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Abstract—A major challenge for Trajectory-Based Operations
is the existence of significant uncertainties in the models and
systems required for trajectory prediction. In particular, weather
uncertainty has been acknowledged as one of the most (if not the
most) relevant ones. In the present paper we present preliminary
results on robust trajectory planning at the pre-tactical level.
The main goal is to plan trajectories that are efficient, yet
predictable. State-of-the-art forecasts from Ensemble Prediction
Systems are used as input data for the wind field, which we
assume to be the unique source of uncertainty. We develop an
ad-hoc optimal control methodology to solve trajectory planning
problems considering uncertainty in wind fields. A set of Pareto-
optimal trajectories is obtained for different preferences between
predictability and average efficiency; in particular, we present
and discuss results for the minimum average fuel trajectory and
the most predictable trajectory, including the trade-off between
fuel consumption and time dispersion. We show how uncertainty
can be quantified and reduced by proposing alternative trajec-
tories.

I. INTRODUCTION TBO-MET

A. Motivation

In the future ATM system, the trajectory becomes the
fundamental element of a new set of operating procedures
collectively referred to as Trajectory-Based Operations (TBO).
By replacing the current airspace-based ATM system, this
trajectory-centric paradigm will be able to accommodate
airspace users’ requests to a greater extent (SESAR Consor-
tium, 2007). The Business Trajectory constitutes a fundamen-
tal element of the TBO concept; it is the trajectory that will
best meet airline business interests and will evolve out of a
collaborative and layered planning process.

A major challenge for Trajectory-Based Operations is the
existence of significant uncertainties in the models and systems
required for trajectory prediction. Understanding and manag-
ing the impact of these uncertainties is necessary in order
to increase the predictability of the ATM system whenever
possible and desirable. In turn, predictability and robustness
improvements in trajectories will produce gains in the high
level goals (capacity, efficiency, safety, and environmental
impact) pursued within a modernized ATM system. Some ex-
amples of relevant uncertainty sources are: 1) meteorological
uncertainty; 2) uncertainty in the aircraft performance model
[1]; 3) uncertainty in initial mass[2] and other parameters and
4) uncertainty in the aircraft intent [3]. In this paper, the focus
is on the former, i.e., meteorological uncertainty; while we

won’t consider these additional uncertainty sources, we’ll note
that out methodology could be extended to include them.

Weather uncertainty is one of the most important sources of
uncertainty that affect the ATM system. Indeed, the recently
granted SESAR ER TBO-Met Project1 focuses on the analysis
of meteorological uncertainty coming from the following two
sources: 1) wind, and 2) convective regions.

The analysis of the effects of meteorological uncertainty
in TBO is an extraordinarily broad problem. The TBO-Met
Project focuses on two particular problems, both at the pre-
tactical and tactical levels: 1) Trajectory planning; and 2)
Prediction of sector demand.

B. Scope of the paper

In the present paper we present preliminary results on robust
trajectory planning at pre-tactical level (in this context, around
3 hours before departure). A methodology for robust route
optimization is presented that can serve as a stepping stone
towards robust 4D flight planning. To that end, we make use of
Ensemble Prediction Systems and optimal control techniques.
Wind is considered as the unique source of uncertainty. Fig-
ure I-A sketches the intended methodology for the Trajectory
planning problem in TBO-Met Project. Recall that in this
paper we focus on the pre-tactical level, i.e., the left hand
side of the figure, not considering convective phenomena.

II. STATE OF THE ART

A. Ensemble Prediction Systems and ATM

Numerical Weather Prediction (NWP) centers developed
Ensemble Prediction Systems (EPS) in order to provide prob-
abilistic meteorological forecasts in addition to deterministic
predictions. They seek to provide an estimation of the uncer-
tainty that is inherent to the NWP process [4], a task that
cannot be achieved with deterministic forecasting. In an EPS,
several runs of the NWP model are launched with different
characteristics in order to produce a set of (typically) 10 to 50
different forecasts or “members” of the ensemble. There are

1TBO-MET project (https://tbomet-h2020.com/) has received funding
from the SESAR JU under grant agreement No 699294 under Euro-
pean Union’s Horizon 2020 research and innovation programme. Consor-
tium members are UNIVERSITY OF SEVILLE (Coordinator), AEMET
(Agencia Española de Meteorologı́a), METEOSOLUTIONS GmbH, PARIS-
LODRON-UNIVERSITAT SALZBURG, and UNIVERSIDAD CARLOS III
DE MADRID
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Figure 1. TBO-Met Trajectory Planning Methodology for both pre-tactical and tactical levels. Recall that the present paper focuses on the pre-tactical level.

several techniques in use to produce different simulations, such
as strategic perturbations of the initial conditions or different
parametrizations of physical processes [5] [6]; each NWP
center employs a different combination of them. We refer to
[7] for a review of the status of NWP as well as the relevance
of EPS in a wider meteorological context.

The ATM research community has recently started to use
EPS in order to study the predictability of flight plans and
the sensitivity to weather prediction uncertainty. The main
research effort in this direction has been undertaken within
IMET, a SESAR WP-E project. It seeked to develop a
”probabilistic trajectory prediction” (PTP) system, where a
deterministic TP is run once for each member in order to
produce a trajectory ensemble. Preliminary results of this
project were presented in [8] and a follow-up publication [9]
showed how the information obtained with this approach could
be used to improve decision-making at the pre-tactical level.
Outside IMET, we computed optimal trajectories for each
member in [10] in order to study the impact of uncertainty on
trajectory optimization instead of trajectory prediction. Finally,
the work presented in [11] is an analysis of the impact of
uncertainty in average wind on final fuel consumption.

B. Wind-optimal trajectories

The calculation of wind-optimal trajectories is a problem
that has been approached in the literature in several ways. In
[12], a technique called neighbouring optimal control based
on analytic optimal control is used; this procedure is based
on a linearization of a perturbation around a nominal trajec-
tory. In [13], it is compared to a method that relies on the
interpolation of precomputed extremals. Other works based on
analytical optimal control include [14], based on the numerical
integration of the analytical solution of the problem that uses
shooting to find the initial heading. The work in [15] belongs
to this tradition, introducing some numerical techniques to
solve the wind-optimal routing problem. A variant of dynamic
programming called ordered upwind is shown to be effective
in [16] [17].

We also want to highlight approaches based on numerical
direct methods[18] such as [19] or [10], as we will employ
them too. When compared with the previously mentioned
works, the main advantage of direct methods is the ability
to solve more complex problems, as the former usually rely
on assumptions such as constant airspeed or altitude that direct
methods do not require. Therefore, direct methods can, in
principle, be applied to more general problems. In exchange,
direct methods generally have higher computational costs.

In this work, we will employ direct methods in order to
solve a problem which is similar, in formulation, to the analytic
and DP-based methods with the addition of uncertainty; thus,
while the problem we solve is not as general as the one
presented in [19] or [10], it can be extended to a comparable
problem (and, indeed, we are working on this task already).

C. Robust and stochastic optimal control

Robust and stochastic optimal control is a field that is not as
methodologically consolidated as deterministic optimal control
or stochastic dynamic programming, so there are a number of
approaches being employed in the literature that are sometimes
referred by similar or identical names but correspond, in fact,
to different problem formulations where uncertainty appears
in different forms and thus correspond to different practical
problems. We will classify them in three categories, referring
to :

1) The “Uncertainty Quantification (UQ) + Optimal Con-
trol” approach: combines a non-intrusive UQ methodology
with a deterministic OCP solver. The deterministic problem
is solved for different values (as determined by the UQ
rule) of the uncertain parameters and the solution is sta-
tistically characterized using the UQ rule. If the uncertain
variables are realized before implementation of the solution,
the optimal solution can be quickly computed by interpolation
or analogous methods. However, if they are not known at
execution, the UQ+OCP approach doesn’t provide an obvious
decision rule since the “most likely to be the deterministic-
optimal” trajectory is not, in general, the optimal trajectory
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Figure 2. Robust and stochastic optimal control methodologies.

under uncertainty. Examples of successful application of this
methodology in aviation and ATM include optimal routing in
an environment with uncertain threats [20] and 4D conflict-free
trajectory optimization [21] [22]. See Figure 2 for a scheme
of this methodology.

2) The “robust” (or “tychastic”, in the terminology of [23])
approach: optimizes all of the possible trajectories simultane-
ously by augmenting the state space of the dynamical system
with the states of different possible trajectories, corresponding
to different values of the uncertain parameters and a single
control law (usually, an open-loop sequence of controls).
See Figure 2 for a diagram. Some examples of aerospace
applications are [24] (based on the method of [25]) and [26].

3) The “stochastic differential equations” (SDE) approach:
models uncertainty as a dynamic stochastic process instead
of a “static” probabilistic set of parameters. Therefore, the
dynamical system is described by a system of stochastic differ-
ential equations[27] instead of controlled ordinary differential
equations or differential-algebraic equations. The solution fea-
tures a closed feedback law u = u(t,Xt) as a representation
of the controls. The simplified linear-quadratic version of this
problem has been extensively explored in the literature (like its
deterministic version), but practical methods for the nonlinear
version have not been explored in depth yet (see [28] and
references therein for examples). Examples within the field
of aviation rely instead on discretization to Markov Decision
Processes (see [29] [30]). This methodology is described in
Figure 2

We have chosen to develop a methodology that is similar
in spirit to the “robust approach”. The reasons that justify our
methodological choice are the following: 1) we cannot assume
that meteorological uncertainty has been fully realized at the
departure time, thus making the “UQ+OCP” approach not
convenient; 2) Ensemble Prediction Systems provide a model
of the uncertainty that fits the formulation of the “robust”
problem better than the “SDE” one; 3) from an operational
perspective, obtaining a fixed guidance law (as we will do
with our variant of the “robust formulation”) corresponds
with current operating procedures to a greater extent than a
feedback policy of the form that is usually sought in a “SDE-
based” formulation.

III. METHODOLOGY
The class of dynamical systems that we will consider is

what [23] call a tychastic dynamical system. We denote the
state vector by x ∈ Rn, the control vector by u ∈ Rm, t ∈ R

is the independent variable (usually time) and the uncertain
parameters are a continuous constant random variable ξ : Ω→
Rq . The dynamics of the system are given by the function
f : Rn × Rm × Rq × R→ Rm, such that:

d

dt
x(ω, t) = f(x(ω, t),u(ω, t), ξ(ω), t) (1)

where ω ∈ Ω is the sample point on the underlying
abstract probability space. Thus, for each possible realization
of the random variable ξ(ω), the trajectory will follow the
deterministic differential equation (III-B)2. To emphasize the
dependence of the trajectories on the random variables, we
will use the notation x(ω, t) and u(ω, t)

In order to fully determine the trajectory, we’ll need a
control or guidance law in addition to the realization of
the uncertain parameters ξ. We will discuss this topic in
Section III-C; consider, meanwhile, a general control law
u(ω, t) = uL(t,x(ω, t))

A. Stochastic quadrature rules

The first component of this methodology is a stochas-
tic quadrature rule: a finite set of quadrature points {ξk},
k ∈ {1, . . . , N} and weights {wk}, k ∈ {1, . . . , N}, such
that we can build an approximation to the stochastic integral
I =

∫
Ω
g(ξ(ω))dω with the sum:

Qg =

N∑
k=1

wkg(ξk)

where g(ξ) is an arbitrary function. Basic statistical quanti-
ties, such as averages and variances, can be obtained with this
integral by the corresponding function choices. There are a
number of approaches with different approximation techniques
that can provide a stochastic quadrature rule:

Monte Carlo methods: wk = N−1 and ξk are randomly
sampled from the probability distribution. Under mild assump-
tions on g, the approximation error of the integral converges at
an O(1/

√
N) rate. This is usually too slow for our purposes

as we would like to use as few points as possible in order to
reduce the size of the problem; it is, however, independent of
the dimension of ξ.

2Note that, despite the similarity in notation, this is not a stochastic
differential equation because the random parameters are not random processes,
i.e., are constant.
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Quasi-Monte Carlo methods: replace random sampling
by deterministic low-discrepancy sequences that sample the
outcome space in a more even manner [31]. For certain
problems, a rate of convergence ofO (1/N) (faster than Monte
Carlo) is observed; several explanations have been advanced
in the literature [32][33][34].

Cubature techniques: are high-dimensional analogues of
regular one-dimensional quadrature rules that look for exact
approximation of certain classes of functions. A compilation
of cubature rules can be found in [35] and [36]. In [23], a
“Hyper-Pseudospectral” cubature is developed specifically for
robust optimal control problems.

Generalized Polynomial Chaos (gPC) methods: rely on
the expansion of the random inputs and outputs on an orthog-
onal polynomial basis, thus allowing for recovery of some
statistical quantities directly from the expansion coefficients
[37] [38]. The stochastic collocation of gPC variant is the
form we’re interested in, as it characterizes the solution as an
interpolant at the set of nodes {ξk}. It is efficient for problems
with low-dimensional random variables [39], but the number
of required nodes grows quickly with the dimension even when
using higher-efficiency sparse grids [40]

In this work, we don’t need a stochastic quadrature rule
because the uncertainty information is already presented in
discrete scenarios (that we weigh equally) from EPS forecasts;
however, integrating other sources of uncertainty in future
work may require the usage of a stochastic quadrature rule.

B. The trajectory ensemble

Given a quadrature rule and a given number of samples
N , we define the trajectory ensemble associated to a control
law uL and a stopping criterion s as the set of trajectories
{(tf,k,xk,uk)} with k ∈ {1, . . . , N} such that the trajectory
k is generated by the control and stopping rules with ξ = ξk
and the stopping criterion is met at t = tf,k, i.e.

d

dt
xk(t) = f(xk(t),uL(t,xk(t)), ξk(ω), t)

s(t,xk(t)) < 0, ∀t < tf

s(tf,k,xk(tf,k)) = 0

We consider a virtual dynamical system whose state vector
contains the state vectors of all the trajectories in the trajectory
ensemble, which evolve each according to the dynamics in
each scenario (i.e. for each value ξk of ξ). Using this trajectory
ensemble, the robust optimal control problem can be reformu-
lated as a large deterministic OCP, where the N trajectories
are considered simultaneously.

C. The “state-tracking” ROCP

In previous literature employing this approach (see [23],
[24], [25] or [26]), the control law is considered as only depen-
dant on time u(ω, t) = uL(t), thus leading to an “open-loop”
control scheme. This “open-loop” formulation is, however, not
a practical scheme for general optimal control problems. In
some problems, the dynamic system could be unstable and the
trajectories would diverge towards undesirable regions of the

state space; in other (as the one we face in commercial aircraft
trajectory optimization), we need to apply final conditions
and/or have a unique path for some of the states.

Instead of looking for an optimal control, then, we will
look for an optimal guidance; we designate some of the states
as “tracked” states and we replace the unique controls uL(t)
that are applied identically in all scenarios by scenario-specific
controls uk(t) that ensure that the tracked states follow a
unique trajectory for all likely values of the random variables
(as long as it is feasible within the dynamics and constraints
of the problem). In a real-world implementation, where the
realized uncertainty would generally be a mix of the discrete
scenarios that we are considering, we assume that the controls
can be computed by existing controllers in order to track
the calculated trajectory. In our context, the controls can be
computed by the autopilot in order for the aircraft to follow a
route at the calculated airspeeds and altitudes.

Let {i1, . . . , iq} be the indexes of the states we are interested
in tracking (e.g. if we are tracking x2 and x5, i1 = 2 and
i2 = 5). Let ei be the column vector that has a 1 at the
position i; we define the matrix E ∈ Rq×n as

E =

e
T
i1
...
eTiq


We define the problem as:

min J = E
[
φ(xf ) +

∫ tf

t0

L(x(ω, t), u(ω, t), t)dt

]
subject to the differential equations (III-B), the state-

tracking condition:

E(x(ω1, t)− x(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω

the stopping rule s(t,x(t)) = t − tf and the boundary
conditions:

x(ω, t0) = x0

E [ψ(x(ω, tf ))] = 0

where ψ is the function that represents the final conditions.
As emphasized earlier, the controls are no longer unique as
in the open-loop problem; they depend on the realization of
ξ(ω). Here, the final conditions that depend only on the tracked
states and the final time can be imposed exactly and not only
in average. The corresponding discretization is

min J =
N∑

k=1

wk

[
φ(xk(tf )) +

∫ tf

t0

L(xk(t),uk(t), t)dt

]

4
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subject to:

ẋk = f(xk(t),uk(t), ξk, t), k ∈ {1, . . . , N}
xk(t0) = x0, k ∈ {1, . . . , N}

E(xk(t)− x1(t)) = 0, ∀k ∈ {2, . . . , N}
N∑

k=1

wkψ(xk(tf )) = 0

IV. APPLICATION

We consider an aircraft that flies at constant airspeed vTAS

and altitude h3 following a horizontal route in a static wind
field in an ellipsoidal Earth. We consider the standard 3-DoF
point-mass model of aircraft used widely in ATM studies
[41] simplified according to our constant airspeed and altitude
assumptions.

We cannot apply the methodology described in Section III
directly to the standard dynamical system that arises from
this model. We would like to track the position variables,
latitude and longitude, in order to generate a unique flight
plan; however, under such a scheme, the trajectory in each
scenario would have to adjust the airspeed in order to absorb
the entirety of the uncertainty in wind speed. This is neither
convenient not practical, as it would force the aircraft to
choose inefficient airspeeds for some of the scenarios and limit
the average airspeed to an undesirably low value in order to
have margin for the most unfavourable scenarios.

Instead, a conventional flight plan specifies a route and
any velocity or airspeed changes4 are associated to specific
waypoints, not points in time. Therefore, we will reformulate
the dynamical system so that the independent variable is not
time, but distance flown along the trajectory, which we will
denote by r ∈ [0, rf ]. We will parametrize the route by r:
denoting latitude by φ and longitude by λ, we define a route as
a smooth mapping r 7→ (φ(r), λ(r)) that satisfies condition 2,
needed to ensure that r does indeed correspond to undistorted
(ground) distance flown along the route:

(
(RN + h)

dφ

dr

)2

+

(
(RM + h) cosφ

dλ

dr

)2

= 1 (2)

where the radii of curvature of ellipsoid meridian and prime
vertical are denoted by RM and RN respectively. We can now
track the position with respect to distance r instead of time t.

For a given route and wind field, we can define a function
t(r) which represents the time at which the aircraft flies
through a position r in the route. Relying now on an EPS
composed by N members, we will consider N scenarios and
N trajectories such that each trajectory corresponds to the
forecasted wind field for each member. We define ti(r) as the
time at which the aircraft flies through the position r in the

3While, as we noted in the introduction, these are restrictive assumptions
for a problem solved with direct methods, they are comparable to most of the
published routing algorithms and not indispensable for our methodology; we
only choose them for simplicity

4Again, the presented formulation does not feature airspeed or altitude
changes but it will include them in the future

route if the wind field corresponds to the forecast for member
number i. We will consider each member as equally likely and
define average in this sense (as an empirical average).

We now look to find routes that minimize a weighted sum of
average flight time and flight time dispersion. By changing the
relative weight of parameter p, we can obtain routes that are
more efficient on average or routes that are more predictable.
We will denote this parameter by p, where p = 0 means that
we look for maximum average efficiency and higher values of
p put more weight on dispersion, which we will define as the
difference between the earliest and the latest arrival time. As
we’re flying at constant airspeed and environmental conditions
(except for wind), fuel burn is only dependent on flight time.

We proceed to model this problem under the framework
described in Section III. For computational efficiency, we don’t
include copies of the latitude and longitude states for each sce-
nario, as they’re all equated by the state-tracking constraints.
We will introduce the course χG and the member-specific
headings χi and groundspeeds vG,i in order to build the system
of differential-algebraic equations given by equations 4 and 5
that describes the dynamics of the problem. We complete the
formulation of the optimal control problem by adding the cost
functional 3 and the boundary conditions 6 - 9 (note that wx,i

denotes the Eastbound component of the wind for member i
while wy,i denotes the Northbound component).

Optimal Control Problem 1: minimize

min J =
1

N

N∑
i=1

ti(rf ) + p · (tf,max − tf,min) (3)

subject to the dynamical constraints:

d

dr



φ

λ

t1
...
tN


=



cos(χG)

RN + h

sin(χG)

(RM + h) cosφ

1/vGS,1

...
1/vGS,N


(4)



vGS,1 cos(χG)
...

vGS,N cos(χG)
vGS,1 sin(χG)

...
vGS,N sin(χG)


=



vTAS cos(χi) + wy,1(φ, λ)
...

vTAS cos(χi) + wy,N (φ, λ)
vTAS sin(χi) + wx,1(φ, λ)

...
vTAS sin(χi) + wx,N (φ, λ)


(5)

and the boundary conditions:

(φ(0), λ(0)) = (φ0, λ0) (6)
(φ(rf ), λ(rf )) = (φf , λf ) (7)
ti(0) = 0 ∀i ∈ {1, . . . , N} (8)

tf,min ≤ ti(rf ) ≤ tf,max ∀i ∈ {1, . . . , N} (9)

5

 

 

 
 
 
 
 
 
 
 
 
 

 

8-10 November 2016 
Hosted by Technical University of Delft, the Netherlands 

 

 

 



Figure 3. Optimal trajectories from NY to Lisbon, for values of p from 0 to 50. Higher brightness in the trajectory color indicates higher values of p. We
also color regions of higher uncertainty, which we have defined as

√
σ2
u + σ2

v , with σu being the standard deviation of the u component of wind across
different members and σv analogous for the v-component.

In order to solve this problem, we rely on an initialization
and wind approximation procedure described in [10]. We solve
them with direct methods, discretizing the trajectory with a
trapezoidal scheme and then solving the resulting nonlinear
optimization problem with NLP software (see, for example,
[18])

V. CASE STUDY

A. Description and Statement

We consider an BADA3 A330 Aircraft model flying from
the vertical of New York to the vertical of Lisbon at flight level
FL380 and at Mach 0.82. Initial mass has been considered to
be 200 tons. We use a forecast for a pressure of 200 hPa
6 hours in advance for the 20th of January, 2016 from the
PEARP ensemble. This is an ensemble elaborated by Météo
France with 35 members that is hosted among others in the
TIGGE dataset [42] by the European Center for Medium-
Range Weather Forecasts (ECMWF)5. We rely on the Pyomo
library as NLP interface [43] and IPOPT [44] as NLP solver.

B. Results and discussion

Figure 3 displays the geographical routes for different values
of p. It can be seen that routes computed with higher p tend
to avoid the high uncertainty zone in the Atlantic in order to
increase predictability, at the cost of taking a more indirect
route that is longer on average.

5http://apps.ecmwf.int/datasets/

Figure 4.a shows the evolution of the state and control
variables along the average-min-fuel-optimal trajectory (cor-
responding to p = 0, the black line in 3). It can be seen
that the spread in the ensemble times, ensemble headings,
and ensemble ground speeds increases markedly when the
aircraft crosses the area of high uncertainty (that can be seen
in Figure 3). Figure 4.b shows the evolution of the state and
control variables along the average-most predictable trajectory
(corresponding to p = 50, the yellow line in 3). It can be seen
that the spread in times and ground speeds are comparatively
lower than in the previous case. In particular, we can see how
the ensemble ground speeds and headings present much less
dispersion.

Finally, Figure 5 shows the Pareto frontier of the prob-
lem, obtained by solving problems with different penalties
p (from p = 0 to p = 50). For the minimum average fuel
case (p = 0), the time dispersion at the final fix is above
4.5 minutes, whereas for the maximum predictability case
(p = 50)6, the time dispersion at the final fix is slightly
above 1.5 minutes. In other words, around three minutes
reduction in time uncertainty could be achieved by flying the
most predictable trajectory (p = 50). This would be however
at roughly 2500 kg of extra fuel burnt. For example, the
increase in predictability of about 1.25 minutes would result
in 500 kg of fuel consumption. In any case, the Pareto frontier
shows different possible solutions with trade-offs dispersion-
consumption.

6Problems for greater p values have been solved, but the Pareto frontier
becomes very flat
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Figure 4. State-space evolution of the variables in the case p = 0 and p = 50. Time leads and lags are defined with respect to the average trajectory.

p

Figure 5. Pareto frontier of the problem.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a robust optimal control methodology
for computing robust optimal routes based on Ensemble Pre-
diction Systems and demonstrated its utility in studying trade-
offs between efficient and predictable routes. We can conclude
that by using this method, uncertainty (in this case due to

wind) can not only be quantified, but also reduced by propos-
ing alternative trajectories. We expect that the methodological
choices made will allow us to extend this methodology into
a more general and useful robust flight planning framework
for balancing average efficiency with predictability. Indeed,
we are already working on adding variable airspeed profiles
to this methodology, with some promising early results.
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