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ON THE REDUCTION AND CLASSIFICATION OF BINARY CUBICS
WHICH HAVE A NEGATIVE DISCRIMINANT

By G. B. MaTHEWS.

[Received February 24th, 1911.—Read March 9th, 1911.)

1. Let /' be a binary cubic, with real integral coefficionts, and roots
a', B, ', of which the first is real and the others complex. Then, as
proved in a former paper, f’ is properly equivalent to one, and (with a
certain convention) only one reduced form £, the roots of which satisfy the

conditions By—130,

B+y—1<0 =< B+y+1.

It has also been shown that in any limiting case when one at least of
the inequalities becomes an equality, the form f, and therefore f', has a
rational linear factor. Consequently we consider only the strict in-

equalities 5. 150, B4y—1<0, B+y+1>0.
Since 8, y are conjugate
(@B—1)(ay—1) = |aB—1],
a positive quantity ; so the first condition is equivalent to
IIBy—1) >0,
where the product is a symmetrical function of the roots. Let
f = a®+ b2y +cxy+dy® = (@, b, ¢, ) ;.
then the condition last written réduces to
C, = d(d—b+alc—a) > 0. (1)
Similarly the other two conditions may be replaced by
I@B+y-1) <0, IB+y+1)>0;
or, in terms of the coefficients,
Cy = ad—(a+b)(a+b+c) <O, (2)
Cys = ad+(@a—0b)(a—b+c) > 0. (8)
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These, then, are the necessary and sufficient conditions that (a, b, ¢, d)
may be reduced.

As an example, take the form (2, —12, 11, —21) . obtained by a
different criterion in a former paper ; here

C,=—21(—9+2.9 > 0,

C;,=—21.2—(—10)1 <0,

Cy =—21.2414.25 >0,
and the form is reduced.

2. In order to reduce a given form, we proceed as follows. Let S, T
denote the substitutions
G2 @70
0,1/’ 1, o/

respectively. Then, if C, < 0, we apply T, and thus obtain a form with
C, > 0. 1If now Cy > O, this means that 8+y—1> 0, and the applica-
tion of S will diminish C,; on the other hand, if C; < 0, the application
of S~! will increase Cj, so there is always a substitution S**, which will
make the new form satisfy C; <0 and C; > 0. If in this form C, > 0,
it is reduced ; if not, we apply T and proceed as before. From the known
theory of definite quadratics it follows that the process must end after a
finite number of operations; and we shall then have obtained a reduced
form properly equivalent to the given one.
For instance, suppose
S =197, 471, 762, 411).
Here C, >0, C, < 0, C3 < 0, s0 we must apply S™'; the result is
f1 =197, 180, 111, 28),
for which C; < 0; hence we apply T and find
J: = (28, —111, 180, —97).

Proceeding thus, we have successively

f3 = Sfﬁ = (23’ —42v 27y —5)’

fi=Tf; = (—5, —27, —42, —28),

f5 = ,S"lf‘1 = (—5, —12, —8, —3),

fs = Tfs = (_31 39 —12, 5)1
the last of which is reduced. Since f(—z, —y) ~ f (2, y) we may replace

it by (8, —8, 12, —5), s0 as to make the first coefficient positive.
SER. 2. VOL. 10. No. 1106, K
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8. We now pass on to the classification of cubics for a given discrimi-
nant —A. Since the diseriminant of the Hessian is 8A, and this must be
of the form 4n or 4n+1, it follows that A must be of the form 4n or
4n+8. Further, if A = 82? the Hessian breaks up into rational factors,

and, as this case requires special treatment, it will be postponed for the
present.

Before proceeding to the general theory, it will be well to consider a
special case. Suppose, then, that A = 23. Then the discriminant of
the Hessian is 69, and this quadratic must belong to one of the classes

represented by 1,1, =17, (=1, 1, 17).
Now all the cubics which have a Hessian of the form u(z*+zy—1Ty%,
where u is an integer, are given by -
f = mab4nzly+4 51lm+n) 2y + 1 Tm+62) 4°,
with a Hessian & = (158m?+8mn—n?) (z*+ 2y —17y?
= G(m, n) H (z, y),

say; so that all the associated cubics which have a discriminant —28
must be derivable from the integral solutions of

153m?+8mn—n? = + 1.

Since —1 is not a quadratic residue of 8, the upper sign is inadmissible ;
taking the lower sign, we have solutions (0, + 1), and all the others are

given by putting
P = ( 1 1 ),
158 14

P":(;'; ‘3:") h=+1, +2, ...,

and then taking m =+ ), n =+ 5. In fact, P is the fundamental
automorph of G(m, n).

Now the primary automorph of H(z, ) is given by

o=(5 1)

and if this be applied to f the result is found to be the same as if we
apply the substitution P® to m and n. Hence there cannot be more than
three classes of cubics, and it is sufficient to consider the cases

('"1” n) = (07 1): (1, 14)) (1’ _11),
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the last of which is derived from P~'. The first values give
Si = @4zy+6y)y,

the second fo = 2+ 142% 4 65x5*+ 10134,

and the third fs = a®—112% +40zy>— 497>

The first cubic is reduced ; with regard to the others we find that

(1, 14,65,101) ~ (1,2, 1, 1) ~ (1, =1, 2, =1),
and 1, —11, 40, —49) ~ (1, —2, 1, —1)
~(—1, =1, -2, —1)
~(1,1,2,1).

The result, then, is that, for A = 28, there are three classes of cubics
represented by the reduced forms

g1 = @+zy+6y)y,
gy = 28— 2%+ 22y’ — 1%,
gs = o+ + 2y’ +7°;
all of these are derived from the Hessian (1, 1, —17).
Similarly, if we start from (—1, 1, 17), we find
f = maP+nzly+(651m—n)zy®+ (—17m+6n) 3°,
with h = n*4+8mn—158m?) (— 2>+ zy+ 17y7).

Comparing this with the previous case, we see that the values of
(m, m) to be considered are given by

("nr 7l) = (O; 1): (—1: 14)1 (_1: _11)7
leading to the forms
fi = @—2zy+60y,
fo = — 284 142% — 652y 4 1014°,
fo = —2*— 112y — 402y —49y°.
But these do not gi\;e any more reduced forms ;* 'in fact,
Si~ @@+zy+6yYy,
f2~ (_1v 2y —1> “1) ~ (ly 17 25 1)’
f3~(~1’ _'2! —1’ _l) ~ (_1’ 15 —2’ 1)’\" (1; _1; 2’ _1)-

* This might have been foreseen, because (—1, —1, 17) ~ (-1, 1, 17).

K 2
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Finally, then, we see that for A = 28, there are three classes repre-

sented by ©, 1,1, 6), (1, +1, 2, +1),

the last pair being improperly equivalent.

It may be added that 28 is the least value of A for which there exists
a cubic form which has no linear factor.

4. For the purpose of explaining the general theory it will be necessary
to apply & proposition first stated by Eisenstein. If (4, B, C) is the
Hessian of (a, b, ¢, d), then

—A? = AV¥*—8Bba+9Cd?, 4)

identically, in virtue of the.relations 4 = 8ac—10b%, ..., which define the
Hessian. Let L denote the form (4, —8B, 9C), and suppose that
(4, B, C) is an assigned quadratic H, of determinant 8A. Then it follows
from (4) that the first two coefficients (@, ) of every cubic which has a
Hessian H supply an integral solution of

L, a) =— 4%

Now it can be proved without difficulty that conversely if (b, a) is any
integral solution of (4) there is a corresponding cubic (a, b, ¢, 4), and only
one, which has a Hessian H. Thus there is a one-one correspondence
between the cubics and the representations of — A2 by L.

5. By means of the antomorphs of L, these cubics may be arranged in
a finite number of sequences as follows. Let (T, U) be the primary solu-

tion of TI—97AT® = 4,

and let (, b, ¢, d) be a cubic derived from any one solution of (4). The
primary automorph of L is given by

p = [3T+8BU),  —9CU

AU,  3T—8BUY ©)

and if this be applied to (a, ») and the new values of ¢, d calculated it is
found, without much difficulty, that

P, b c,d)= @, ¥, a),
or, 83¥, Pf=f',
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where a =3T—8BMa+AUb
0 =—9CUa+3(T'+3BU) b]
¢ = 3(T—8BU)c+94Ud
d =—CUc+3(T+3BU)d -

(6)

Hence f is a member of a sequence of forms

---f—-zr f—lv f! fl! fzs ceey

where f, means P*f. It will now be proved that the forms of this
sequence are either all equivalent, or else fall into three distinet classes.
Let (¢, 1) be the primary solution of

2—8Au? = 4;
then the primary automorph of H is given by

Q = 3 (¢—Bw), —Cu
Au, 1 ¢+ BwJ

and if this is applied to the variables in f the result is
Qf = (all’ b”’ c”, d")

where - a" = ¥ (t3—Bug) a+3Auybd
b = —8Cusa+3(t;+Bugb | - 0
¢" = 3(¢3— Bug)c+8Au,d [
d" = — 3Cugc+3(t3+ Buyd

Here (t5, u3) are found from

t3+'ll,3‘\/3_A _ (t-{-u\/3_A)a
2 - 2 ’

80 that ts = 1t(®+8AuY), uz = } B+ 2Dy, (8)

whence we see that u, is divisible by 8, and ¢; is not. Putting, therefore,
ty = T, ug = 8Us we have (T, U,) a solution of T?—27AU? = 4, and

Qx,y(f) = P:, b(f),

where the suffixes are used to emphasise the fact that P affects the co-
efficients and @) the variables of f. The question now is—what is the
value of ? We observe that since

T?—27AU? = T*—8A (8U),

it follows that the solutions of T*—27AU? = 4 are simply (¢,, Ju,), where
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(ts, u,) are those solutions of ¢2—8Aw) =4 in which , is divisible by 8.
There are two, and only two, possible cases. If u, is prime to 8 so is g,
‘and (£, ug) is the primary solution (T, U); in this case & =1, and all
the forms f, are equivalent. But it may happen that «, is divisible by 8 :
in this case (7, U) = (¢, 3»,), and 2 =3, so that any three consecutive
forms f,_1, fu, fa+1 are non-equivalent. The case of A = 28 is one of
those in question, for £_69u =

has the primary solution (25, 8), whence (T, U) = (25, 1); so that every
possible Hessian leads to three classes of cubics, as, in fact, was proved
in Art. 8. ,

If the solutions of L (b, a) = — A? are not all associated with ths
sequence (f.), we take one of those that remain and form another sequence
of cubies, and so on. From the theory of quadratics, it follows that there
is only a finite number of sequences, depending upon the number of solu-
tions of the congruence z? = 8A (mod 44%).

6. We are now in a position to find a complete set of representative
cubics for any possible negative discriminant —A. To do so we take a
complete set, both primitive and derived, of representative quadratics
H,, H,, ... of determinant 3A. Let H, or (4, B, C), be any one of them;
then if there are integral solutions (a, b) of

—A4% = AVP*—8Bba+9Ca?
there will be one or three corresponding classes of cubics, which can be
determined by the methods of Art. 5, for each associated set of solutions.
If there are no solutions, there will be no cubics associated with H.

7. In practice, it is inconvenient to have to solve the equation
.L (b, a) = — A2,

but the difficulty can be avoided by the theory explained in my paper on
the relations between cubics and their Hessians.* It is there shown that,
if H is a prescribed Hessian, all the cubics which have a Hessian of the
form «H, where u is an integer, will be of the form

f = mp+ny,

where ¢, Y are determinate cubics, and m, n arbitrary integers. The
Hessian is now () = Gm, W Hz, y),
where G (m, n) is a determinate quadratic in m and #n. Suppose now that

* Proc. London Math. Soc., Ser. 2, Vol. 9, p. 200.
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H has a determinant 3A, and we wish to find all the associated cubics of
discriminant —A : then G@m,n) =1,

and this equation is much simpler to deal with than L (b, a) = — 4%
which it replaces. In fact, since f = me¢p-4ny, the coefficients a, b are
linear tunctions of m, n, which convert L (b, a) into —.42.G(m, n); con-
versely m, n are linear functions of a, b which are fractional in form but
give integral values for m, n whenever (b, a) is a solution of

L (3, a) = — A%

Thus there is a one-one correspondence between the forms L, G, and it
follows that a sequence of forms (f,) derived from G(m, n) =1 is obtain-
able by the same linear substitution applied to all the forms of a sequence
derived from a solution of L (b, @) = — A% In particular, each sequence
falls into one class, or three, according to the criterion found in Art. 5.

As a check to calculation, it may be remarked that if

a = pm—+qn,
b = rm+sn,
the determinant of G is 2TA (ps—qr)?[A°.

In order that G(m,n) = 1 may be possible, it is necessary and sufficient
that G should belong to the principal class of its determinant.

8. When, for a given discriminant, a set of representative forms has
been obtained, the final process is to put for them the corresponding re-
duced forms, calculated by the method explained in the earlier part of
this paper.

It has been shown, on a previous occasion, that, if (a, b, ¢, d) is a
reduced form, 27at < 16A ;

Mr. Berwick has discovered other inequalities which limit the coefficients
when A is given, and I take this opportunity of communicating them.

A 5 U

|

A E N

In the figure RSTU is part of the contour of the fundamental tri-
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angle; 4, B are the points representing the roots a, 8 of the cubic, and
BE is perpendicular to AN. We have

AE = }B+y)—a = §B+9+ =

Now, if C is the point corresponding to the root vy, we have
AE* < AB?.4CY,

8 < BC?;
and therefore SAE' < Ala*;
hence 8{2b+8a(B+v)}* < 164,
and, a fortiors, since | B+y| <1,
8(2|5|~8|al) < 16A. 9)

Again, if B is kept fixed, the greatest value of OB*/4B? is when 4 is
at E, and the greatest value of OB“/BE"_ is when B is at Sor T; con-
sequently, in general,

44B*> 80B”.
Similarly 4AC* > 80C3;
also a’d® < (ja|+|0))?;
hence 9 <(‘al+|b|)?%.164B* AC?,

and since 3 < BC? we obtain by multiplication
o7qs <18 (|a|2;ib|)2 A

(10)

The inequalities (9) and (10) impose limits on 4, d in addition to the
limits previously found for a. Now when a, b, d, A are assigned, there is
a"cubic to find possible values of c. All we have to do then is to find the
sets (a, b, ¢, d) which give the proper value to A, and also satisfy the
three conditions of inequalify; if we reduce the resulting forms, we are
certain to find representatives of every class, and we see that the number
of distinet classes is limited.*

9.t Since writing the greater part of the present paper, I have looked
at the two memoirs on binary cubics by Pepin, which are contained in the
Atte dell’ Accad. Pontif. der Nuovi Lancei, Vols. 87, 89 (1884, 1886). In

* (4dded May 4th, 1911.—Mr. Berwick has since found the additional inequality
27(lc|l—lal—[d])?a® < 164.]
t §§ Y and 10 and the table added May 4th, 1911.
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the first of these he develops the theory on the lines laid down by
Eisenstein, making use of the equation L(b, @) = — 42, or rather an
equivalent one, as he takes the standard form to be (a, 8b, 8¢, d). Of
course, some of my results practically coincide with his; but he does not
go into the question of reduction, nor into the geometrical theory. In the

second paper he discusses classification, but confines h1mselt to the case
of a positive discriminant.

10. The following table, calculated by Mr. Berwick, gives all the non-
composite reduced cubics for values of A which do not exceed 999. It
will be understood that each entry (a, b, ¢, d) really stands for
(@, £b, ¢, £d), and represents two classes, improperly equivalent to
each other.

a f a f a f
23 1 (1, 1,2, 1) 244 | (2, 2,8, 21 482 |1, 8, 8, 5)
81|11, O0,1,1) 247 (1, 8,4,5)]| 436} (1, 8, 4, 6)
441 (1, 2,2, 2 )255{(, 1,0,3)} 4891, 2, —1, 3)
59 |1, 0,2 1) 268 (2, 4,4, 8) [ 4402, 0, 1, 2
7611, 1,8, 12791, 1,4,8) | 451 (2, 8, 5, 8)
83411, 1,1, 2 {2831, O0,4,1) {459 | (2,8, 8, 8)
8711, 2,8 8(800](® 2 4,1)1|460]|@1,1, 5, 8)
104 ) (2, 2,8,1) | 304|Q, 4,4,4)464)|@Q,8, 57
107 (@, 1,8,2 (3807 (@A, 2 4,35) @ 1, 4,1
10811, 8,8,81(3824](® 038, 1) 472 (2, 4, 5, 4)
116 |1, 1,0, 23273, 8,4,1) 1| 484 (1, 2, 5, 6)
185 |1, O0,8,1)}3881|@A, 1,38, 4 491)@1, 2, 2,5)
189 | (4, 2,2,8) (188211, 1,2 41| 4927 (@1, 2, 4, 6)
140 1 (1, 0,2 2)( 388511, 2 5 5] 4962, 0, 2,9
152 (2, 8,4,2 (839|(@, 2,0 81| 499 |1, 0, 4, 8)
17212, 0,92 1))381{@, 0,8 8){ 5082, 5 5,4)
17511, 1,9, 8) 8562, 1,2 2| 5151, 4, 4, 5)
176 | (1, 92,4, 4)] 864|@1, 0,4, 2| 516 | (8, 3, 4,2
199 1 (1, 1,4,1) 3867 )(, 28, 5] 519|@,5 6, 8
200 | (1, 2, 3, 48682, 2 4,21} 524|(1,1, 38, 5)
204 | (1, 1,1,8) (3879}, 1,1, 41| 5271Q@Q,0, 5, 1)
21112, 1,38,1) 4111, 1,5 2} 543|@1,1, 2,5)
212 | (1, 1,4,2) (416 |1, 1,5, 1)) 547| @B, 2, 4,1
216 | (1, O, 8, 2) 1, 2,1,4)]556|@1, 4, 38,4
281 | (1, 2,1,8) 4192, —1,8, 1| 560{ (@1, 2, O, 4
286 |-(2, —1, 2, 1) || 424 | (8, 4,5, 2) | 568 | (1,1, 5,4
289 |1 (1, 8,2 38)428|(1, 8,2 4| 567(@3,0 8,1
248 | (1, 8,8,4) ) 481 |(?, 1,8,2 |575| 1,1, 4, 5)
|

(Continued on p. 188.)
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a S A S a f
588 | (1, 2, 6,6)| 7511, 1,6,1)| 8761 (8, 2, 4,
608 | (1, O, 5,27551Q, 2, 6,7 1883]¢ 1,1,

1, 1, 1,5 4 756 |2, 8,6,8) | 88| (2 2 5,
620 1(2, O, 4,1 759]|@Q, 1,6, 8| 891, o0, 6,
628 | (2, 5, 6,5 7711, 1,8, 6) [ 9071, 1,5,
643 { (1, 8, 1,4)[ 780 [ (1, 4, 4, 6)| 908 | (8, 4, 6,
648 | (2, O, 8,2 783}, 1,4,1)1]931|Q,1,s5,
652 1 (2, 2, 4,3 (1, 38,6,919%2]@,0,s5,
655 1@, 2, 1,51 800} (2, 38,4, 4)|[ 940 | (1, 8, 1,
671 | (1, 38, 25 (1, 5.5, 5) 1 944 | (1, 2, 5,
6751 (1, 8, 8,6)| 804 |1, 1,4, 6 @, 0, 4,
676 | (2, 2, 5,2 808 |, 1,2 6 | 9481 @, 2, 1,
679 { (1, 8, 4, 7| 812 (2, 4,6, 5 | 9591, 2,7,
680 [ (2, 2, 5 1815 3, 4, 5, 3) | 964 | 4, 5, 6,
684 | (2, 2, 2,8 1816 | 8, 38,5, 1) | 971§ (8, 1, 8,
687 |1 (1, 2, 5, 71| 8288, —2,8 1) 972 | @1, 0, 6,
688 | (1, O, 4,488} @A, 2 0 5) 1, 8, 8,
695 | (1, 4, 5 71839 | @, 4, 8,5 @, 8, 6,
696 | (1, 2,—1,4)[1 848 (8, 8, 5, 2 2, 6, 6,
704 | (2, 4, 4,4)( 844 (1, 1,6, 4) | 976 | (1, 2, 6,
707 {1, 8, 5,8)) 848 (1, 4, 2, 4) (1, 8, 4,
716 | (8, —1, 3,1) 4, 4,5, 1)1 980 | (2, 4, 5,
728 | (1, 1, 6,2) 185612, 2,1,38 19881 (1,1, 6,
781 |1, 2, 4,7} 83|@A, 2,8 T|984] 2 1, 0,
748 11, O, 5,8 (8641, 38,0, 4199 Q, 4, 5,
744 | (2, —1, 4,1) 8, 6,6,4)1 999 | (2, 8, 8,
748 | (1, 2, 2,6)| 867} (@, 1, 8, 8




