a.at+0.a+¢)t+p(a.a+6.a+9¢),
A(b.b+6.b+¢)+u(b.b+0.b+¢),
A(c.c+0.ct+e)+pu(c.ct+b.c+9¢),
A(d.d+0.d+9)+p(d.d+0.d+¢), :
with the relation A+ =1. If such a point lie on the quadric ¥ for
valaes of A and u other than zero or unity, then the straight line is

obviously a generator. Substituting in the equation, the condition
for this is ’

a(at+0.a+¢.a+08 . a+¢)}

. +...+d(d+0.d+¢.d+0. d+¢)'— .
To obtain a rationalised equivalent of this, we may either write, by
means of equations (2),

‘ (z+0.2+¢.2+6 .a+¢) = a+Pr+y2",
for =@, z=b, x=¢, #=d, and then eliminate a, 3, and y from four
relations such as

0+¢+6+¢'+(1—v")(a+d+c+d) = 2By;
or we may proceed as follows :—Take &, ¢’ to be a point on the surface .
consecutive to 6, ¢, so that we may write
=0+3, ¢=¢+x
where 3 and x are both small. Then

(a+0:0¥9.0+0 a+g)=a+0.a+9 1+ io) (1 +a+¢)

X__ . x )}
a+0 +3 at¢ —t (a+0 a+¢) ]
on expanding and retaining terms up to the second order inclusive;

=a+0.0+9 [1+3 2
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and the equation to the generstor becomes
2a.a+4+0.a4+¢
+192a.a+¢+3x3a.a+60+39x2a

—-}3’2&3—1;% 2 aa+z+terms‘of higher order = 0,

where 3 implies summation for the four letters a, b, ¢, d. Obviously,
by our equations (2), the first term, the terms of the, first order, and
the term involving 9 all disappear ; and hence, when we make -3, X
small, we have, as the relation connecting them,

a+0
| ¥2a “i$+ Za E{?—O
or $0Za.a+¢.b4+0.c+0.4d+0
+x'0Za.0+0.b+¢.c+9.d+9 =0,
where . E d=a+¢.b+¢.c+¢.d+¢,
» 6=a.+0.b+9.c+0.d+9.‘ )
Let A, = abed, A = ab+ac+ad+be+bd+cd,
A, ='bed+cda+dab+abe, A;=a+b+c+d;
then be+cd+db = &—aAy+a’,
. ab+ao+ad = ad,—d’,
abc+ acd+add = &,~bed.
Now . Za.a+¢.b+0.c+0.4+0
= ¢3[a {bed+0 (bc+cd+db) + (b+c+d) 6" +6°}]
+ 2 [a {abed + 0 (abc + acd + add) + 6° (ab +ac+ ad) + ab}].

Now, in virtue of the identities just written down, and the equa-
tions giving the quantities a, the first line on the right-hand side

reduces to the term .¢ (abcd + beda + cdad+dabe),
.8ay to ¢ 3 (abed),
and the second line gives —0 = (abed) ;
so that the equation to the generator is
. [P (p—0)+x0 (6—9)] . = (abed) = 0.

Now Z (abcd) does not vanish, and 6 and ¢, being parameters of
different quadrics, are unequal ; and hence we have

¥o—x'0o=0,
or, writing - $=do,
x=dg,
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this is equivalent to (-d—o-)’— (ﬂ)’= 0,

VO v
which is, of course, equivalent to the two
90 _db _,
JO v ‘, 2
dd , dp _
Vo +76=%

and these are the differential equations to the generators on the sur-
face ¥V = 0.* There are, as it is obvious there should be, two distinct
equations corresponding to the two distinct systems.

Consider now a tetrahedron, two pairs of opposite edges of which
are formed by a pair of generators from
each system, and the remaining edges by
lines joining the intersections of genera-
tors of different systems. Let (Fig. 1) 4,

B, 0, D be respectively the points 6,¢,
6y¢s, 0,05, 0,0,; and supposé AB and CD
belong to the first equation, and BC and »
DA to the second. Then writing

-‘%:“’ I%=v’ Fig.1.
we have u—v constant along 4B and CD,
utv , , ADand BO,
so that ) U= = Uy— 1y,

Uy—Vy = U, —V,,
Us+vy = uy+ vy,
U+, = u+ v

* Sce Cayley *On Geodesio Lmes, in particular those of a Quadric Surface,”
Proc. Lond. Math. Soc., t. iv., 1872, p. 199 : viz., equation of surface being

2,9
P
and expressions of coordinates in terms of paramoters p and ¢ being
-Bya*=a.6+p.a+q,
~yay?=8.0+p.5+g,
) —aB ="¢c.c+p.c+q,
then differential equation of right lines is
dp + 9 = 0,
Va+p.bip.c+p Vatg.beg.c+g

+—=l,




1882.] In-and-Circumseribed Polyhedra. : 89

from which we at once obtain

Uty = UgF U, cniieeieineniisiniinienn e (A),

U F0 = 00 ceeirinnns e (B).
Now, by Abel’s theorem, the algebraical equivalent of (A) is known
to be 1, 6, 6, ve,|=0.

1, 6, 6 Ve,
1, 6, 6, Vv 0,
1, 6, 6, Ve,
The plane face DAB is the plane containing two generators, and is

therefore the tangent plane at 4 to ¥, and by the parameters of A it
is known to touch the quadric 6,. Moreover ,, béing the discriminant

of U+6,V =0,

is an invariant, and hence we need no longer suppose the quadrics
referred to their common self-conjugate tetrahedron. If we write

A'=abed, ®=bc+catab+ad+bd+cd, A=1,
o 0'= abc+bed+cda+4dab, © =a+b+c+d,
‘quantities which are invariants, ©, being the discriminant of
: U+0 V will, in the most general case, be
A'+0'0,+ 06, + 66, + A6,
Writing this O 6,, we have the theorem :—
If a tetrahedron be described having two pairs of opposite edges

lying on the surface of the quadric ¥ = 0, and its plane faces touch-
ing the respective quadrics

U+6,V=0,
U+6,V =0,
U+6,V =0,
U+6,7=0,

then the necessary and sufficient relation between the parameters § is
1, &, 0:’ “/@ =0,
1, 6, 6, 06,
1, 6, 6;, v 0o,
1, 6, 6 +06
in which 00 denotes the discriminant of the quadric
U+60V=0.
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To find what this theorem becomes when 6,, 8,, 8,, 6, are all zero, so
that the faces of the tetrahedron all touch the quadric U=0, we must

expand /00, in powers of 6, ; then, if
JOo,=A,+4,0,+...+ 4,6 +...,
the foregoing determinant becomes divisible by
1, 6, 6, 6],
L 6 6, 6
L 6, 6 0
l, 00 0:) 64 '
and leaves as the required condition
A;=0.
'We shall afterwards return to this condition. i

A tetrahedron is a solid proper, 1.6., one which has all its solid
angles contained by the same number of plane angles, and all its faces
bounded by the same number of straight lines, each of these numbers -
in the case already considered being three. In order that such a
_solid may have edges lying along the generators of a quadric; it must
have triangles for its faces, since there are only two generators of a
quadric passing through any point on it ; and therefore the only other
solids which can be so described are the octahedron and the icosa-
hedron.

We proceed to consider first the oct.ahedron Let the angula.r points
be denoted by 1, 2, 3, 4,5, 6 (Fig. 2),
‘and let the edges 12, 23, 34, 45, 56, 61
lie along generators of the quadric V;
then any point, as 1, may be denoted by
®, 60,, ¢,.- Let the thick lines belong to
one system, the dotted to the other;
then, by joining 15, 53, 31, 42, 26, 64 by
the thin lines, we have an octahedron \/ —'4
which has three central planes 1643, 3 Lo
3265, 5421. :

" Then, adopting the same , notation a8

in the case of the tetrahedron, we have
%, — v, = u,—v, along 16,
Uy— Vg = Uy—V; ...... 23,
Uy— Vg = Ug—V; wuvenn 45,
U +v, = U+, crees 12,
Ut vy = u,+v, ...... 34,
gt V.= Ug+ 1, ...... 56;
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-and these equations at once give

Uyt ugtuy = u,+d,+u,, '

v+ vy + U5 = vy + v, + v,

Taklng either of these equations, say the ﬁrst its algebraical equi-
valent is, by Abel’s theorem,

{1, 6, 6", &°, ‘/E“-’ Bs/a—d} =0,

where the expression { } denotes the determinant of six lines formed
by substituting for 6 the values 6,, 6;, 6, 0,, 6,. 6. Moreover, 06 is
the discriminant of U+ 6V in the forms assumed for their equations,
.but, being an invariant, it may be replaced by the same value as be-

fore, viz., A'+ 00+ 06 +06°+ A6,

and U, V may have the most general forms possible. Hence we have
the theorem :—

If an octahedron be described having three pairs of opposite edges
lying on the surface of a quadric V, and, of its plane faces formed by
“these edges, five touch the respective quadrics

U+ 9,V=-0
(r=1,2,38,4,5), then the sixth will touch the quadric
U468,V =0,

where 6, is given by the equation’
{1,6, 6 6 v00,0/06} =0

(the determinant of six rows obtained by substituting for 6 the values
9y, 0,, 65, 6,, 65, 6,), in which 06 denotes the discriminant of

U+6V =0.

To find the condition that all these six faces may touch the samé
quadric U=0, so that 6, = ...... = 6, =0, we must expand v/ 00;
taking the same value as before, the determmant divides by

{1"0’ 0,’ oa, 0‘; 6 }»
and leaves as the required condition

AS: Ad
4, A4,

=0,

or A4, = Ay
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Now, consider the icosahedron which has 12 angular points and 80
edges. Since each edge joins two angular points, and through any
point on the quadric ¥ only two generators can be drawn, it follows
that there will be twelve edges of the solid lying on the surface, six
of them belng generators of one system, and six of the other. Of the
accompanying figures; Figure 3 shows these on the surface of the

73 MO 8.3 72 ,,

Fig. 3.

qua,dnc (assumed & hyperboloid of one sheet), the two sections being
equidistant from and parallel to the
principal section, the numbers at
each generator being the numbers of
the angular points which lie on it; and
Figure 4is an icosahedron, more regular
in form, with the anguolar points num-
bered exactly asin Figure 3, and the re-
maining edges formed by the thin lines
joining the angular points. The dark
and dotted lines indicate, as before,
generators belonging to the respective
systems. '
Denoting the pomt p by o, 6, ¢,
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we have along 1.2 ... 4, + 9, =u + v,

5.6 ...... Uy + vy = Uy + v,
8.9 iieee Uy + Yp=1us + 7y
3.7 s Uy + vy =% + vy,

10.12 ...... U+ )y = U9+ gy
“11.4 ...... Up+on =% + v,

1.6 ...... 4 — o, =0y — 1y

2.9 ... Uy — Vg =12y ~— ¥,
4.5 ... Uy — Vg = %, — ¥,
3.8 ...... Uy — Vg = Ug — Uy,

12 . 7 sesces u[”'v“ = 1“7 - “‘7)
11.10 ...... U=V = Uyo— Y95

from which we have
Uyt g+ gt gt oy Uy = Uty Uyttt ug 2y,

and the same equation in the v’s. Again applying Abel's theorem,

" the algebraical equivalent of this is '
{1, ..., 6% V0o, ..., 606} =0,

where the expression { } denotes the determinant of 12 rows obtained

by sabstituting for 6 the values 0, 0,, ..., 6. Replacing, as before,

the particular form of OO0 by the dlscrlmma,nt of U+0V =0 when

U and 7V are the general equations, we have the above as the condition

that an icosahedron, having six pairs of opposite edges lying on the

surface of the quadric ¥=0, should have its twelve fa,ces formed by
"theso edges respectively touching the quadrics '

' U+6,7=0,
~ where p=1,2, ..., 12.

When these fa.ces all touch U=0, the condition becomes
-Aa’ Ad’ Aa’ Am A7 = O
4, 4, 4, 4, 4
4, A, 4, 4, A,
AO’ A7’ AS’ AO! 'Alo
Aﬂ As, Aqv AIO" 4
the determinant having been divided by
. {1, 9, 6% ..., 6"}.
‘We have written '
(A'+004+06°+06°+ A0 = 4.+ 4,0+...+4,6°+...,
and the conditions requisite for each case have been expressed in
terms of the coefficients on the right-hand side. The values of these,
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as far ag 4,,, are as follow :— -

AoA"" = 1,
A,-A" = —;—9’, '
4at = g oa—g
4,80 = %e __%emn 116 e, .
40% = -;—AA" % 1 P ﬁse‘m %e"
4,8% =—Loaa— Looart 3arars S aear
"% ) 16 16
~55 o'+ 2?6
A4 =_ % U -i- ADA" 4+ l SO+ 136 o%aty 3. - 06'0A"
- 3_52 66"~ éi or'ar+ 2 256 oea’~ 13;4, o%
4,87 =~ % 0AAT+ 136 'A%+ fe e'o'A%+ g DO'AA"
- 9?_2 07AA%— 352 0'P°A"— ;g 0100A + :55 e"eA"
+ 1% oo~ 3 ovon'+ 5 0",
A,aN = % A'AR 136 OAAT 4 130 O'0AT 4 g 00°'AAT— 15 6”4>AA"
}si 007~ 15 S00¢IA"— 12 - oAty 35 25 b gan®
229 *bOA™ 13258 e%w. 56132 670" — 130'254’ 040IA™
+ 2%18 0" — §;?—g§ ?,
A0 = 1l6 o'ar+ 2 wear+ 3 voane— % 870AA"
—Beonar- Sovetar— 352 or"+ 35 ereran
+ B ereant+ 2 ervent+ 22 oo 8 grasn
~ S eeon— jRenws S 007+ 75y 00’
429 con_ 715 g

~ 4096 T 65536
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1_?;59’“”' 8 spataT— 159"&& 15 2 gvoaan
- 35’5 o'6tAT— ;’2 BPAAD— éz o'e'A" + gi 07%044"
+ igg 0'0'AA% + 103 0'0"0A™ + zz 0'8'0A% + z; s
_ 1'361254 oe'at— %}—g o aan— 2—? 07’eA"
~ [ O A g O™ 103 07094"
ifree e e
1§6 eAlAT— ;5 O'DAIAT— ;5 0'0'AAT— ;3 POAAT
-3 ¢e‘A" + 13258 O7AAN 4 22 13258 07%0%A"+ 16(‘)115 O0"®pOAA"
+ 22 00" AA"+ }gg 0P + 23556 POAS— 1“”01254’ 0"0aA"
3;2 0™aAAT— g;g 0700'A%— 3;2 07'0AT—~ 2659’6 OPA™
B :;:6 2332
To1073 ©"4 - 5‘21% o™

The condition that a tetrahedron could have two pairs of opposite -
edges lying on a quadric V and its four faces tonching another

quadric U was 4,=0,
or, from the above, 86A"—40'A'®+60% =0,

which agrees with the result gwen by Salmon (Geometry of Three
menswm, § 207).



