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1.

INTRODUCTION AND SUMMARY.

1 .1 . Our main object in this paper is to obtain as far-reaching a
generalisation as possible of " Tauber's Theorem ", the well-known con-
verse of Abel's famous theorem concerning power-series. It will be
necessary to give a rapid summary of the results already known; and we
can do this most shortly and clearly if we begin with a few definitions of
a verbal character.

We shall always denote the power-series in question by 2aMxn or by
S, and its sum by f(x). We suppose that the radius of convergence of
S is unity, and that the point on the circle of convergence which is in
question is the point x = 1. The series Xan we shall call A, and we shall
also use A to denote its sum, when it is convergent.

We shall use (K), (L), (0), and (o) as abbreviations for the propositions :

(K) A is convergent,

(L) f(x)->A,

(0) « . = O (•£•),

(o) an=

We shall be concerned in the sequel with certain classes of curves C
along which x may approach the limit 1.* We shall call G a path if
it is a simple Jordan curve which does not pass outside the circle : that

* We are, of course, concerned with the nature of C only in the neighbourhood of z = 1.
It is therefore presupposed, in the definitions which follow, that their conditions need only be
satisfied for values of x near enough to unity.
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is to say if it is defined by equations

(t0 < t < T) ;

where <p and \fr are continuous for t0 < 2 < T, <j>(T) = 1, \}s{T) = 0,
2 2 ^ l » and-0(^) = 0(£2), xjrit^ = \fr(t2) are not both true unless

If 02+\/r2 < 1 except for t = T, we shall call C an internal path.
If it lies entirely between two chords of the unit circle, meeting at x = 1,
we shall call it a Stolz-path.

If C possesses a continuously turning tangent at every point except
x = 1, and approaches x = 1 with a definite direction, so that am (1—x)
tends to a limit when #-> 1, we shall call it a regular path. If the limit
of am (1—a?) is neither %ir nor —%TT, G is a regular Stclz-path.

Thus a chord of the unit circle, or a segment of a circle which passes
through x = 0 and x = 1, and contains an angle greater than a right
angle, is a regular Stolz-path. An arc of a circle which touches the unit
circle internally, or an arc of the unit circle itself, is regular, but not a
.Stolz-path. The curve

r, = (l —£)sin j — j

is a Stolz-path, but not regular. The curve

is a path, but neither regular nor a Stolz-path.

1 . 2. Abel's Theorem is

A. {K) implies (L) when G is the radius (0, 1).*

.Stolz's generalisation is

B. (/i) implies (L) when C is any Stolz-pathA

Proofs of A and B will be found in Bromwich's Infinite Series.^ To

* N. H. Abel, " Untersuchungen iiber die Reihe 1+ ™x+
m(m 1 )

x - + . . . " , Journal
1 1 .i

fur Math., Vol. 1, 1826, pp. 311-339 (CEuvres, Vol. 1, pp. 219-250).
j" 0. Stolz, " Beweis ciniger Siitze iiber Potenzreihen ", Zeitschrift filr Math., Jahrgang

20, 1875, pp. 369-376 ; " Nachtrag ... ", ibid., Jahrgang 29, 1884, pp. 127-12S.
See pp. 130, 210-212.
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these theorems should be added

C. It is not true that (K) implies (L) whenever C is a regular path.*

Thus, for example, the series

(1 . 21) 2 n~h eAin" (A>0, 0<a<l)

is convergent whenever 6 > 1—a; but the associated power-series f(x)
does not tend to a limit if b < 1—%a and C is an arc of a circle touching
the unit circle.

Tauber's Theorem is

D. (L) and (o) imply (K) ivhen G is the radius (0, l).t

This theorem has been generalised in several directions. The generali-
sations with which we shall be most directly concerned are

E. (L) and (o) imply (K) when G is any Stolz-path.t

P. (L) and (0) imply (K) when G is the radius (0, 1).§

But we must also mention

G. In either D o r E , (o) may be replaced by the mere general condition

a1 + 2a2+...-{-nan = o{n).

This condition is also necessary for the truth of (K).\

H. In P, (0) may be replaced by the condition that an is real and nan

bounded above or below.%

* G. H. Hardy and J. E. Littlewood, 1 (see the list of papers in 1. 5), p. 475 (Theorem
47). The proof is not given, but the materials necessary for one will be found in a paper by
Hardy, " A theorem concerning Taylor's series", Quarterly Journal, Vol. 44, 1913, pp. 147-
160 ^pp. 150 et seq.).

•f A. Tauber, " Ein Satz aus der Theorie der unendlichcn Reihen", Monatsliefte filr
Math., Vol. 8, 1897, pp. 273-277. See also Bromwich, Infinite Series, p. 251, or Landau,
Dxrstellung und Bcgrilndung einiger neuerer Ergebnisse der Funktionentheorie, Berlin, 1916,
p. 40.

I E. Landau, " Uber die Konvergenz einiger Klassen von unendlichen Reihen am Rande
Konvergenzgebietes ", Monatsliefte filr Math., Vol.18, 1907, pp. 8-28. See also Bromwich
and Landau, I.e. supra.

§ J. E. Littlewood, "The converse of Abel's theorem on power-series", Proc. London
Math. Soc, Set. 2, Vol. 9, 1911, 434-448.

|| Tauber (I.e. supra) proves this when C is the radius. We cannot refer to an explicit
proof for the case in which C is an arbitrary Stolz-path; but the result is an immediate con-
sequence of the arguments used by Tauber and by Landau.

11 That is to say, naa < H or nan > — H, where If is a constant. G. H. Hardy and J. E.
Littlewood, 2 ; see also Landau's book referred to above, pp. 45-56. The condition is plainly
more general than (0) when a,t is real.
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These theorems can only be appreciated if we bear in mind other re-
sults of a negative character. The trivial example

1 - 1 + 1 - . . . ,

is enough to show that the existence of Abel's limit does not involve the
convergence of the series ; thus " (L) implies (K)", the straightforward
converse of Abel's Theorem, is false. It is not quite so easy to find a
similar example in which the terms of the series tend to zero. This was
first done by Pringsheim*; but a more natural example is provided by
the series (1 . 21) when 0 < b < 1 — a. Here an = O(n~b), and a may
be as small, and so b as nearly equal to 1, as we please. Thus no condi-
tion of this type, with b < 1, is sufficient to ensure the convergence of
the series whenever Abel's limit exist. This suggests that P is really a
" best possible " theorem of its kind; and this is shown by the theorem

X. There is no function <p{n), such that <f>{n) —> oo and

a -O
an - V ( n r

together with (L), implies (K)A

1.3. No extension of F to paths other than the radius has yet been
published. The extension of theorems of the " o " character to paths
other than Stolz-paths was first considered seriously in our paper l.J In
this paper we confined ourselves to regular paths, and we found that, in
order to obtain satisfactory results, it was essential to replace (L) by a
different condition. This condition is

(A) 21 — x n

It is to be observed that, so long as G is regular, and

v a"

is absolutely convergent, we have

(1.81) $(x)=^
1

* A. Pringsheim, " Uber dieDivergenz gewisser Potenzreihen an der Konvergenzgrenze ",
MUnchener Sitzungsberichte, Vol. 31. 1901, pp. 505-524.

+ J. E. Littlewood, I.e., p. 444 (Theorem C).
• Pp. 475-477.
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the integration being effected along C. It is an easy deduction that
$ (x) -> A in all cases in which f(x) -> A, whereas the converse is untrue.
Thus (L) implies (A), and (A) is a generalisation of (L), at any rate in all
such cases as we were considering before. This being so, we proved

L. (A) and (o) imply (K) whenever C is a regular path.

As a corollary we have

M. (L) and (o) imply (K) lohenever C is a regular path.

This theorem includes D and E as special cases. We also proved* the
direct converse of L, viz.

N. (JO and (o) imply (A) whenever G is a regular path.

This theorem becomes untrue if (A) is replaced by (L). It is an
" Abelian " theorem, but differs fundamentally from the ordinary Abelian
theorems A and B in that its truth depends upon a condition such as
occurs in the " Tauberian " theorems. It is also unlike all the theorems
which precede in being reversible : and, on combining it with I , we obtain

O. If A satisfies (o), then the necessary and sufficient condition for its
convergence is that (A) should he true when x tends to 1, either along any
regular path, or along all.

1.4. We begin our new investigations by a direct extension of P to a
regular Stolz-path, viz.

P. (L) and (0) imply (If) lohen C is a regular Stolz-path.

This theorem is included in others which come after and are proved
in a quite different way. But the method we use (in 2 .1) seems to us of
considerable interest in itself.

In 2 .2 and the succeeding paragraphs we attack our main problem.
Our object is to generalise L, (i) by replacing (o) by (0), and (ii) by getting
rid of the restriction that G is a regular path; and the result is

Q. (A) and (0) imply (K), for any path C.

When C is regular, we can deduce as a corollary

a . (L) and (0) imply (K) whenever G is a regular path.

* The proof of this.theorem (Theorem 50) is not stated explicitly, but is virtually con-
tained in that of the preceding Theorem 49 (L of this paper).

SEB. 2. VOL. 18. NO. 1338 P
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We can also prove

S. (L) and (0) imply (K) whenever C is a Stolz-path.

But we cannot here get rid of all restrictions upon C.
In 8 we proceed to the corresponding Abelian theorems, and generalise

W by proving

T. (K) and (0) imply (A), for any path G.

And by combining Q and T, we obtain

TJ. If A satisfies (0), then the necessary and sufficient condition for
its convergence is that (A) should be true when x tends to 1, either along
any path C, or along all.

This theorem affords the complete generalisation of O in each of the
desired directions, and is far more comprehensive than any known
theorem of its kind.

There are but few questions which remain to be answered. There is
one to which we have already alluded and are unable to answer, namely
whether It (or S) is true without any restriction on C. The others are
connected with the question whether T is the " best possible " theorem of
its kind. We prove

V. (K) and (0) do not necessarily imply (L) for all paths C :

so that the (A) of T certainly cannot be replaced by (L). And almost the
same example suffices to prove

W. (K) does not necessarily imply (A) for all paths C.

Thus T certainly becomes untrue if the condition (O) is simply omitted.

But it is desirable to prove more, viz. that (0) cannot be replaced by any
less restrictive condition of the type which occurs in K, and we have not
yet succeeded in establishing this by means of an example. If we could
do this, and also remove the restriction on G in E, (or S), we could fairly
claim that our problem had been completely solved.

1.5. If, in Theorems Q-TJ, we suppose that C is an arc of the unit
circle itself, we obtain a number of theorems concerning the convergence
of a series

m) enie = 2(ancos 7i6-{-(3n sin n6)-{-i2 (an sinnd—(Bn cosn6),

where - =
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theorems, that is to say, concerning the simultaneous convergence of a
Fourier series and its conjugate or allied series. It is, however, more
natural and more interesting to consider the two series independently.
We prove first*

X. If an and bn satisfy (0), so that

2(an cos n6+bn sin nO)

is certainly the Fourier series of a summable function f(6), then the
necessary and sufficient condition that the series should converge to the
sum A is that

when a -> 0.

When (0) is replaced by (o), Theorem X reduces to a theorem of Fatou.t
These theorems correspond to O and IT. The remaining theorems of the
paper are of a somewhat different character: the most interesting of them
are T and Z, which are concerned with the Fourier series of bounded
functions, and do not depend upon conditions such as (o) or (0).

We conclude these introductory remarks by giving a list of the papers
of our own to which we shall have to refer. They are :—

1. " Contributions to the arithmetic theory of series ", Proc. London
Math. Soc, Ser. 2, Vol. 11, 1913, pp. 411-477.

2. " Tauberian theorems concerning power series and Dirichlet's series
whose coefficients are positive ", ibid., Vol. 13, 1914, pp. 174-191.

3. " Some theorems concerning Dirichlet's series ", Messenger of Math.,
Vol. 43, 1914, pp. 134-147.

4. " Theorems concerning the suminability of series by Borel's expo-
nential method ", Rendiconti del Circ. Mat. di Palermo, Vol. 41, 1916,
pp. 36-53.

5. " Sur la convergence des series de Fourier et des series de Taylor",
Comptes Rendus, December 24, 1917.

* We revert to the notation usual in the theory of Fourier series.
f P. Fatoa, " Series trigonometriques et series de Taylor", Acta Matliematica, Vol. 30,

1906, pp. 335-400 (p. 385).

p 2
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2.

THE TAUBERIAN THEOREMS.

Proof of Theorem P.

2 . 1 . THEOREM T.—If

(0) «' =

and (L) f(x) = 2aHzn-*A,

when x -> 1 along a regular Stolz-path G, then 2aft converges to the sum A.

We suppose, as obviously we may without loss of generality, that
| nan | < 1 and . 4 = 0 . We write

x = rew = e~p+i9,

and we suppose first that G is the particular curve

(2 .11) 6= kp.

Then, if Fk(p) = 2ane-^-ki)np,

we have Fk(p) = o(l)

when p -> 0, and

= 0(pv2n*-le-n') = 0(1),

for every positive integral value of JJ. It follows, from our fundamental
theorems on derivatives*, that

(2.12) / M ? ) ) ( P )

for every such value of p.

We shall now prove that

(2.13) Fl(p) = o(l),

for any value of I such that k—1 <; I <; k-\-l.

* The particular theorem required is obtained by supposing <j> = ^ = 1 in Case (6) of
Theorems 6 and 8 of our paper 1.
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If l — k-\-S, so that ! 6 \ < 1, we have

where | Ay> | <
p ,

Now | nan \ < 1, and

for 0 < p < p0, where p0 ^
s a number independent of P. Hence

(2.14)

And therefore Ft(p) = 2
(P) i> ! (n)

and this series is, in virtue of (2 .14), uniformly convergent for \ 6 \ ̂  1
and p > 0. But, by (2 .12), every term of the series tends to zero.
Hence Fh {p) tends to zero* : that is to say, we have proved (2.13).

It follows, by the repeated application of this argument, that if an

satisfies (0) and f(x) tends to zero along any Stolz-path of the type (2.11),

* Our argument here is the same in principle as that which we used in the proof of the
"general Borel-Tauber " theorem : see our paper 4, p. 44.
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then it tends to zero along any other Stolz-path of the same type. In
particular it tends to zero along the real axis, to which the path reduces
when k = 0. And hence, by Theorem P, the series 2aw converges to
zero.

The theorem is thus proved for paths of the special type (2 .11). In
general, the equation of a regular Stolz-path may be written in the form

(2.15) 0 = hp+o(p).

It is easy to see that, if f(z) tends to zero along (2 .15), it also tends to
zero along (2.11). For, if {p, 6) and (p, 6') are corresponding points on
the paths (2.11) and (2 .15), we have

| eni6_eni& | _ | eni(9-6')_1 | _

when p -» 0, and so

ie') = o(P)2n\an\ e~np =

The truth of the theorem in its general form now follows from the argu-
ment which precedes.

Proof of Theorem Q.

2. 2. THEOREM Q.—If

(0)

and

(A) 2
1—x n-

when x-> 1 along some path C, then Xan converges to the sum A.

We may suppose that A = 0, a0 = 0, and \nan\ < 1. And we shall
begin by proving

LEMMA a.—(0) being satisfied, the necessary and sufficient condition
that

sn =

should be bounded is that $(#) should be bounded for lx\^ 1, x 3=- 1 ;
and this condition is satisfied if $(z) is bounded when x-*l along any
particular path C.
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We take

and we may suppose 11—x | < 1, so that

(2.

saj

(2.

Then

21)

r. In the

.22)

Secondly,

$(x) ( 2 + 2
\ 0 v

first place we have

I / I - v

1 ^2 I < 1 , _ r I **
I 1 «C | |/

\ o, 1-
7n+l 3

1
n(n-\-l)

-xn+l

L-x ^

2
v\l—x

1 - 1-x '1

1(1-xJ + d-a^H-...+(!-««)[,

1 -
1 - X M -

(2.23)
v-1

\a 1 - 1 —ar.»+1

(n+DU-a;)

From (2 . 21), (2 . 22), and (2 . 23), we obtain

5 ;

which proves both parts of the lemma, since v passes through an unbroken
sequence of integral values when x -*• 1 along C.

2. 3. The remainder of the proof of Theorem Q depends upon certain
lemmas in the theory of analytic functions, of the general type associated
particularly with the names of Phragmen and Lindelof.t

* It is easily verified that y [1/j/J > g if 0 < y < 1.
t See in particular the memoir " Sur une extension d'un principe classique de l'analyse

et sur quelques proprietes des fonctions monogenes dans le voisinage d'un point singulier",
Ada Mathematica, Vol. 31, 1908, pp. 381-406. The chief results of this memoir may now be
regarded as classical.
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LEMMA /5.*—Suppose that T is the semi-infinite strip, in the plane of
the complex variable w = u-\-iv, defined by the inequalities 0 <! u ^ ir,
v ^ v0; that A and B are the left and right-hand edges of the strip, and.
that C is a simple Jordan curve which lies entirely inside T, extends to
infinity, and divides T into tioo regions L and B. Suppose further that
f{w) is regular inside T and continuous and bounded throughout T.

Finally, suppose that

(2.31) HS |/(w)|<fc,

where h > 0, xohen w tends to infinity along A (or B) and along C. Then
(2 . 31) holds when w tends to infinity in any manner inside L {or B).

Let us suppose that the data refer to A and C. We can choose vl (e)
so that

(2.33) \f\<h+e,

at all points of A and C for which v > vv We can then draw a cross-cut
(QuerscJmitt) Q, cutting off from L an infinite region LQ ; and (2. 33) will
be satisfied at all points of A-Q and CQ) the parts of A and C which belong
to the boundary of LQ.

Let K be the upper bound of | / 1 on Q. We can now choose

so that

p (e, vlt K)=p (e),

W

iv-\-p < 1,

* We state this and the following lemmas in the special forms in which they are required
for our immediate purpose. All of them, naturally, are capable of wide generalisation. The
most interesting of these generalisations is the following :

If (1) T is the strip a ^ u < 3, v ^ v0; A and B its edges; C. and Cg simple non-
intersecting Jordan curves interior to T and asymptotic to A and B ; and C a similar curve
asymptotic to u = v, where a < v < # :

(2) f(to) is regular inside and continuous throughout the region T' formed by those points
of T tohich lie to the right of Co and to the left of C^ :

(3) fim" | f[w) | < a when w tends to infinity along Co, and lim | f(iu) \ < b xohen w
tends to infinity along C^ :

(4) f(w) = O(ee\

where c < ir/(8 — a), uniformly throughout T' : then

fim |/(to) | ^ a<'-M'-->b<"-«'-»>

when w tends to infinity along C. This result still holds when a or b or both are zero.
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on Ao and Be, and w
w+p

h+
K

- ID f
on Q. And if we write F = —\— ,

we have | F! < h-\-e

at all points on the boundary of LQ; and therefore* at all points of LQ.

Hence fini | F j < h,

when w tends to infinity in any manner inside L ; and therefore

lim | / | < h,
which proves the lemma.

LEMMA y.—Suppose that (2.31) is satisfied on both A and B, and that

(2.34) . fim|/(?o)| < 6,

where 0 < S < h, on C. Then

(2.35) I5m|/(t0)i < VW*),

?oAen ?<; tends to infinity along M, the straight line equidistant between
A and B.

We denote by ilfz and il/^ those parts of M which lie in L and E
respectively.

Write g = e':"'f,

where ekn = /t/(5.

Then lim | g | < /t,

on A, and Hm | g \ < e^^ = h,

on C. Hence lim | g \ ^ h,

on ML; and SO lim | / | < he~hkn = */(Sh),

on ML. Similarly, using an auxiliary function

g = 6»(*-)/,

we can show that (2 . 35) holds on Mlt, and so on the whole of M.

LEMMA 8.—If f(w) ~ 0(1) throughout T, and f{w) = o(l) on C, then
f(w) = o(l) on M.

* Phragmen and Lindelof, I.e., p. 388.
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Write g=f+8,

where 0 < 8 < 1. Then we can choose an h independent of 8 and such
that the conditions of Lemma y are satisfied; and

nm | g

on M.. Hence Hm | / | < </(8h)+8

on M; which proves the theorem, since 8 is arbitrarily small.

2 .4 . We now transform Lemma 8, by means of the theory of con-
formal representation, into a proposition suitable for direct application to
the theory of power-series.

The equation ——- = ieiw

transforms the strip 0 ^ v ^ ir into the unit circle in the plane of x.
The point w = £TT corresponds to x = 0, the lines A and B to the upper
and lower halves of the circle, and the line M to the real diameter. The
upper and lower ends of the strip correspond to x = 1 and x = — 1 re-
spectively. If, finally, we observe that

1+x
1-x

we obtain

LEMMA e.—Sitppose that $(x) is regular for \x\ < 1, and continuous
and bounded for \x | ^ 1, x =^= 1. Suppose further that <fe(x) = o(l)
when x tends to 1 along a certain internal path G. Then $(x) = o(l)
when x tends to 1 by real values.

2. 5. We can now prove our main theorem. In the first-place 3>(x) is
continuous at all points in or on the circle, except perhaps the point
x = 1.* We may therefore suppose, without loss of generality, that C is
an internal path. I

* The series 2 -^- (l-a;»+1) = 2 o( -L}

is plainly uniformly convergent.
t We can replace C by an internal path C, which differs so little from C that * (x)

tends to zero along C.
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Since $ tends to a limit along C, sn is bounded, by Lemma a; and
therefore, by the same lemma, $ is bounded for | x | < 1, x f̂c 1. Hence
3? satisfies all the conditions of Lemma e; and so

(2.51) $(z) = o(l)

when x tends to 1 along the real axis.
Suppose then that x is real. We have

Now $(x) is bounded ; f(x) is bounded, since sn is bounded; and

fix) = "Lnanx
n-1 = 20(1) xn = 0 (jZI~

Hence

(2.52) *» ( X ) =

From (2 . 51) and (2 . 52), we deduce, by Theorem 8 of our paper 1,

and so f(x) = $ (x) - (1-x) 3>'(x) = o(l).

That is to say, Abel's limit for f(x) exists when x -> 1 by real values;
and therefore, by Theorem P, the series Xan is convergent.

Theorems B and S.

2 .6 . When C is regular,

(L)

implies

(A)

We have therefore

THEOREM R.—1/ (0) ŝ satisfied, and f(x) -> A when x ^>1 along
some regular path C, then 1,an converges to the sum A..

This theorem of course includes P as a special case. It is in the most
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essential respects as complete a generalisation of F as could be desired,
for, although it involves a considerable limitation as to the nature of C,
there is no limitation at all on the contact of C with the circle. The con-
tact may be as close as we please, or C may be the circle itself: and it is
questions of contact rather than of regularity which are of the first interest
in these investigations.

It is, however, natural to suppose that no limitation on C is necessary;
and, if this be so, it is very desirable that it should be proved. It would
seem, however, that some important change in our argument would be
needed for such a proof; for, unless C is subject to considerable restric-
tions, it is not possible to deduce the behaviour of 3? from that of / by
means of its representation as an integral taken along C.

It is interesting to observe that, if we limit G to be a Stolz-path, we
can get rid of the restriction that it is to be regular. We shall only sketch
the proof, the general lines of which are as follows. We draw two chords
of the circle through x = 1, including C between them, and we consider
the region T formed by points which lie between these chords and within
a certain distance of x = 1.

By a slight modification of the proof of Theorem E given by Landau,
we can prove that sn is bounded, and so thafc/(z) is bounded in T.* And
by an adaptation of the arguments used in §§ 2.3-4, we can show that /
tends to a limit when x -* 1 along any regular Stolz-path inside T. If
the real axis satisfies this condition, we can appeal to Theorem P ; if not,
to Theorem P or R. In any case, we obtain

THEOREM S.—If (0) •is satisfied and f(x) -> A when x -> 1 along some
Stolz-path C, then 2an converges to the sum A.

3.

THE ABELIAN THEOREMS.

Proof of Theorem T»

8 . 1 . THEOREM T.—If

(0) an = ° (^

and

(is.) ^an — JL,

* The argument fails at this stage if C is not a Stolz-path. We could not prove that / is
hounded in T if the boundaries of T touched the circle.
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then

'when x -* 1 m an?/ manner.

One observation should be made before we proceed to the proof. The
enunciation contains no reference to a path: we may say, of course,
" when x-> 1 along any path G " ; but the idea of approach along a con-
tinuous path is not really relevant. In this respect there is an essential
difference between this theorem and the Tauberian theorems.

We may suppose, as before, that ^ 4 = 0 and ( nan | < 1. That $(x) is
bounded follows from Lemma a ; but to prove convergence to a limit re-
quires an argument of somewhat greater subtlety.

What we have to prove is that

(3 .11) S(x) = 2 - ~ (l-xn+1) = o(l-or).
n-f-l

We write

(3.12) S = "XX+:2=S1+S.2,

where

(3 .13) m =Ku = K [-ry^Ti ]>

K being a (large) parameter. It is plain that we may suppose i 1—x \
small enough to ensure that

(3-14)

As regards S2, we have

(3.15) | S 2 | < 2 :
m K

In order to deal with Sv we require a lemma.

3 . 2. LEMMA £.—If 1>an is convergent, and
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then (i)

and (ii) 2£n converges to the same sum as 2an.

The proof of this lemma is very simple. We suppose, as before, that
A = 0. We can choose nQ so that

for nQ ^n < IA, and then

•(3.21) K | =

The same argument shows that

(3.22) U < m

for all values of n, m being the maximum of j aft

values of n and /x.
Finally, we have

o o »n

and the last term tends to zero. We have thus

<3.

for

(3.

23)

n >

3.3.

31)

Now

»t-i n

o w+1

2
0

T r t - l

0

for all

say. Plainly

(3.32) • |S i" |<^ < |? | l -a; | ,

if m^.n0, which is certainly so when 11—x \ is sufficiently small. Secondly

<3.33) I SI I < ^ 11—a; I,
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by (8.23), if m^n^, which is certainly so when | 1 — x\ is sufficiently
small.

Finally,

m—1 n o - 1 > i - l

(8 .34) | S" | < | l - z | 2 2 n\tn\ = | l - z | 2 2 n\ tn\ + | l - s | 2 2 n\tn\
0 0 «o

mno\l—x\2+dm\l—x

From (3 .12), (3.15), and (8 .31)-(3 . 34), it follows that

(3 . 35) | 8 | < | 1-x | (j- +2KS+S+ ^ +mn0 \l-x\).

We can choose K = K(e) so that 4/K < ^e ; then 8= 8(e, K) = 8{e) so
that „

and then 17 = 17 (e, K, 8) = r\ (e) so that (3 . 85) is satisfied, and

mno\l— x\ < $e

i f | l — x\<r,. Thus | S | < e | l — x\

if 11—x\ < rj; which proves the theorem.

Combining Theorems Q and T, we obtain

THEOREM U.—If the coefficients of the series Xan satisfy (0), then the
necessary and sufficient condition for its convergence is that $(x) should
tend to a limit, either along any particular path C, or along all.

Proof of Theorems V and W.

3 . 4. Theorem T leaves an important question unanswered. Is it cer-
tain that the hypotheses do not imply, what is more* than the theorem
asserts, that

(L) f(x) -*• A

along C ?
Theorem B shows that this is so when C is a Stolz-path : in this case

* (L) asserts more than (A) at any rate when C is regular, that is to say in all ordinary
cases (cf. pp. 219-220).
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indeed the convergence of the series ensures the existence of the limit
without any hypothesis as to the order of an. Theorem C shows that this
at any rate ceases to be true when C is allowed to touch the circle. In
the example which we attached to our statement of Theorem C, we have
to take ^ 7 ^ i - i

1—a< b < 1—\a\
and these inequalities allow b to exceed any number less than 1. It
follows* that no condition of the type an = 0 (n~b), where b < 1, is
enough, in conjunction with the convergence of the series, to ensure the
existence of Abel's limit along all tangential paths.

We shall now show that even the condition

(o) a* = o(—)\n I

is not enough for this purpose. It would be easy.to modify our argument
in such a manner as to show that no condition of the form

where x» is a steadily decreasing function such that 2x« is divergent, is
enough : for simplicity, however, we take

*'v n log n'

THEOREM V.—It is possible to find a convergent series ~2anfor which

an— 0
\n I02 n)'

r path G, such that f{x)
to 1 along G.
and a regular path C, such that f(x) does not tend to a limit when x tends

We take an = —; sin —,
n log n j

if iij = e <. n <. vij+i = e

To prove that 2a n is convergent, we write

icjt k= 2 an, Wj = 2 an,

* Compare p. 208, where we used the same series in a different manner to establish the
same point about the Tauberian Theorem P
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so that u-j = ii)jt [vf.j\-

Since nlogn increases steadily with n, and 2sin(?i7r/;), taken between
any limits, is not greater in absolute value than 2 cosec (irlj), we have

Wj, k — 0 (—f- ) , Wj = 0 I—f- ) .
1 \Uj log 11 j/ \«j log Hjl

Since 2 —^
Uj log Jlj

is convergent, 2Wj is absolutely convergent; and since witk = o(l), 2a(l

is convergent.

Now let fix) =

^ (r, 0) = I [/(re*)] = 2anrft sin nfl.

We shall show that 0 (;•, 0) does not tend to a limit when x -> 1 along a
regular path which has sufficiently close contact with the upper half of
the unit circle.

To prove this we observe first that the series

(8.41) 2a n s inn0

is convergent when 6 is positive. In fact, if we write

ujtk= 2 an sin n6, Uj = 2 an sin nd>
k

and j is so large that TT/J < £0, we find, by the same argument that was.
used above, that

Ti \\cos n ~ f) ~COB n {e+ f
= O(—-i "I

\0/lj log Tlj/ '

and in particular that u< = 0 (n—i ).
3 \dttj log Tlj/

From these relations the convergence of (3.41) follows immediately.
SEB. 2. VOL. 18. NO. 1339. Q
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If now we denote the sum o{ (3. 41) by \Js(6), we have

xj,(6) = Km <f>(r, d),

for every positive 6. It is thus sufficient to show that \fs(6) does not tend
to a limit when #-> 0. Now

(3 .42) \M -.-) = 2 —; sin2 — -f 2 2 —: sm -r- sin
r\J I u. nlogw ; k:£j nk n log ?i ;

. flir . nir
: s
log

say. Suppose j even. Then, if j is large, there are, between nj and iij^,
more than 7ij+i/2j numbers n of the form {vi-\-^)j, where m is an integer ;
and the sum

v_J_
^ n logn'

extended to these values of n, is greater than

Aj b V log Wj / 4;

Thus

(3-43)

On the other hand, the inner sum in \js2 is less than a constant multiple of

jk L _ < 3k

\j—k\ nk log nk ^ nk log 7ifc'
and so

(3.44) | ^ | =

Finally, from (3 . 42)-(3 . 44), it follows that

which proves the theorem.
It is hardly necessary to point out that Theorem V greatly increases
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the interest of Theorem T, and indeed of Theorem 50 of our paper 1, of
which Theorem T is a generalisation.

3 .5 . We can easily adapt the example by which we proved Theorem V,
so as to prove

THEOREM W.—It is possible to find a convergent series 2a n and a
regular path G, so that <&(x) does not tend to a limit when x tends to 1
along G.

We take an = (n-±-l) bni

where bn is the an of the last paragraph. The argument by which we
proved Xbn convergent is sufficient to establish the convergence of 2an.*

Also
i.~~X

&n(l-zn+1) = B~xg{x),
X X

where B = 26n and g{x) = 1bnx
n. And as g(x) does not tend tc a limit,

<£»(£) does not do so.
This proves the theorem. It will be observed that there is a great

deal to spare in the conclusion : we have proved, in fact, that <f?(x) assumes
values of order greater than that of 1/| 1—x\. The fact is that it ought
to be possible to prove that series exist which satisfy the conditions of
Theorem W and whose coefficients are of order <f> (w)/?i, where <j> (n) is any
function which tends to infinity with n. Such an example would (in
conjunction with Theorem V) prove that Theorem T is a best possible
theorem in the same sense as {e.g.) Theorem P, and that neither hypo-
theses nor conclusion can be improved upon. We have no doubt that
this is true, but we have not succeeded in finding an example to prove
our point. In our last example the order of an is I/log n, which is far
from the limit desired. It is therefore not surprising that we should
find that our argument carries us some distance over the mark.

At any rate, however, Theorem W is enough to show that, in Theorem
T, some condition beyond that of mere convergence is essential.

* The function <?>(»)=
?i log n '

bas the properties (i) that it decreases steadily to the limit zero, and (ii) that

is convergent. These were the only properties of l/(nlogn) used in the proof of the conver-
gence of 2 b,,.

Q 2
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4.

FOURIER SERIES.

Proof of Theorem X.

4 . 1 . It has been proved by Fatou* that, if

(4.11) an = o (—), bn = o ( —) ,

\ n I \nj

then the necessary and sufficient condition that the series

(i . 12) ^AQ+IIA,, = £<io+2 (a,, cos nd-\-bn sin nS),
which is certainly the Fourier series of a summable function f'{Q)\, should
converge to the sum A, is that

(4.13) i- r+a/(*)<W-^
Aa Jg_a

a-*0, or (what is the same thing) that

(4.14) 2^4n -* A
na

when a -*• 0.

• Fatou, Z.c. Fatou does not state the whole of this result explicitly as one theorem, but
it is contained in pp. 345-7, 385-7 of his memoir. It is important to observe that, if the con-
ditions (4 .11) are satisfied and F (6) is the integral of / (0)—or, what is the same thing, the
sum of the series obtained by integrating (4 . 12) term-by-term—then

F (0 + a) + F (0-a) -2F (6) = O(a)

for every value of 0, in virtue of a well known theorem of Riemann (quoted by Fatou, I.e.,
p. 385). It follows that the three formulae

—f f(t)dt-+A, -If*" f(t)dt-+A

are equivalent. This ceases to be true when the conditions (4 .11) are replaced by the more
general conditions (4 .21), as appears at once from the simple example of the series

_ sin nd

f By the •' Riesz-Fischer Theorem ", 2 (al + bi) being convergent. In fact

is convergent for every positive 5, from which it follows that \f(v) | * is summable for all posi-
tive values of k. See W. H. Young, " On the determination of the summability of a function
by means of its Fourier constants ", Proc. London Math. Soc, Ser. 2, Vol. 12, 1912, pp. 71-88.
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The investigations of Sections 2 and 3 suggest very forcibly that it
should be possible to replace the conditions (4 . 11) of Fatou's theorem
by the corresponding conditions of the " 0 " type. We proceed to prove
that this is so.

4 . 2. THEOREM X.*—If an and bn are the Fourier constants of a
summable function f\6), and

(4.21) «. =

then the necessary and sufficient condition that the Fourier series of f{6)
should converge to the sum A is that

(4.22) ±- ( +af(t)dt^A
2a Je-a

when a —> 0.

We may plainly take . 4 = 0 and suppose that |7krln| < 1.

In the first place, the condition is sufficient. This may be proved in
a variety of manners by a mere combination of known theorems.

(a) We may prove, by using Poisson's integral in precisely the same
way as Fatou, that

when r-> 1. The convergence of "ZAn then follows from Theorem p.t

(b) It was proved by Lebesguet that the Fourier series of f(6) is
summable (C, 2), to sum A, for any value of 6 for which (4 . 22) is satis-
fied. The result then follows from the theorem that a series whose
general term is of order 1/n cannot be summable by Cesaro's means
unless it is convergent. §

* We have already published a proof of this theorem, by a different method, in the
Comptes rendus of December 24th, 1917 (our paper 5).

t Fatou, of course, uses Theorem D.
+ H. Lebesgue, " Recherches sur la convergence des series de Fourier ", Math. Annalen,

Vol. 61, 1905, pp. 251-280 (p. 278).
£ G. H. Hardy, "Theorems relating to the summability and convergence of slowly

oscillating series ", Proc. London Math. Soc, Ser. 2, Vol. 8, pp. 301-320.
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(c) It has been shown by W. H. Young* that if the Fourier series of

[6+a[6+

is summable (C, r) for a = 0, then the Fourier series of/(#) is summable
(C, r+1) . If (4. 23) is satisfied, g(a) is continuous for a = 0, and we can
take r = 1. The proof may then be completed as under (6).

4 . 3 . We have now to prove that the condition is also necessary.
We write+

(4 . 31) $ = 2 An ^ ^ = 2 + 2 = $!+$„,

i na i m+i

say, where m = [Kid],

so that iT/2a < m ^ if/a for all sufficiently small values of a. Then
_ 1( 4 . 32 ) | •

Again, if we write

we have (as in § 3 .2)

(4.33) \tn\<—,
IV

Now

(4 . 34) $! = I ^w -

2 A
a m + i n2

—
wa

CO ^

tn = 2 —t,

< S (n

sin a ^ . sin a S j 1 , - v )
= 2 £n 2/ i,i ] 1—cos {n— l)a,-

1 — COS a ^ . . . - , 1 ,
2. tn sin (»?. — 1) a cni+i Sin wta

a «

* W. H. Young, "On the Convergence of a Fourier series and its allied series", Pror,.
London Math. Soc, Ser. 2, Vol. 10, 1911, pp. 254-272 (pp. 262-266). Young's argument de-
pends only on a series of elementary identities, and includes a new and greatly simplified
proof of Lebesgue's theorem quoted above.

f The proof which we give here is (if hardly shorter) considerably simpler in principle
than that which we gave in 5. Naturally Theorem T can also be proved by an adaptation
of our former method.
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say. In the first place

(4.35, |*H <.£.<!,

if m ^ n0, and

(4 . 36) I *i I < o,

if m > %; and each of these conditions is satisfied when a is sufficiently
small. Secondly,

(4 . 37) |*1" | < U 1 \tn\ < am logm < am log — .
I a

Finally,

(4 . 38) | <£'; | < \a* 2 n2 \t,,\ = U* f S* + 2.) n211,, I

From (4 . 31), (4 . 32), and (4 . 34)-(4 . 38), we deduce

(4 . 39) | * | < -!+pT2<5 + <5 + !° +am log ̂  +*a9m»;.

Given e, we choose K(e) so that 2/ii <; -̂ e ; then 6(e, K) = 8(e) so that

and then »? = t) (e, K, 8) = n (e) so that (4 . 39) is satisfied, and

am log h %a2mnl < £e,

if 0 < a < »/. We have then | $ | < e,

if 0 < a < *i, and the theorem is proved.

4 . 4. The condition (4.22) is certainly satisfied if F(6) has a differ-
ential coefficient equal to A. But the convergence of 2,An does not involve
the existence of such a differential coefficient. Thus, if

and we consider the particular value 0 = 0, the sum of the series is zero,
and fo
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But, if a is positive,

1 fa 1 f°
- fit) dt - , i - , - }{t) dt -* -1-K.

In this respect Theorem X differs essentially from Fatou's theorem of
which it is the generalisation.

Supplementary Remarks.

4 . 5. We shall conclude the paper with a few theorems of a slightly
different character.

The characteristic properties of series which satisfy the condition (o)
or (0) are shared to a great extent by series Tan such that

(4.51) I«|flH|a,

or, more generally,

(4.52) l)i"\atl\^ ( j ?> l ) ,

ar.e convergent."* It is easy to see that this is true of the properties
which have been discussed in this paper.

Let us suppose, for example, that the series (4. 51) is convergent;
and let us return to the proof of Lemma a.

We can choose vi so that

(4.53) in\an\* < e.

This being so, we have

1 V 1 \
f n(»+DV

2 V

\i-x\ V It ' " f n(»+D

1 ^ 1v\ l—x

* See L. Fejer, " Uber die Konvergenz der Potenzreihe an dur Konvergenzgrenze in
Fallen der konformen Abbildung auf der schlichte Ebene " , H. A. Schwarz Festschrift, 1914,
pp. 42-53 ; and our paper 3 . I t is co be observed that the theorems which depend upon a
condition of this type have all the simpler " o " character, and their proofs do not involve
the peculiar difficulties of those of the " 0 " theorems.
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The first term on the right hand side of (4. 54) is less than y^ if x is
near enough to 1. The second does not exceed

V aH n

Hence \sv-\ — ${x)\ <

— x\

if x is near enough to 1. As G is continuous, v passes through an un-
broken sequence of integral values as x->l. We thus obtain

THEOREM XJl. — If Sfija^;2 is convergent, then the necessary and
sufficient condition that Halt should be convergent is that ${JT) should
tend to a limit when x tends to 1, either along any particular jwth C, or
along all.

There is no difficulty in proving the more general result which holds
when the series. (4 . 52) is convergent. It is only necessary to use the
generalised form of the Canchy-Schwarz inequality.*

Similarly we have

THEOREM x l . — If Sn«.;-f5; is convergent, then the necessary and
sufficient condition for the convergence of the series

(«„ cos nd + K sin nd) ~ / (0 )

] [

is that -- t\t) dt
•2a J0_a

should tend to a limit when a -> 0.

4 . 6. We have found that the condition (4 . 13) is both necessary and
sufficient for the convergence of two important classes of Fourier series.
There is a third class for whose convergence it is a necessary, though not
a sufficient condition. This is the class of Fourier series of hounded
functions.

* Cf. 3 , p. 136.
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We have, in fact,

THEOREM T.—If f(6) is a summable function, bounded in the neigh-
bourhood of a particular value of 0, and if the Fourier series of
convergent for that value of 9, then

tends to a limit when a -•> 0.

Suppose for simplicity that a0 = 0, and let

r? ,/ix v an cos nO+bv sin nO
2^(0) = - - -t

be the second integral off(6). Then, if the series converges to the sum
zero,

(4 . 61) <f>(a) = F^O+cb+Ftf-cb-ZF^Q = o(a2)

when a -> 0, in virtue of another well known theorem of Riemann.*

Now 0'(a) = F{6-\-a)-F{0-a) = f +* f(t)dt.
Je-a

If f{6) were everywhere the differential coefficient of its integral, we should

since f(t) is bounded in the neighbourhood of 0 ; and from (4. 61) and the
last equation it would follow at once that

</>'(«) = o(a),

proving our point. This is not now a valid proof. But it is easy to see
that, in such a theorem as

" 0(o) = o(a?) and </>"(a) = 0(1) imply <p'(a) = o{aY\

the second condition may be replaced by the more general condition ex-
pressed by the inequality

* See, for example, de la Vallee Poussin, Cours d'Analyse, ed. 2, Vol. 2, p. 172.
t See Landau, " Einige Ungleichungen fur zweimal Differentiierbare Functionen ",

Proc. London Math. Soc, Ser. 2, Vol. 13, 1914, pp. 43-49.
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a condition obviously fulfilled in this case, since <f>' is the integral of a
bounded function.

Thus Theorem Y is proved. It is, in fact, but a special case of

THEOREM Z.—The Fourier series of a function f(6), bounded in the
neighbourhood of the particular value of 6 under consideration, is either
summable by Cesaro means of arbitrarily small positive order, or summable
by no Cesaro mean of any order. The necessary and sufficient condition
that it should be summable is expressed by the condition (4. 13).

The proof of this theorem would, however, carry us too far from the
proper subject of the paper.*

• We have published a sketch of the proof, under the title "On the Fourier series of a
bounded function ", in the Records of Proceedings at Meetings for December 6th, 1917 (Proc.
London Math. Soc, Vol. 17, p. xiii).


