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Introduction.

The present memoir is devoted to the discussion of a problem which
was considered at some length in a paper which appeared in these
Proceedings some months ago.

The problem in question is to determine a function <p{t) so that, for
a given range of values of s, we may have

where it- is supposed that the path, of integration and the functions f(s)
and K(S, t) are known.

Equations of this type occur in potential problems in which the value
of the potential function is given at points on a curve or surface. . On
this account alone they are worthy of close attention ; but there is
another object which a systematic theory of these equations would
accomplish—it would group together the innumerable isolated results in
the subject of definite integrals, thus giving us a means of classifying
them, besides . indicating the fundamental principles upon which the
formulse depend.

* This paper is an elaboration of one which was presented to the Society on May 9th, and
afterwards withdrawn, as tile subsequent researches of the author required that it should be
remodelled.
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With this object in view, I have attempted in § 2 to classify the
integral equations themselves according to what may be called the
fundamental formulae on which the solution depends. A practical method
of finding the inversion formula depending on the use of a differential
equation is then suggested, and is employed to obtain the solutions of
a number of particular equations. I am unable, however, to give
a rigorous investigation of the theory of this method.

A second method, which also depends upon the use of linear differ-
ential equations, is indicated in § 8 ; it seems to be full of possibilities,
and throws some light upon the theory of a certain type of partial
differential equation.

§ 10 consists of an extension of the general method which was given
by the author,* and an attempt is made to obtain an existence theorem.

1. The Integral Equation considered as the Limit of a System of

Linear Equations.

The integral equation

f(s) = P K(s, t) <p (t) dt (1)
Ju

13 in many respects analogous to the system of linear equations

/ . = j ^ * , , , ^ ( s = 1, 2 r ..., m), (2)

and can, in fact, be obtained from it by a limiting process in which m and
•n are finally made infinite. The important point is that in this process
of passing to the limit many of the properties of the system of linear
equations are preserved.

Now the properties of a system of linear equations depend upon the
relation between the number of equations and the number of unknown
quantities.

(1) If m>n, we shall be able to construct a number of relations of
the form m

2 asKst = 0,
5 = 1

which are satisfied for all values of t, and then the equations (2) will be
inconsistent unless the quantities / satisfy linear relations of the same type

2 a,f, = 0.
5 = 1

• Froc. London Math. Soc, Ser. 2, Vol. 4, Part 2 (1906).
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In passing to the limit, a relation of this type may take several forms,
such as ,d

a(s)/(s)ds = 0,
Jc

asrJ«=*,,

XBrf(Sr)=O',

or it may be expressible as a linear combination of such forms.
In any case the corresponding property possessed by the integral

equation is that in general a necessary condition that a function /($) may
be expressed in the form (1) is that it should satisfy all the linear relations
that are satisfied by K(S, t) for all values of t. This condition is only
necessary so long as the function <f>(t) is restricted to be such that the
operation of forming the linear relation may be interchanged with that of
integration in equation (1). We cannot say at present whether it is
sufficient or not, because the conditions which are to be laid on <p(t) have
not been determined, and it has been found that in certain cases a
function represented by equation (1) satisfies linear conditions (such as
continuity*) which the function K(S, t) does not.

(2) If m = n, there is in general a unique set of quantities <pt and
these are determined by a set of linear equations of the form

provided no relation of the form

2 as Kit = 0

is satisfied for all values of t.

(8) If m<Cn, there are an infinite number of sets of solutions, but we
may single out one set by imposing n—m linear conditions on the
quantities <j>t.

We conclude from this, that, in general, the solution of equation (1)
will not be unique, but that it may be rendered unique by imposing
a number of linear conditions upon the function </>(t). The whole question
depends, of course, upon .the range of values for which /(s) is given: +

• The condition of continuity must be regarded as being equivalent to a number of linear
conditions.

t In some cases"/(») may only be given for an enumerable set of values of »; but, by
properly choosing the conditions to be satisfied by <p, we can make the solution unique, as, for
instance, in Stieltjes' problem of the moments. (Annales de la Facttlte des Sciences de Toulouse,
t. vm., 1894.)
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for one range of values the function cf>(t) may be uniquely determinate,
while for a smaller range this will, in general, not be the case, and it
may be necessary to restrict <p(t) to be zero for a certain portion of the
range of integration in order to render the solution unique under the
new conditions.

Supposing, then, that conditions have been chosen which will make
the solution of (1) unique, we shall expect, in analogy to (3), to obtain an
expression for <j>(t) of the form

<p(t) = Ltf(t) (4)

where Lt denotes a linear operator which may be built up of terms of
the types ^,., rd

p{t)-—-, f(t+a), F(t,s)f(s)ds.
at Jc

It frequently happens that the inversion formula takes the simple form

= [ ~K(t,s)f(s)d.s; (5)

but it is to be remarked that this integral is in general of a different
character from that which oecurs in equation (1). -

This may be seen by considering a particular example in which the
limits a and b are finite and the function K(S, t) remains finite and con-
tinuous within the range. By choosing a particular function <j>(t) which
experiences a sudden change of value at a point x within the range of
integration, we obtain a continuous function f(s). The integral in equation
(5), on the other hand, must represent a discontinuous function, and this
can only be the case if the integral is an improper one.

The exceptional character of the integral in equation (5) may either be
due to the limits being infinite or to a discontinuity in the function ic(t,s).

When the solution of the equation : . .

f(s) = f K{s,t)<p{t)dt

is given by a formula of tbe type

<p(t) = f ^(t,s)f(s)ds, .
J L

in which the path L does not depend upon the value of t, we can, in
general, assert that the solution of the associated equation

= [K(s,
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is, under suitable conditions, given by the formula

ir(S)= \bK(t,s)X(t)dt.
Ja

For we have

f f(s)\fs(s)ds = [ f K(S, t)yf,(s)<j>{t)dsdt
JL JL Ja

= W(t)<f>(t)dt = f f ~K(t,s)x(t)f(s)dtds
Ja Ja JL

and f(s) is arbitrary ; hence we must have

2. The Classification of Integral Equations of the First Kind.

Integral equations of the first kind may be classified according to the
principles on which their inversion formulae depend.*

The method which we adopt to ascertain the nature of an equation is
as follows:—

Let K (s, r) be substituted for f(s) in the inversion formula with
the view of obtaining, if possible, a function (f>(t) =• h(t,r) which will give
a representation of K(S, r) in the form

f6
K(S, r) = I K(S, t) hit, r)dt

Jo
(6)

for values of r lying between a and b.
Now, although the function K(S, r) satisfies all the linear relations that

are satisfied by K(S, t), it can, in general, only be expressed in this form
if the integral is an improper one. For we know that, in the case of
a proper integral, the equation t

= ?yf,(Qh(t,r)dt
J

is only satisfied for a finite number of functions \fr if at all; whereas,
by giving different values to s in equation (6), we shall obtain an infinite
number of linearly independent functions yjs, unless it happens that the
function K(S, t) can be expressed as a finite sum of the form

K(S,t) = jt^
When K(S, r) is substituted for f(s) in the inversion formula it fre-

quently happens that the result takes the form of a divergent definite

* An integral equation is regarded here as consisting of the equation itself plus a number of
conditions which will render the solution unique.

t Fredholm, Ada Math., Vol. xxvn. (1903).

SEB. 2. VOL. 4. NO. 941. 2 H
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integral or series, in this case we associnte a value with it by applying
one of the known methods of summation such as Borel's exponential
method.*

If this method is applied to all the equations for which the formulae
for inversion are known, it will be found that the function h{t,r) takes
one of a limited number of distinct forms; and so the equations may
be classified accordingly.

In equations of type 1 the function h(t, r) is zero, except in the
vicinity of t = r. As an example of an equation of this type, we may
take Hilbert's equation ,x

/(«) = K(s,t)<f>(t)dt
Jo

where K(S, t) = s(l — t), s < £ ; = t(l— s), s ^ t ,

the solution of which is given by

Now — {ic(t,r)\ = 1—r for £ < r

= — r for t ̂  r,

and so is discontinuous at the point t = r; but for any other point we
may differentiate again, obtaining

h(t,r) = - £{K{t,r)} = 0A

The equations of the first type form a very large class; other types
depend on the following forms of formula (6):—

K(s,r) = s M

IQ \ i \ 1 H / ±\ sin(t—r) , .(3a) K(S, r) = — K(S, t) —-* at.

(4a) K(S, r) = \ K(s,t)h(t,r)dt
Jo

where h{t,r) = t\ J0(tx)J0(rx)xdx,
Jo

the numbers being chosen as above because the types (1), (2), (8), and (4)

* This method is applied to definite integrals in a paper by G. H. Hardy, Quarterly Journal,
Vol. xxxv., p. 22.

t [Note added December Uth.—When, however, the solution of the integral equation is not
unique the function h (t, r) may differ from one of the forms given below by a multiple of a
function <p (t) which makes the definite integral zero.]
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are connected in some way with the differential equations

dx2 ~ ' dx2 "•" dy2 ~ ' dx2 "*" dy2 + dz* "•" ~ '

respectively.
It is exceedingly probable that the equations of other types may be

made to depend eventually upon what may be called the fundamental
formula of type 1, and so we proceed to consider this formula in detail.

8. The Fundamental Formula for Integral Equations of the First Type.

The equation which I have referred to as the fundamental formula
for integral equations of the first type is strictly not a mathematical
equation at all, and cannot be used in a rigorous demonstration until it
has been rendered more precise by a determination of the class of
functions to which it is applicable and of the necessary and sufficient
conditions to be satisfied in order that operations such as differentiation
and integration under the integral sign may be performed upon it.

These the present writer does not feel competent to give, but some
justification of our employing it to attain the ends we have in view may
be derived from the following considerations:—

Let f(t) be a function which possesses a continuous derivative for all
values of t wibhin the range (a, b), and let F{x, t) be a function which is
defined as follows:—

F(x,t)=-1 (t<x)^

= + 1 (t > x))

then f F(x, t)f(t)dt = f(b)+f(a)-2f(x).
Ja

Now let us suppose, for the moment, that we can integrate this
equation by parts ; then we shall have, by the ordinary rule,

(z, t)f(t)dt = f(b)+f(a)- £ jt F{x>

Accordingly, if the improper integral

be defined by this equation, we have

2 H 2
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and this is the fundamental formula to which I have referred. It is
clear that the limits a and b can be made infinite and the function F(x, t)
replaced by F{x, t)-\-\Js(x) without altering the argument; but it is not
clear whether this formula can be considered to hold when f{x) does not
possess a continuous derivative.

A geometrical interpretation of the formula may be obtained by
20

writing F(x, t) = — where 6 is the angle which the radius vector, from

the point x to the point t, makes with the line through x perpendicular
to the axis. If the point x is excluded from the range of integration
by a small semi-circle of radius e, the formula may be written

fix) = ^ f ^ f(t)dt = 1-
7T

and this is easily seen to be true if f(x-\-h) can be expanded in a Taylor's
series.

Now let us consider an integral equation of the first type

f(s) =

for which the inversion formula is

<p(t)= f K(t,s)f(s)ds.
JL

Then, by hypothesis, the function

is obtained when ic(s,r) is substituted for /(s), i.e.,

i j t F(r, t) = i K{t, s) K(s, r) ds ?, (10)

the sign = ? being used to denote that the integral may be divergent,
~\

in which case ^ -^- F(r, t) is the value associated with the divergent
ot

integral.
Accordingly, if ice wish to Jind the inversion formula, we must look

for a relation of the form (10) : i.e., if the path L is known, we must
Holve the integral equation

$ £ • F(r,t)= \ x(s) K(S, r)ds,
ot JL

for x(s).

I shall indicate later a method depending on the theory of linear
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differential equations by which relations of the form (10) may be con-
structed. For the present I shall content myself by showing that
the relation (9) may be considered to be connected with many of the
well known representations of a function.

In the case of Fourier's double integral

f{x) = — I 1 cos s(x — t) f(t)dsdt
TT Jo J - »

the equation (10) has the form

^^-F(x, t) = — coa s(x — t)ds ?,
Ot 7T Jo

the representation for F(x, t) being the exact equation

IT Jo S

and the limits a and b being + oo respectively.
The representation of a function as a series of Legendre polynomials

may be considered to be based on the exact equation *

F(x,t) = P1(t)P0(x)+ *

the relation corresponding to (10) is

* 1- Fix, t) = 2 ZZL± pn(x) pn(t) ? ;
Ot i £

and the limits are a = + l, b = — 1.

4. Study of a particular Equation.

We shall now consider the integral equation

-v 0>>O). (11)

If | s\ < 1 and f(s) satisfies cei'tain conditions, it will be shown that
the inversion formula is

f [vf(x)+xf(x)]ahr''-1ada (12)
Jo

where x = s+iVl—s'^cosa.

* The necessary and sufficient conditions that a function satisfying the conditions laid down
in Dirichlet's proof of Fourier's theorem may be expanded in a series of Legendre polynomials
are given by Darboux, " Approximation des Fonctions de grands Nombres," Lioitville'-i
Journal (3e serie), t. rv., p. 393 (1878). The function F(x, t) satisfies these conditions, and HO
may be expanded in the above form.
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Substituting f(x) = ——-— ^v according to the rule, we obtain

= h(t,r) = I -—-—:—OTTTT sin2"'1 a da

7r j 0 ( l—r
where

or

X = —P cos a

t,r) =4- (l

dxi-ti)r—t dx { \1 —!

= 0, unless r = t.

The integral equation is thus seen to be of the first type.
We can also show that h (t, r) is the derivative of a discontinuous

function of the type required, for

r = —T— \ -—it* wh{t,r)dr dx,

and this integral is discontinuous at t = r. To determine the change of
value, we write it in the form

_ J _ f I 2(r-afl • 1 . A —r)

2ra+a;2)2

higher powers of (t—r)\ dx

1 r t

= —-±-\ logix—r—iVl—

Let the path of integration be the straight line joining the two points
t ± Wl — 1?, then we have the two figures

(r>t)
t+iy/l-t-

(r<t)

r + iVl-»-

-tx/l-r2 r-iy/l-r

The only part of J which is discontinuous at t = r is the first term,
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and this is equal to -{•Bj-rr if r>t and — ̂ /x if r<t. Hence, since
0 + 0 = 7T, I will suddenly increase by + 1 as r increases through the
value t; accordingly, if we write

F(t,r) = 2\h(t,r)dr,

the formula (9) will give

f+1

=: h(t,r)</>(rydr
J-i

k L
and, if we assume that the order of integration can be changed, we may
write this :

«+iV(l-t«)

(12)'

The formula (12)' is easily seen to be equivalent to (12) when the
substitution . s

x = t-\-ivl — fcosa
is made; accordingly the inversion formula can actually be constructed
by means of equation (9), and so the integral equation is proved to be
of the first type.

We may find a sufficient set of conditions to be satisfied by f(s) in
order that it may be represented in the form (11) by using Dini's method
of expansion, that is, by representing the function K(S, t) in the form

K(s,t) = 2anxf,n(s)en(t).

In the present case we use the expansion

2 - = ios
nC:(t) ( | s | < l ) . (13)

The properties of the polynomials Cv
n{t) are fairly well known, but

it will be convenient to furnish proofs of the different relations that
will be required, as I do not know exactly where some of them are to
be found.
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LEMMA I.—The functions Cv
n(t) satisfy the integral relations

To prove these, we observe first of all that the function

V= ( 1 - 2 ^ - s 2 ) -

satisfies the partial differential equation

Replacing V by the series and equating coefficients of sn, we find that
C"n(t) satisfies the differential equation

y = 0.

Writing the equations satisfied by the two functions CM, Cv
m(t) in the form

A

ft [ (^- l )"+ i ft Cv
m(t)] =

multiplying the first by CIM, the second by Cv
n(t), and subtracting, we

obtain

jj[V-ir+* [CM ft cM-cvnW ftGM}]
= (n-m) (n+i»+2v) (P-iy-*Cv

n(t). CM-

Now CTO(̂ ) is a polynomial in t, and so remains finite when t = + 1;
accordingly the quantity inside the square bracket vanishes for these
values of t, and so, if n =/= in, we have

\
-i

To find the value of the integral when m = n, we require the recurrence
formula satisfied by Cv

n(t), viz.,

<n+l)C»+i-2(n+v)*C»+(n+2i>-l)(7»-i = 0. (15)

To prove this, we differentiate equation (13) with regard" to s, obtaining
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and compare with the former expansion, whence we get the relation

(l-2st-\-s2)2nsn-1Cv
n(t) = Mt-s)2s*CM,

from which the recurrence formula is obtained by equating coefficients
of sn. Multiplying (15) by (1 — f)v~hCn+i(^dt and integrating, we obtain
the relation

Similarly, multiplying by (1 — &Y~*Cv,,.-\(t)dt and integrating, we
obtain

1

+

Changing n into n + 1 and comparing with the last equation, we find that

Now Cl(t) = 1, and, if we put x = —— in the integral

i o =

it becomes Io = 22" T ^ - * ( l - ; c ) " - i ^ = 2-
J

= 22" T
Jo r(2i/+l)

Hence the relation Jw+1 = ( w + y + 1 ) ( w + 1 ) I»

will give I - 22' - i
will give i ( l - ^ w +

i ( l - ^ w + y w , r ( 2 j / + 1 ) F ( 2 j / ) •

This expression may be simplified by using the relation*

j .e n I- • r 7T r(-n+2i/)
and we finally obtain In = —,—n—;—: ,.,. —r •

2W"~1(/AH-I/) 1 (//)«!
The solution of the integral equation for f(s) = ,sn may now be

obtained, for, if we multiply the expansion (I'd) by (l — t2)"~'Cn(t)dt and
integrate between —1 and 4-1, we obtain

=

(l-2st+s2)v
 2-V-1(«+J/) Y\v)n\ '

* Whittaker's Analysis, p. 180.
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so that the corresponding function <f>.n(t) is given by

By giving n different values, we see that the solution for

/(*) = 2ans
n

should be <f>(t) = 2an(f>n(t).

Now, in order to establish the inversion formula, we must prove first
of all that

n\
Cl(t) = 95-(rrt/t

) , f < * W l 1 1 ? cos a}" sin^ada. (16)
& i \y) n\ JQ

If we call the right-hand side Fn and substitute in the recurrence formula.
(15), we find that

z i \v)n\ LJ 0

— [ n(t+iVT^ cos a)n-HVTII~i?sm-''+l a da\
Jo J

But, on integrating the first integral by parts, we find that the
quantity under the square brackets is zero ; hence Fn satisfies the same
recurrence formula as Cn{t). Also, when n = 0, we have

& -L \V) Jo
^S1 cos a) sin^-'ado = %vt,

and so the first two values of Fn coincide with those of Cv
n(t); therefore

JP71 is equal to Gv
n{t) for all positive integral values of n.

We are now in a position to prove the following theorem :—

THEOREM.—If f(s) is a function which can be expanded in a power
series . . . v n

f(s) = lans
n,

which converges within the unit circle in such a way that the series
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is convergent, then f(s) can be expressed by means of the definite integral

and the function <j> is given by the formula

JOO

where x = t-\-iVl — f cosa.

Since (1

we find, on expanding both factors and calculating the coefficient of sn,
that

Gn{t) = An cos n<p-\-An-2 cos {n—2)0+...

where the coefficients ^4r are all positive ; for all the coefficients in
(1—x)~" are all positive.

The modulus of Gv
n{t) will therefore certainly be less than its value

when <f> = 0, i.e., when t = 1, and then we have

_T(n+2»)

Now we saw that for /(s) = Sa.»sn we had the formal solution

and, if we take out the factor (1 — tf2)1""*, we shall have a series which

is absolutely and uniformly convergent for |Cu(fll ^ y/n \ \ > an(* ^v

hypothesis the series 2|(w+y)an| is convergent.
To show that when this series is substituted for <f>(t) in the integral

it can be integrated term by term, we employ the rule given by
G. H. Hardy,* viz.: If 0 = 20(£) is uniformly convergent throughout
(a, A—e), however small be the positive quantity e, f(t) is continuous

u _
throughout (a, A), and 1 <f> (t) is convergent where

Ja

then f (j>f(t) = 2 \ <j>nfdt.
Ja Ja

* Mess, of Math., Vol. xxxv., No. 8, p . 126.
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Taking f = -— 2 , it is easily seen that, if \s\ < 1, the con-
\x~~~ £>St~^S )

dition is satisfied; hence, on integration, we shall obtain the series for
/ , and the first part of the theorem is proved.

Next, to prove that the function 0 is actually given by the inversion
formula, we again apply Hardy's rule ; observing that

vf(x)+xf(x) = 2(n+v)anx
n,

| x | = Vcosaa-Has

we see that, if 0 = 21 {n-\-v)anx
n sm2"~1a

r -
then <f>da is convergent, and so the integration term by term may be

Jo
effected.

The formula (12) is thus proved for any function which satisfies the
conditions laid down; these conditions are sufficient, but not necessary.
It is important to notice that they are satisfied in the case of a function
f(s) which can be expanded in a power series whose radius of convergence
is greater than unity.

The solution of the integral equation for the case in which | s | > 1
may be deduced from the inversion formula by writing s = - 7 .

o

5. Applications of the preceding Formula.

If in equations (11) and (12) we write v = 1, the results may be
expressed in a simpler form ; for we have

= — [xf(x)T
T L Jo

ITT

(17)

Writing s = tx-\-i<s/i—fJ?,

we have sf(s) = ^0*) = £ T ^ ^ . (19)
- i

The function ^(JUL) is, in general, a many-valued function of /x, and there
are two values of s corresponding to each value of ix. The inversion
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formula may be written*

= J- Lt [^{fi-ie)-f{pi+ie)l (20)

thus allowing for the multiformity of the function \js.
In particular, if <f>{t) = Pn{t), we have ^u*) = Qnfa), and the formula

Q»M = }PM log ( j ± ^ ) +B«0«t) (21)

where Bn(/j) is single valued shows at once once how formula (20) will
give the correct value of <p.

Again, if /(s) = —— , we find that <j>(t) = — cos?i£ sinhnVl — f ;
S 7T

and so we have the formula

sinns 2 f+1 s inh^Vl —^coswi ,,
S 1

which gives for s = 0

I sinh (n V l —tf2) cos nt dt = -£•.

Next let us consider the equation associated with equation (18), viz.,

(23)

To obtain a solution of this, we determine a function h (r, s) such

1 _ r + * h(r,s)ds ( | r | < 1 ) .

then we shall have

. 4>(t)dt- f+1 f+1 h(r,s)4>(t)dsdt
l-2!5r+r2 J . J . , l-2s*+*2

= h(r,s)f(s)ds = y/r(r) (say),
J-i

and so the function <f>(t) will be determined by solving the equation +

r+r

* The sign to be chnsen is obtained by contuderuipr a particular function. This formula is

similar to the one given by Stieltjes for the iutegral F(z) = j • ' ' '• . See Borel'n Lefoiis sto-

les Series divergentes, p. 69.
t The method adopted here is capable of more general application.
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Applying the inversion formula (17), we find

h,r s) _ J [ H W l - / s — i V l -
l+r*-2r(s+iVl-?) l+r2-2r(s—iVt=

2
ir (l-2rs+r2)2+4'ra(l-52)"

Hence the inversion formula for the equation

18

w h e r e F(r) = - ^ - 2 f + l

If we substitute f(s) — o (24)

in this, we find <p {t) = 0 (£ ^fc z ) ;

accordingly, this integral equation is also of the first type.
When v = £, we may write equations (11) and (12) in the form

= ±-[ x(t+WT-f cos a)da, (26)
Z7T Jo

which shows at once that they arise from a potential problem.
For we know that

V = — f X(z+iVx2+y2 cos a)da (27)
7T Jo

represents a potential function symmetrical about the axis, and, since
(26) gives us the values of this function at points on the sphere
£2+2/a-t-22 = 1J the values at all other points, and in particular those
on the axis, may be determined by Green's formula

V = — V-*-ds,
4TT JJ on

which is equivalent to (25), but formula (27) gives F = x(z) o n *n
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6. The Determination of the Inversion Formula by means of a Linear
Differential Equation.

We shall now consider the case in which the function K(S, t) in an
integral equation of the first type satisfies a linear differential equation
of the form

u) = 0, (28)

where Pt{u) and Qt(u) are used to denote the expressions

dnu , ,,v dn~1u ,

j ,.. d'lu , ,,, dn~lu .
and j , W _ + f t W _ _ r + ...
respectively.

The adjoint linear differential equation will clearly be of the same
form, and may be written

Pt(u)+xJ,(s)Qt(u) = 0. (29)

The quantity K (S, t), being a solution of the original equation, will be an
integrating factor of the above expression.

Now let u (r, t) be a solution of the equation

then we have

[xlr(s)-^(r)-]K(s, t) Qt\u(r, *)] = K(S, t) ^ f

therefore* £ K (S, t) Q\ [U (r, t)\ ̂  (r) dt = . ( ^ ^ ( y ) [ W$u. (30)

Now, let the limits be chosen so that W takes the same value (usually
zero) at both; then we shall have

y[J (r) \h
 K(S, t) Qt [u(r, *)] dt - 0 (r =£ s). (31)

If the limits cannot be thus chosen, we try to determine them so that the
quantity W oscillates very rapidly in their vicinity ; we can then write

and r'(r) Pl
K(s, t) Qt [u (r, *)] dt=O? (r=j=s). (31)'

Jto

* The factor \fi' (r) is inserted purposely, as it appears later in the inversion formula.
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In either case we have a function of the type required for formula (9),
provided that we can show that the function obtained by integrating with
regard to r has a discontinuity at the point r = s. The above equation
will then give us the inversion formula for one or both of the integral
equations « •>

= \lK(s,t)<p(t)dt
Jt0

<f>(t)=A\ Qt[u(r,t)-]i,'(r)f(r)dr
Jm

To illustrate the method we shall take the following examples :-

(1) If K(S, t) = Jm (st), the differential equation is

d

(32)

which is self-adjoint. Hence, if u = Jm{rt), we have

d f, / du

Now the quantity within the square brackets is zero when t = 0 and
oscillates very rapidly near t = oo ; for we have approximately

Jm(z) = \I — cos I z— (?n+%) ^- I ;
V TTZ \ a )

hence we may write

h(s,r) = r\ Jm(st)Jm(rt)tdt=O? (r =£ s),
Jo

and we are led to consider the possibility of an equation of the form

f(s) = [ f Jm(st) Jm(rt) trf(r) dr dt. (38)
Jo Jo

The actual formula is well known and was given by Hankel* in 1875. We
shall not stop to verify that h(s, r) is the derivative of a discontinuous
function.

(2) If V = (l — Zst+t?)"-1 = K{S, t), we have the differential equation

(l-2st+f)

which is adjoint to

y 2(ul)(t-s) V = 0,
at

at L at J

* Math. Ann., Bd. viii., p. 482.
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Here u(r, t) = (1-2^+f 2 ) - ,

r\ r / i\-\ ' x du i (1 — t2) "

(It \L-

2(r-s)Qt[u{r, t)]ic{s, t) = %-Ul-Zst+t2)vu(r, *)],

and the quantity under the square brackets vanishes if

Hence we have

(
s+i

w h i c h l e a d s u s t o t h e e q u a t i o n c o n s i d e r e d i n § 4 .

(8) Consider the equation

f(s)=\ JQ(st)K0(st)t<f>(t)dt, (35)
Jo

where J0(z) and K0(z), the two solutions of Bessel's equation of order zero,
are so defined that their approximate values for large positive values of z

a r G / 2 / 7T \ A / 2 . / 7T \
\ /—cos I— —z) and «/—sin (— z)
\ TTZ \ 4 : / V 7T̂  \ 4 /

respectively.
The function K(S, t) = tJQ{st) KQ (s, t) satisfies the self-adjoint differential

S
o f w h i c h a n o t h e r s o l u t i o n i s t j \ ( s t ) .

I f , t h e n , u ( r , t) =• t J ^ ( r t ) , w e h a v e

v b e i n g w r i t t e n f o r K ( S , t).
T h e q u a n t i t y i n s i d e t h e s q u a r e b r a c k e t s i s z e r o w h e n t = 0 , a n d

o s c i l l a t e s v e r y r a p i d l y w h e n t = . o o ; h e n c e , s i n c e i n t h i s c a s e

we have r f «7"0(sO KQ (st) cj- {tj\ (rt) \ t dt = 0 ? (/• ^ ,s),
Jo ^^

SEE. 2 . VOL. 4 . NO. 9 4 2 .
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and we are led to consider an inversion formula of the form

Jo (2z) = [* ~ {xj\ (x sin 6) \ sin 6 d6,
J dx

We may verify by means of the equations

d_

dx

Jo(2^cosh w)dw,

o

and Hankel's inversion formula given in (1) that this inversion formula is
correct if A = 2 r : but the formula was discovered originally from the
differential equation.

The formula that we have just obtained, viz.,

/ ( « ) = f JQ(sf)K0(st)t<l>(t)dt

. - [, (36)

4>(t)=Z*r*{tJl(rt)\rfto)dr
Jo dc

is analogous to Hankel's formula

= f Jm(st)t<t>(t)dt
'o

(37)

=
Jo

in one respect: either of the functions/(s) or <j>(t) may be taken to be zero
for values of s or t greater than a given quantity a. The solution of the
integral equation with finite limits is then given by a definite integral with
an infinite limit.

The method which we have just explained does not apply to all func-
tions, because, in general, it is not possible to construct a linear differential
equation of the required form which is sacisiied by K(S, i) for all values
of t. It can, however, be extended a little by the introduction of mixed
linear equations in which definite integrals and finite diiierences can also
occur.

For this purpose we require the equation adjoint to a mixed linear
equation, and this may be obtained by writing down the adjoint ex-
pressions of its various constituents, the expression adjoint to

I {\}s) = T ic (S, t) \}r (t) dt—K\ (S) \fr (S)
Jo
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being understood to be

J(X) = P * («, t) x («)ds-K\ (t) x {t);
J a . •

for, if x(s) is a function satisfying the equation J(x) = 0, we have

(s)ds \b
K(s, t)yj,{t)dt- \b\(s)xJ,(s)x(s)ds = 0.

J J
= \'X(s

Ja

The theory of mixed linear equations is rather difficult; so we shall not
pursue these enquiries any further in the present paper; we may mention,
however, that one of the chief difficulties we are faced with is that of
determining whether our equations can be satisfied for a continuum of
values of the arbitrary parameter or only for an enumerable set of values.

7. Equations of Type da.

The fundamental formula upon which the inversion formulae of integral
equations of this type depend is the following :—

(38)

It is at once evident that this formula is not satisfied by a perfectly
arbitrary function: we must therefore find a convenient description of a
class-of functions to which the formula is applicable.

sin iv^~ tf)
Now the function —-——^ can be written in the form

r—t

i f+1
 eir»-u cl/JL

Accordingly, if the order of integration can be changed, we shall have

(A)

= J- f e~il»f{t)dt.where i/r(/u) = J - f e~il»f{t)dt. lB

We shall therefore assume that/(?-) is a function defined by means of a
definite integral of the form (A), and is such that the integral (B) is
uniformly convergent for the range /J. = (— 1, 1) ; so that the order of
integration in our double integral can be changed.

2 i 2
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Now, in order to use this formula to solve integral equations, we must
s in (T ~™~ t)

express the function — as a definite integral of the required type.

The method to be adopted is similar to that used in § 6, and is best
illustrated by means of an example.

The function JQ(x — t) satisfies the differential equation

du

also v = J0{x—s) is an integrating factor of the equation with s written
instead of t; therefore we have

du P

Now for large real values of x we have approximately

2 cos ( ——x-\-t j

and —-JQ(x—t) =
dx

A/OTT (rr — f\

2Bm(lr—x+t\

hence for x = oo the quantity under the square brackets becomes equal to

— sin (t—s),
IT

and for x = s it is zero.
Further, we have

dx2 x—t dx x — t

therefore the equation gives

T (r — ti «Mg —*) fjr — A 8 " 1 ^ ~ l / (39)
X — C 7T S — t

Combining this with the fundamental formula, we obtain

f f JQ(x-s) J^x~l) f(t)dxdt = 2/(s), (40)
.)_„ Js x—t

an equation which can, in general, be written in the form

/(s) = £ /0(s—a;) 0 (x) dx
Js
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This relation can be verified directly if we assume for </>{x) an expression
of the form ,+1

0(z) = eu^{n)dn,
J-i

in which \fr(ju.) is finite and continuous along the path of integration.
The method which we have just explained is only applicable to

functions K{S, t) which oscillate near s = <x> and which admit an asym-
ptotic representation involving a circular function, so that the term
ain (t—r) can appear. A similar method can be used for equations of
type 2; for it is easy to see that, if \_W~\ is a constant instead of zero,

we shall obtain a definite integral of the required form equal to - .

8. The Problem of solving a Linear Differential Equation by
means of a Definite Integral of a given Type.

We shall now consider the case in which the function f(s) is not
explicitly given, but is to be derived from a given linear differential or
integral equation L ^ _ Q ( 4 2 )

We shall suppose that f(s) satisfies a set of linear conditions which
are sufficient to distinguish it from other solutions of equation (42), and
that these conditions are included in or are the same as those to be
satisfied by f(s) in order that it may be represented in the form

f{s) = P K(s,t)<p(t)dt. (43)
Ja

The success of the method to be adopted depends upon the possibility
of finding a relation of the form

Ls{K(s,t)\ = Mt{h(s,t)\ (44)

where Mt is an operator of the form

For, if 0(0 is an integrating factor of the expression Mt(v), we shall have

L.(f) = ?L,\K(S, t)\ </>(t)dt = [bMt\h{.s, t)\ 4>(t)dt = T dR, (45)
Ja Ja Ja

provided the interchange of operations in the first line is permissible.
There will, in general, be more than one integrating factor of Mt(v):

we choose one so that ij) takes the same value (usually zero) at a and b
or at two points a and /3 within the range (a, b). The function <p is thus
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a solution of the linear differential equation adjoint to Mt(v) = 0, and
the above requirement may suffice to distinguish it from other solutions
of this equation. If the points a and fi (which must be independent
of s) are different from a and b, we reduce the range of integration to
(a, (3) by defining the function <j>U) to be zero outside this range and
equal to the given integrating factor inside.

We have seen that the solution of the integral equation is often given
by a formula of the same type

<p(t) = \d~K(s,t)f(s)ds.
Je

Now, according to the previous work, <f>{t) should satisfy the equation
adjoint to MM = 0, which we may write

MM = 0.

Consequently, if the same kind of analysis applies for this integral
equation as for the previous one, we shall expect to have an identical
relation of the form

{ ^ \ { ) \ . (46)

We shall now simplify matters by assuming that the functions K(S, t)
and h(s, t) are the same and that the corresponding functions K and h are
also the same; in this way we may lose a certain amount of generality,
but the analysis becomes more manageable.

The functions K{S, t) and K(S, t) then satisfy the partial differential
equations . . . , ,

L,(u) = Mt(u))
_ [ (47)

and LM = Mt(v) j
respectively.

Now this is an important fact, because, if we know the solutions of
the integral equation

/(«) = f K(S,t)(f>(t)dt

corresponding to a few particular forms of f(s), we may be able to
determine a number of partial differential equations of the form

LM = Mt(u)

which are satisfied by K(S, t). If, then, the integral equation is amenable
to this treatment, the corresponding partial differential equations

LM = MM
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will all be satisfied by the function K(S, t); and so the problem is reduced
to that of finding the common solution of a number of partial differential
equations.

Thus, for example,* if the quantities anm are quite arbitrary and

L,(u) = 2 2 anmsn -T— ,
m n ds

the partial differential equation

L,(u) = Mt(u)

is always satisfied by u = K{S, t) = est.

The adjoint expressions are

Ls{v) = 2 2 ( - i r a n n i ^ ( s " y ) ,

Mt(v) = 2 S ( - i r a , m ^ ( r y ) ,

and, since ( - l)m J ^ ne~at) = (-1)* ^ (re-'1),

the corresponding partial differential equation

Ls(v) = ffi(t;)

is always satisfied by v = K(S, t) = e~st.

This example corresponds to Pincherle's well known formula

!

= \"e-'f(s)ds.
Jo

Another fact which is worth noticing, is the reciprocal nature of
the pair of equations L M = ^ ^

L,(v) = F,(i>).

If T/^(0 is a solution of the equation Mt{w) = 0, we shall expect
a function x(s) *or which

* This example is deduced from some work of Petzval's (Integration der Uneaten DtJ'erenttat-
yleichungen, pp. 472-473}.
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to be given by Ls(x) = 0, and the second equation suggests that it
should be given by a definite integral of the type

X ( 5 ) = \bK(s,f)xJ,(t)dt.
Ja

This corresponds exactly to the result which is predicted in § 1.

9. The Partial Differential Equation Ls{u) — Mt(u).

We have seen that a system of partial differential equations of the
f o r m L$(u) = Mt(u) (48)

may be connected with the two integral equations

(49)

= [ K(s,f)<f>(t)dt

= [ K(s,t)x(s)ds
J

Now we assumed in § 1 that the function K(S, t) satisfied a number of
linear conditions in s independently of t: this assumption was made to
make the work perfectly general. Accordingly, when we consider both
equations, we must admit functions K(S, t) which satisfy a number of
linear conditions in t independently of s. The system of partial differential
equations will then possess a solution which satisfies a number of linear
conditions in both s and t.

Lefc Ls 0 (5, $] = F(s, t) = Mt [K(S, t)-] ;

then K(S, t) is the solution of the ordinary linear differential equations

L.(u) = F(s, t),
Mt(u) = F(s, t)

which satisfies certain linear conditions in both s and t.
Now, if these differential equations possess Green's functions* G(s, x)

* The characteristic property of the Green's function for a linear differential equation
L, (w) = 0 and a set of linear conditions is that the solution of

which satisfies the given linear conditions can be expressed in the form of a definite integral

n = \dG(8,x)f(x)dz.

If the differential equation is of the n-th degree, the function G{s, x), which is called the Green's
function, will be a continuous function of s, x satisfying the given linear conditions for all values
of x, but its («—l)-th derivative will experience a sudden change of value at the point x = *.
The linear conditions usually take the form of relations between the vklue of the function and
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and H{x, t), corresponding to the given linear conditions, we shall have

u — K(S, t) = — G(s,x)F(x, t)dx
Jc

and u = K(S, t) = — 1 H(x, t)F(s,x)dx;
Ja

rd n

whence G(s, x) F(x, t)dx =\ H(x,t)F(s,x)dx. (50)
Jc Ja

We have shown elsewhere* that an integral relation of this type
implies that the numbers X for which the equations

—A G(s,x) <f>(x)dx = 0
Jc

and xW—^ H(x,t)x(%)dx = 0
(51)

can possess solutions different from zero are, in general, the same.
In the demonstration it is necessary to assume that the function F(s, x)

is such that no functions a(s) and b(x) exist for which
Cd

a(s)F(s,x)ds = 0,

for all values of x,

and F{s, x) b(x)dx = 0,
Ja

for all values of s.
Suppose, then, that X is a quantity such that the homogeneous

equation ra
(j>(s) — \ \ G(s, x)<p(x)dx = 0

Je

possesses a solution 0(s) which is not identically zero.
The equation t ra

)-A G(s,
Jc

d(x)—X G(s,x)6(s)ds = 0

its first (« — 1) derivatives at the points a and b, but Hilbert has shown that, when these points are
singularities of the differential equation, conditions of remaining finite or becoming infinite in
a specified way may be introduced. It is probable that linear conditions expressed by definite
integrals can be added to these to complete the generality of the theory.

The one-dimensional Green's function is, in many respects, analogous to the function used
by Green in electrostatics. I t was discovered by Burkhardt, and its properties have been
developed by the following writers :—Burkhardt, Bull. Soc. Math., Bd. xxn. (1894) ; Bocher,
Amer. Bull. (1901), p. 297: Dunkel, Amer. Bull. (1902), p. 288; Mason, Diss. Gott. (1903),
Trans. Amer. Math. Soc, Vol. v., No. 2, pp. 220-225 ; Hilbert, Gott. Nachr. (1904), Heft 3.

• Trans. Camb. Phil. Soc, Vol. xx., No. 10, p. 234.
f Fredholm, Ada Math., p. 27 (1903).
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will also possess a solution 6(x) different from zero for the same value
of X ; accordingly, if ra

xit) = F{x,t)0{x)dx,
Jc

x(t) is not identically zero, and we shall have

x(t) - X f f G(s, x) F(x, t)8(s)dsdx
Jc Jc

= X r ds f5 H(x, t) F(s, x) 6{s) dx
Jc Ja

= X I H(x, t)x(x)dx.
Ja

Conversely, if X is a quantity for which this equation holds, a function \fs
will also exist for which

(.?) = \\b H(x, t)^(t)dt

and, if <j>{s) = F(s,x)\fs(x)dx,
Ja

1b Cb

\ F(s,x)H(x,
a Ja

= \[ \dG(s,x)F(x,t)^(t)dt
Ja Jr.

Cd

= X G(s,x)(f>(x)dx.
Je

Now, in the present case, a function (p(s) which satisfies the homo-
geneous integral equation

0(s) = X G(s, x) (f>(x)dx

will satisfy the differential equation

Ls<j>-\-\<p = 0,

and will also satisfy the linear conditions associated with the function G.
Hence the values of X for which a solution of the homogeneous integral
equation exists are the values of X for which the above differential equation
can possess a solution satisfying the given linear conditions.

Similarly, the values of X for which a solution of
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exists are the values of X for which a solution of

MtX{f)+\x(t) = 0

can satisfy the linear conditions associated with the function H.
Hence, since the values of X for the two integral equations are the

same, the values of X for the two differential equations are also the same.
We conclude from this that the partial differential equation will, in

general, only possess a solution satisfying the linear conditions identically
both in s and t, when the equations

Ls(u)+\u = 0,

Mt(v)+\v = 0

can possess solutions of the required type for the same values of X.
We can also show that, in general, any function which satisfies the

relation rd rb

G(s,x)f(x,t)dx = f(s,x)H{x,t)dx
Jc Ja

must be a solution of the partial differential equation

L8(ic) = Mt(w).

Let g{s, t) = f G(s, x)f{x, t)dx = \ f{s, x) H(x, t)dx\
Jc Ja

then g(s, t) will, in general, satisfy the linear conditions associated with
both G and H; and so we shall have

f(s,t) =-Ls(g),

f(s,t) =-Mt(g),

whence L,( / ) = -LsMt(g) = Mt{f).

The partial integral equation

G (s, x) f (x, t) dx = f / (s, x) H(x, t) dx (52)
J

is thus satisfied by a certain group of solutions of the partial differential
equation, but we cannot say that it is satisfied by every solution of the
partial differential equation. If the equation be written in the symbolical

where G and H are linear distributive operators, it is possible to regard
the operation G3—Ht as a factor of the operation Ls—Mt.

A particular function which satisfies the partial integral equation is
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f(s, t) = K{s, t), for K(S, t) satisfies the given conditions in t; \and so the
function ,d

g (s, t) = \ G (s, z) K(X, t) dx

satisfies them also, g (s, t) is therefore a solution of the equation

LM+K{s,t) .= 0

which satisfies the given linear conditions in both s and t.
Operating on this equation with Mu we have

MtLs{u) = — Mt K(S, t) = — LSK(S, t);

therefore Ls [Mt (u)+K (S, t)~\ = 0.

Now Mt(u)-\-K(s, t) satisfies the given linear conditions in s, since both
u and K(S, t) do so, and we see from the above that it also satisfies the
equation Ls (v) = 0 ; accordingly, it must be identically zero; for we know
from the Green's formula that the solution of the equation

£.(«)+/(*) = 0

is given by v=\ G(s,x) f(x)dx,
Jc

and, if f(x) is zero, v is also zero.
• Putting, then, #,(*)+«(«,*) = <),•••

we have, since u is a function which satisfies the given linear conditions
in t, n

g (s, t) = n = \ H(x, t)ic(s, x)dx,
Ja

which gives the required relation
f<! rb

\ G(s, #) K(X, t)dx = 1 H(x, t) K (s, a;) dx.
Jc Ja

Now this relation is of some interest in connection with the original
integral equations n

f(s) = K(s,t)<f>(t)dt,
Ja

= [
Jc

for we can show that, if / and 0 are two functions connected by the first
relation, ra

Ms)= G(s,x)f(x)dx
Jc

f6
and 0x(s) = H{s,t) <j>(t)dt

Ja
is another pair.
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. Substituting the given value of f{x), we have

G(S,X)K(X, t)<j>(f)dxdt

= K(S, X) H(X, t) <p(t) dx dt

Ja Ja

f6

= I K(s,x)<f>l{x)dx.

Cd Cb

M') = \
Jc Ja

Similarly, if \fs and x are one pair of functions connected by the
second relation, the functions

P
Vi(*) = H(x,t)\lr(x)dx

Ja

and Xl(*) = [d £(*,*) x(z)dz
Jc

are another pair ; for, on substitution, we get

^ ( 0 = r I" H{-x> $ K(s> *) X(«) dsdx
Ja Jc
ra rd

= 1 I G(s, x) K (x, t) x (s) ds dx
Jc Jc

=
Jc

We shall complete this series of propositions concerning the partial
integral equation (52) by remarking that the equation corresponding to
the adjoint partial differential equation

LM = Mt(u)
is no other than

f{s,x)G{x,t)dx = [ H(s,x)f(x, t)dx.
Ja

This result follows at once from the fact that, when we interchange the
arguments in a Green's function of a linear differential equation, we
obtain the corresponding Green's function for the adjoint equation.

10. Investigations cm the Existence Theorem.

In a former paper* we attempted to define a class of functions f{s)
which could be represented by definite integrals of the form

f
Ja

K(s,t)<j>{t)dt

* Supra, pp. 103-106.
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to any required degree of approximation. The conditions laid down,
however, were not sufficient to ensure tha t the function 0 ( 0 would always
tend to a finite limit when the approximation was used to obtain an exact
representation. I t is clear that , if the function 0 ( 0 is restricted to
remain finite within the range of integration, the definite integral is
only capable of representing a much narrower class of functions. The
investigation can, however, be made more satisfactory when this as-
sumption is made and an existence theorem stated more precisely.

The method which we adopted is analogous to that used in solving
a linear differential equation by means of a definite integral and depends
upon the possibility of constructing a relation of the form

f6 d
K(S, t) F(t, x)dt = -£- H(s, x). (53)

Jn dx
A relation of this type may be constructed in many ways; the one,

however, which adapts itself best to our requirements is obtained as
follows :—

Let (c, d) be the range of values of s for which the representation is
required, and h(s, t) a convenient function which is finite and integrable
for values of s and t within the ranges (c, d) and (a, b) respectively.
Further, let

gQ(t)= \dh(s,t)/(s)ds 1
Jc j

Ms) = K(s,t)ga-i(t)dt i
J«

• ; ( 5 4 )

5 i

F(t,x) = xgxW—Y\ 9S) + f-j 95(t)—---

, x) = - / (s)+ f^ Ms)- |̂

then it is easily seen that we have the relation

f6 K(s,
Jo

t)F(t,x)dt= ^-dx

If now we write 0(0 = 2 i F(t, x)dx,
Jo

we shall have "\ K (S, t) <p (t) dt = 2 j - H(s, x)dx = f(s),
Jo Jo dx
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provided

r
(1) The integral F{t,x)dx has a meaning ;

Jo
(2) We can change the order of integration in the double integral

f I F{t,x)K{s,t)dtdx;
Ja JO

. (3). H(s, oo) = 0.
The function h(s, t) is at our disposal. In the previous account of

the method we took it to be the same as K(S, t), but it is clearly advantage-
ous to leave it undefined, as this adds to the elasticity of the method.

We shall assume that all the functions we are dealing with are finite
and integrable for the given range of values of s and t. The series which
represent the functions F{t, x) and H{s, x) will then be absolutely • and
uniformly convergent for all finite values of x; for, if h, K, and / are
the maximum values of the moduli of h(s, t), K(S, t), and / respectively,
it is easy to see that

\d-c \hf, b-a\n\d-c\n-l
KVin-\f,

and let yfsm(s), x«i(
integral equations

so that the series can be compared with exponential series.
Now write ,b >

P{s, t) = K(s,r)h(t,r)dr

ra \. W
Q(s, t) = I h(r, s) ic(r, t)dr

Je
be the series of functions for which the homogeneous

— [d

. m mj^.
Cb

Xm S — wja -

can be satisfied. It should be noticed that the values of Xm for which
these equations possess solutions different from zero are the same; for, if
we calculate the determinantal equations of which the quantities Xm are
the roots, we shall find that they are identical.

[Note added December 26£A.—In what follows it will be supposed that
these values of Xm are all real. This is certainly true if h (s, t) and K (S, t) are
the same; for then P(s, t) and Q(s, t) are symmetrical functions. The
choice of the function h(s, t) is thus not entirely arbitrary.]
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It is easy to see that, if

0m(s)=

then 6m (s) = Xm fd P (s, t) 6m (t)dt;
Jc

so that ^m(s) may be taken to be equal to 6m(s) and can be defined by
the above equation. We then have the further relation

The existence theorem which we shall now prove is that, if the function
f(s) can be expanded in a convergent series of the form 2,am\frm(s) which
is such that the derived series 1,\\1>lamyfsm\ is convergent, \frm being the
maximum value of |^.,,,.(s)| within the range (c, d), then a function <f>{t)
exists for which „

/(*) = J K(s,t)<f>(t)dt,

and this function may he determined by the formula

<j>(t) = %\ F(t,x)dx.
Jo

If we write w(s) = £Xnia,j(i/rm(s), (57)

rd
we have <p{t) = \ h(s, t)oo(s)ds = 2amxw(0»

and this series is absolutely and uniformly convergent for

| am x»i (t) | < I \M a m (d—c) h\fsm \

where h and \fsm are the maximum values of the moduli of h(s, t) and
\frm(s) within the given ranges, and the series |XwOm^m| is convergent
by hypothesis.

This series, for <j>{t), may be integrated term by term, and we obtain

[ ( S , t) <p(t) =
Jc.

as required.
"We have now to prove that this series for </>(t) may be obtained from

the formula
<f>(t) = 2 I F(t,x)dx. 158)

Jo
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Calculating the functions gn{t) and fn+i(s) in turn, we have*

497

(59)

yjt) =?^-xXJ

The series for F(t, x) may now be transformed into

and it is clear that the integral 2 I F(t,x)dx will give the sevies for <p(t),
Jn

provided the integration term by term is legitimate.
Now a sufficient set of conditions for the integration term by term

of a series «
s{x) = 2un(x)

is the following :—
•J-.

(1) The series SM, ,W should be uniformly convergent in an arbitrary
interval;

(2) I ua(x)clx should exist for all values of n ;

(3) 2 I it,,(].r should converge for all values of a between 0 and oc ;

(4) A number p independent of r should exist for which

undx < e for all «:'s > p.

The first and third conditions are clearly satisfied, since the series
*Xm(t) is absolutely and uniformly convergent; the fourth condition

will be satisfied if p can be chosen so that

< e for K > p.

Now this can clearly be done; for, if mx is a number such that

m, " 2

* These series will all be absolutely and uniformly convergent, since the quantities A,,,
increase indefinitely in magnitude, being the zeroes of a whole function.
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and p is chosen so large that

-£- for K > p,Kit) <

we have

i( )
2 ( . . . ) 1

r

m,

The theorem we have just proved does not tell us anything about the
uniqueness of the solution of an integral equation, and it does not give
a value of <f>(t) different from zero for which

f'1
0 = K(s,t)ffy(t)dt

Ja

when such a value exists. It is by no means certain, however, that the
solution which is obtained by using one function h (s, t) is the same as
that which would be obtained if we used another. If the two values of
(j>{t) thus obtained were different, their difference would be a solution
corresponding to f(s) = 0.

In general, the function <p{t) will take a simpler form when the range
(c, d) is bounded by two points at which the function K(S, t) is discontinuous
than if it is taken arbitrarily. It often happens that the solution in the
first case is unique, but not so in the second case, unless we impose
additionaLrestrictions upon the function 0. Examples of this phenomenon
may be obtained by considering the problems in which we require to find
the distribution of electricity over a closed surface when the value of the
potential function is given (1) over the whole surface, (2) over a portion
of the surface.


