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On 0urve8 obtained by an extension of Maclanrin's method of con-
structing Gonics. By SAMUEL ROBERTS.

[Bead Feb. 8th, 1883.]

In Maclanrin's construction, the points of a conic are marked by the
vertex of a variable triangle, whose sides pass respectively through
fixed points, and whose remaining vertices move on given straight
lines. The generalisation above referred to is briefly noticed in
Salmon's Higher Plane Curves (1st edition, p. 247), where the degree
of the locus is given in several comprehensive cases. In what follows,
I treat the subject in rather more detail by determining the degree
and class of the loci under slightly more general conditions. There
are special cases which seem to be of some interest; but many of these
are of a simple character, and have been elsewhere given in a more or
less isolated way. I confine myself generally to conditions which do
not lead to very complicated singularities. Analogous results could
probably be obtained in more intricate cases, if for any special purpose
it became desirable. Thus, instead of ordinary double points or mul-
tiple points on a curve directrix, we might assume singularities equi-
valent to a certain number of double points and cusps, and so forth.
It will often happen that, under such circumstances, the degree and
class will still be given by the general formula.

For shortness I use the symbol C£ to denote a curve of the m1*
degree and n°* class.

I.—If the sides BO, OA, AB of a triangle ABO pass respectively
through the fixed points P, Q, R, while the vertices B, A move
respectively on the curves CC,, 0^, and if P is multiple on the curve
Cm, to the order p, Q is multiple on the curve CC* to the order q, and
B is multiple on the curve CC' to the order r, and on the curve 0 ^ to
the order / ; then the degree of the locus of the vertex 0 is

and the class is
2 (mx—p—r) (m8—g—O+W! (ws—r')+ns (n?,—r)— 2pj.

The points P, Q, B are supposed to be simply multiple on the
directrices.

The circumstance to be specially noticed here and in subsequent
cases, is that the degree of the locus is not affected by point singulari-
ties on the curve directrices, except when they exist in special
situations, as for example at the points P, Q, 22, or on the line joining
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P, Q. This appears by the actual process of the generation, for point
singularities on the directrices in general produce point singularities
on the loens.

Let us take then, for C^', TO, straight lines, of whichp pass through P
and r through B; for C^, m, straight lines, of which q pass throngh Q
and r through 12.

If ml = «i8 = 1, », = Wj = 0, we have Maclaurin's construction for
conies. If, however, P or B is on CC\, Q or B on CC*,, the locus is a
straight line through the point. If both P and B or Q and B are on
the du-ectrix of B in the first instance, or of A in the second, the
locus is still a straight line. If P is on the directrix of B, and Q on
that of A, or if the directrices meet in B, the degree is zero. The fact
of P being on the directrix of A, or Q on that of B} does not affect the
degi*ee.

There results then, for the general degree,

+ (mi—p~r) r'+(ma—q—r) r
= (mx—p) (m%-r) + (m3-q) («h-r).

We may now consider the general curves (7^, 0",*. If any trans-
versal is drawn through P, there are on itonly(m,—p)(»ta—r') points
of the locus distinct from P. Hence P is a multiple point of the order
(m,—q) (m^—r), and by symmetry Q is a multiple point of tho order
(mt— p) (wa—r'). Except when fui'ther special conditions are im-
posed, the tangents at these multiple points will be distinct; that is,
the points are ordinary multiple points.

Consider now the tangents which can be drawn to the locus from
and at the point P, counting those at P twice.

From P we can draw nx—2p tangents to C£'( (unless a branch throngh
P is rectilinear, which case is exceptional), and these are multiple tan-
gents to the locus, having in general m,—r distinct points of contact.
If we draw tangents to CC, from B, they also are in general ??•,—2/ in
number (the case of a rectilinear branch through B being exceptional)
and determine v^—r tangents to the locus from P.

This includes all the ways in which tangents to the locus from P
arise.

The necessity for excluding tho case of rectilinear branches follows
from the circumstance that n,—2p does not express the number of
tangents which can bo drawn from a point (p = 1) on a straight line,
or from a multiple point of the orderp forming the intersection of lints,
one or more of which are stiuight. Somotimes the general expression
for the class will in such a case become negative, thus indicating the
discontinuity, but it may happen otherwise.
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Taking the number of tangents at and from P to the locus, we get
the class

2 (m2 - q) (Wl - r) + (n, - 2p) (m%-rf) + (n, - 2r') (m, - r)
= 2 0"i-p—r) (m2-g-r ' )+W! (m2—r) + ni(m1—r)-2pq.

Certain results of the generation can be immediately discerned. The
intersections of the curve directrices are points on the locus. The
straight line joining Q, R meets Ol' in m^—r points distinct from P,
and these are multiple points on the locus of the order m^—q—r.
Similarly the straight line joining P, R meets CC., i*1 w<3—V points
distinct from Q, and these are multiple points on the locus of the
order m1 — p—r.

The degree of the locus suffers a reduction, if intersections of the
directrices lie on the straight line joining P, Q ; for the sum of the
orders of the multiple points at P and Q is the general degree.

The degree may also suffer a reduction in consequence of trans-
versals through P being common tangents to the directrices. These
create additional double points. If there are t such common
tangents, the class is reduced by 2t.

A double point or cusp on OC,1, occasions m^—r double points or
cusps on the locus. Mutatis mutandis, the same holds for <X̂ -

The following particular cases occur :—

If jp = gr = r = r ' = l , and m1 = ma = 2,
or if p = r = m8 = 1, q = r = 0, m1 = 2,
or if q = r = ml = 1, p = r = 0, ma = 2,
the locus is a conic.

If p = q = 1, r = r = 0, t = 2, mt = mi = 2,

the locus is of the fourth degree and fourth class, breaking up into
two conies (Salmon's Conies, 5th edition, Ex. 7, p. 288).

If p = r = r'~ 1, g = 0, m1 = ma = 2, or if p = q = r '= 1, r = 0,

w.j = m2 = 2, or if q = r = r ' = 1, jp = 0, wi, = mi = 2,

the locus is a unicursal cubic.

If p = <? = r = r '= 0, m, = m2 = 2, £ = 0,

the locus is of the eighth degree and sixteenth class. Bat, if t = 2, the
locus is of the twelfth class, breaking up into two unicursal quarties.
The points P, Q are double on both; the other two double points
correspond to the common tangents to the directrices through R.

If p = q — 1, ml == ?w2 = 2, r = r'== 0, and one intersection of the
conic directrix lies on the straight line joining P, Q, the locus is of
the third decree and sixth class.
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The three intersections of the conies not on PQ are on the locus—
call them 1, 2, 3. Then P is the coresidual of 1, 2, 3, Q, and Q is the
coresidual of 1, 2, 3, P.

II. If in the construction of I. the points P, Q, B are collinear, tho
degree of the locus of G becomes

0»i—3?) Oa—O+JP (™a—q-r') + r (m^r) = vi^m^—pq—rr,
and the class is

2p (m3-g-r')

When we take two straight lines for directrices, the locus is a sti'aighfc
line, unless P is on the directrix of J3, and Q on that of A. If this is
the case, the degree of the locus is zero.

Taking then, for 0^, m, straight lines of which p pass through P,
and for CĈ , ma straight lines of which q pass through Q, we get for
the degree

(ml-p) (wa - q) + (w, -p) q + (ma - q) p,
which is the general degree for the case r = r ' = 0.

Now, suppose, instead of straight lines, we take for 0,",', M conies, p
of which pass through P and r through B; and for C'X M' conies, of
which q pass through Q and r through B.

For two conic directrices, both passing through B, the locus is a
cubic, and so also if p = q = 1.

The degree for G'i3I and G2iI, as dh*ectrices is then
4 {(M-p — r) (M'-q-r) + (M-p)q + (M'-p) p

+ (M-p-r)r' + (M'-q-r') r}+3 (pq+r/)
= 4 AIM'— pq — rr.

To meet the caseof ml orw3 odd, or both,we mayadd a sti*aightline to
CIM or Cw, or both ; the addition is 2M or 2 A/' or 2 (Af-f M' +1) in the
respective cases. Hence the general expression is

vi1m2—pq—rr'.
As to the class, the number of points on the locus lying on a trans-

versal through P and distinct from V is (vix— p) ()»a—r'). Henco
there is a multiple point of the order p{vii—q — r) + r'(ia—r)oltl

>.
In general, this will bo an ordinary multiple point. Taking the tan-
gents to the locus through P, and counting those at P twice, we have
for the class

2p (w, - q- r) + 2r (in - r) + (n, — 2p) (n?3—r) + (»a - 2r) (m—r)
= mjWa +• jyijjJi, — r ' / j , — rn%— 2pq.

. For a particular caso, we have p = q = 1, r = r ' = 0, wx — wt =*2 ;
the locus is a cubic of the sixth class.

VOL. xiv.—NO. 202. i
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In fact, a general cubic can thus be drawn. For the tangents to the
conies at P, Q are tangents to the locus at the same points, and their
intersection is the common tangential of P, Q. If then we have given
two tangents OP, OQ of a cubic through 0, P, Q (P, Q being the
points of contact), we can draw a conic having OP for a tangent at P,
and passing through three arbitrary points. We can also draw
another conic having OQ for a tangent at Q, and passing through the
same three points. If we draw two straight lines through P and Q
respectively, meeting in a fourth arbitrary point, we determine 12.
Thus we can describe by the present method a cubic through four
arbitrary points, and having at P, Q the tangents OP, OQ, whose
common tangential is 0. The points 0, P, Q are also optional.

The fourth intersection of the conies is common to the cabics of the
system passing through the three arbitrary points first taken.

If a transversal through P touches the directrices in points distinct
from B, there arises a double point on the locus. The class reduction
is 2t for t such transversals.

Thus, if mx = wij = 2, p = q = r — r'= 0, t = 2, the locus breaks up
into two conies. If we take for directrices two circles and a centre of
similitude It, with two points P, Q collinear with R, one part of the
locus is a circle, and the other a conic through the finite intersections
of the circle directrices. Otherwise, the two factors of the locus are

. analogously related.
The result is equivalent (as to the circle factor of the locus) to an

elementary property of homologous points on three circles.
The centres of similitude lie collinearly in threes. If we take three

homologous points, one on each circle, and join them in pairs by straight
lines, these will respectively pass through one of three collinear
centres of similitude. Thus, if p, q, r are the homologous points, and
P, Q, 11 the centres of similitudo through which the straight lines qrt

rp, rq respectively pass, pqr forma a triangle conditioned in the manner
supposed in the general construction. Hence, if q, r move on their
circles, p describes the third ch'clo. But if we take anti-homo-

. logons points for q, r, the locus of p is a conic analogously related to
the figure.

I have shown elsewhere* that, if m% = 1, p = q = r = r ' = 0, the
degrco of the locus is vi^ and the class n,; and that the locus is really
a homographic transformation of C^.

III. We will now suppose that the directrices CC£i 0m.» of I., coin-
cide with CC- The degree of the locus is then

(m—2>)(m—r— l ) + (w—q) (m-r—1) = (2m— p—q) (m—r—1),

Iiepriul of Mathematics from the Educational Times, Vol. xxix., p. 96.
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and the class is
2 (m-q) (m-r-l) + (n-2p)(m-r—l) + (n-2r) (m—r—2).

The curve C*n is assumed to have a multiple point of the order p at
P, one of the order q at Q, and one of the order r at B.

Take for CC M conies, of which p pass through P, q through Q, and
r through E; these conies may betaken as distinct. Then, remember-
ing that, in the case of a pair of\ conic directrices, either may be a
directrix of B and also of A, we find\for the degree

(8 + 8) ( M - p - g - r ) (M-p-q^r-1)
'it •

+ (8 + 6) (M-p-q-r) (p + q) + 4>(M-p-q-r)
+ (8 + 4) {(M-p-q-r)r+pq)

•+ (6 + 6) [ElP^H +?_L?^1) J +(4+4

+ (5 + 6) {? + <?} r + 3 (^ + ? + r )
- ^ - y - r ) (M—p—q-r—l)

+ (Jlf—^—q - r) (14p + 14>q + 12r+4)

= 2m (m—1)— m (^+^ + 2 ^ + ^ + 2 + ^ + 2?-, if 2211= wt.

To meet the case of m odd, we may add a sti'aight line to Cm ; the
addition to the degree is

8 ( i l f- />-2-r) + (4+3)p + (4 + 3) 2+(3 + 3) r = 8 i i r - p - 2 - 2 r ,

giving the same result.
The points of the locus distinct from P on a transversal through

that point, are in number (in— p) (m—r— 1). Thei'e is, therefore, a
multiple point of the order (m —2) (in—r—1) at P ; and similarly one
of the order (m—p) (m—r— 1) at Q.

Counting tangents from and at P as in previous cases, we find for
the class

2(m—q)(m—r-l) + (n-2p) ( m — r - l ) + (?i—2?) (m—r—2).

If m = 2, p = j = 1, r = 0, the loens is a conic. This is an in-
structive example, for the locus remains the same for any conio
directrix passing through P, Q, and nny two points on the original
directrix collinear with R. It remains the same, therefore, for an
infinite number of straight directrices in pairs In fact, \̂ e may take
as directrices the two sides of any generating triangle, which puss
through P and Q respectively. The locus is that of the points of

" 1 2



116 Mr. S. Roberts on an extension of [Feb. 8,

contact of tangents from R to the system of conic directrices. Thisia
an instance in which the class formula fails for the straight directrices,
n—2p being negative and illusory.*

IV. If, in III., P, Q, B are collinear, the degree is

(m—p) (m—r — l ) + p (m— q—r—l) + r(m — r—1)
= m (in — 1) —pq — r ( r+1) ,

and the class is

= n (2m-3)-2 (n-l)r-2pq.

As in the preceding case, we take for (fm M conies. Then the
degree is

(4 + 4) f

We may again meet the case of m odd by adding a straight line. The
consequent addition is

4i(M-p-q—
The general degree then is

m (7?z—1)— p5f—r (r
On a transversal through P, there are (in— p) (m—r—Y) points of

the locus distinct from P. There is then at P a multiple point of the
order p (in — q—r — 1) + r (m—r — 1). As in previous cases, we get
the class above given.

If m = n = 2, p = q = 1, r = 0, the locus is a straight line,
evidently the polar of 12 with respect to tho conic.

If m = 3, n = 6, p = q = r = 1, the locus is also a cubic of the
sixth class.

• The linos RP, JRQ are tangents to the locus at P, Q. Two points on the conio
directrix collinear with R determine, therefore, a fifth point of the conic locus.
Analytically, the result comes out as follows:—

Let RP, PQ, QR be the sides 0, y, a of the triangle of reference, and
Cy" + 2J)@y + lEay + 2Ja)3 = 0 the equation of the conic directrix.

Then, if a tranversal through R (a, 0) meets the conic in the points (a', /3'), (a", 0"),
we have, putting a - k& = 0 for the equation of the transversal,

yy 2Fk y'y"k '
and X, F, Z being the current coordinates, so that

Z& - IV = 0, Zu" - Xy" = 0,
we have C&—2FXT =. 0 independently of D, E.
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V. If the p sides of a polygon pass through fixed points respectively
and all the vertices but one move on curves 0^, C^... Om

P~ respec-

tively, the degree of the locus of the remaining vertex is 2m1vii...mp_u

and the class is

. m H + .. .+«,.1w1 ... mp_2.
It may be shown (Salmon's Higher Plane Curves, 1st ed., p. 247) that
on a transversal through (say) the fixed point on a side of the de-
scribing vertex, there are mlma.. mp_i points of the locus distinct from
that point, and that the point itself is multiple in the locus to the
order fn-jn^ ... mp.x. Or we can separate the polygon into triangles.
Thus, if the polygon is a quadrilateral M1MiMiG, G being the de-
scribing vertex, let P,, Pa, P3, P4 be tho fixed points through which
pass respectively GMlt M1Mi, M2MS, MSG. Prod ace MXG and M.iMs

to meet in K. Then the locus of K is of the degree 2M1 il/a, with
P,, P8 for multiple points of the order m,m2.

Again, the locus of C is, by the formula of I.,
ma{2mlm2—•mlm2)+'nia (2?nxwa—m^i^) = 2imlmivi3.

We can use the same process for the general polygon. As to the class,
for the quadrilateral, the class of the locus of K is

2w!«?;, + «!] "2 + wv*u
and the class of the locus of C is, by III.,
2 (2m1mi—ra,ma—mxm^ m3 -\- (2m1ir>i -f- nx wa -f WgWiJ ms + vs (2mlmi— W^JJ,)

We can now assume the formula for a polygon of p — 1 sides (taking
notice also of the multiple points at two of the fixer! points), and
thence, as above, show that the same formula holds for a polygon of
p sides.

We may, indeed, similarly treat the case in which the fixed points
are multiple points on the respective directrices with which they are
associated.

It will be sufficient to take the case of a quadrilateral, il/j 7l/a iJ./*s C.
Suppose on CC't that P, is a multiple point of the order ?>„ and P2 a
multiple point of the order p2. Let the corresponding orders for P2,
P3 on C£', and Ps, P4 on C£3, be r2, r3 and ss, s4.

Then the degree of the locus of K is

( i P i ) ( i
and the class is

2 (TO!-p,-pa) (wa-r2-?-3)+tt, (w2-r2) +w, (>nl-pl')-2plrs, by
The locus of G is then of the degree

(»'8-s«) (»»i-1'j) (»'a- »j) + (w/5-«s) 0»',—J'l) 0»2-r9 ) ,
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and the class is

p,) (m,-r,) + j 2 (m,-?, -pa) (n?s-r8-r8) + », («',-rt)

= 2 OnB-«,-«4)("'«-»is-*i)(mi-J»i--l»j)

VI. For the fixed points of I!, we may substitute curves.
Carl' Cit,1 Ou[> which are touched respectively by the sides BC, CA, AB
of the generating triangle. These curves are supposed not to have
special relations to the other directrices.

The degree of the locus is then 2N1NaNtm1n}v and the class is

In fact, if we take for CM] Nt points, for Cj/t Nt points, and for
Cit\ Ns points, the degree of the locus is 2NxNaN&mxrn% by what
precedes, and this result remains unaltered by the double tangents
arising from the points Nt taken two and two, the points Na taken
two and two, or the points ^ 8 taken two and two.

A double tangent of this kind does, however, affect the class, since
it occasions, if existing on CJI/' (now considered as a proper curve),
NjN^m^m^ double points on the' locus. The case is similar for the
other directrices CV* and CV". Making allowance for this, and also
for the existence of double tangents and inflexions, we must add to the
first result ^ir1iV"j^8(2»i17H8+7^w2+WgW,) the following complement

If we generalise III. in a similar fashion, the degree obtained is
2NlNim(iii— 1), and the class is

NtNt2V8 {n (2m- 3) + 2m (vi-1) }

It will, without doubt, be remarked how far the cases which I have
dealt with fall short of being exhaustive. Some additional ones
could be added if we were content with the determination of the
degree of the locus. The determination of the class is accompanied
with special difficulties, and the few results I have obtained in this
direction are imperfect. The problem, in its ultimate form, requires
us to determine the degree and class of the locus when the directrices
of the two vertices of the generating triangle, and those which are
touched by the sides, coincide in one curve. Intermediate cases lead
up to this.
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On the use of certain Differential Operators in the Theory of
Equations. By J. HAMMOND.

[Read Feb. 8th, 1883.]

1. If D,, Da, A> ••• denote operators defined by the equation

...) 0).
it has been shown in a former paper (Proceedings, Vol. xiii., p. 79)
that when

<!>(PvPvPi> •••) =2aia2 ... a] ft ft ...ftny\y'2...yn ...
= (X . fim. vn...) suppose,

where a n a,,... j3u /33, ... y,, y8, ... are roots of the equation

l-x-1pl + x-ip3-x-*p3+ . . .= 0 (2),

D,(\ ' ./im. v"...) = 0 , JDx(\l./xm.vn...) = (\'-1./im.vn...), DX(X)=1.

The operators of the present paper are the symmetric functions of
the roots of the equation

l - y - l A + y - i Z > , - y i A + . . . = 0 (3),
considered simply as rational integral functions of JD,, Dv Bs, ...,
when operating on (X1. fim. v" ...) and as differential operators on
$ (.Pu Pa Pi* •••)• 1̂  *s e a sy to see that these operators follow the
ordinary laws of quantity in their combinations with constants and
with each other; e.g., if ^ (pif pa,p$,.--) = (X1. pm. >'"...), we have

and Dx, D^ obey the commutative law. In the case of the remaining
laws, a formal proof is hardly required.

The meaning of equation (3), or of its roots, does not at all concern
us, as they are only used for purposes of concise definition; thus, if

and if 2|a* 6" c*... = [X . p . v . . . ] , using [ ] instead of ( ) to show that
the roots referred to are a, 6, ... instead of a, ft, ..., we have

J). = [1-] and D?-2J)2 = 2a9 = [2].

This notation was suggested by Professor Cayley.
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2. A line placed over any expression will be used to denote that all
its symbols are to bo combined by the ordinary laws of quantity ; thus
from (1) we obtain directly

TJ _1_ I d , d d . \* _l_~j* (A)
K\ \dpi dp3

 adpa I K! '

where, for shortness,

^ i d . d , t= T - +Pi -j- + Pi T~ + &c-
dpx

 r dp% dps

d , d . d , p

dp dp r dft

j d , d
dx= j—+Pi -j

dp dp

(5).

XNOW »* -I/,, — —7 dxdi — i «x " l ' '/ r T t *1 *x + l»
K ! * * K ! * ' (K —1) !

the last term arising from the differentiation of DK considered as an
explicit function of pu p2, ps, ...

This result may also be written

(0).
Reducing by means of (6), we have,

Hence dx-dx_lDl + dx_2D3-dx_3Ds+... + (-y\D, = 0 (7),

which, with reference to (3), is Newton's rule for the sums of the
powers of the roots, and gives

<*, = A
da = DI-2D,

and in the genei'al case dx = [\].
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3. The differential operators corresponding to the other symmetric
functions are found in terms of dv dv d3, ... by a process parallel to
the expression of the symmetric functions in terms of the sums of
the powers in the ordinary Algebraic Theory. For

j j / d , d . d , \ f d , d , d , \
dxdIA~ -5- + P1-1 +Pii +•••) y-+.Pi 1 \-P%l— + —)

\dpx
 r dpx¥l * dpx+i IXdp,. ^ldp^ ^ddp^3 I

I d , d \ \ / d , d \ \ . d , d ,

\dpx
 r dpx+l I Up, r dp^ I dpx^ dpx+ll+l

Or, after abbreviation and transposition,

dx~dlt = dxdlt~dx+ll . . ( 9 ) .
Comparing this with the well-known Algebraic formula

we see that dx d^ = [\ . /x].
All other formulae of this class are deducible from (9) ; for example,

which, after further reduction of the three middle terms on the right
by means of (9), becomes

.lt. (10),

showing that dx d^ dr = [ \ . y.. v].

But the law dxdll d,... = [\ . n . v...~\,

which is perfectly general when X, fx, v,... are all different, requires
modification to meet the case where some of them are equal. This is
a necessary consequence of the modification of the Algebraic formula
which gives 2 ax fi* y' ... in terms of the sums of the powers, and
makes no difference in formulas such as (9) and (10), which are
absolutely correct, even when all the snffixes \ , ft, v, ... are equal.

Thus, as particular cases of (9) and 10), we have

which, when compared with the corresponding Algebraic formulro

3 ! 2a> j3* yx = Sl-SSx
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give the identities

S -v- 2 ! = [\2J, # - 3 ! = [\8], ^ 4 . 2 ! = [XV].

And, from these considerations, it follows in general that

< < # . . . +l\m\n\ ... = [Kl.fxm.pn ...] (12).

4. Every known symmetric function formula now gives a relation
between the operators, and vice vend. Thus formulae (6) and (7)
(Proceedings, Vol. xiii., p. 81) give immediately

-T- m l =

and if, in (6) of the present paper, we put \ = 1, K = TO—1, we have

the last term of which is nJ)M since Dt = d\-7- K\ .

Hence d,^1"2 -r (w-2) ! = Z>, Dn.x-nDni

which gives the Algebraic formula

The general formula (6) gives, when interpreted,

f . S a ^ C X + l . l - ^ + CX.l") (13).

If now in (13) we make K + \ =: n = const, and (\ . ln"x) = uM

we have «*+i + «*x =jp»-x S«x.

Whence, the value of ua being known,

(2 .1""2) =u% — PiPn.i-npn

(3 . I""8) SB «„ —Pn-2 (p\-V>Pi)-pn-lV\+"P>»

(4 . I"'4) = Ut = Pn-i(p\-SpiPi + Sp3)—Pn-iiPi — tyi)

and generally

Wx = pn . x + 1Sa*-1- i ? n . x + a5a^+. . . + (-)x + 1np (14).

This includes Newton's series, giving

the last term in every case being ± ?ijpn.
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5. If in (8) we consider d\, d%, ds... as operating on $ (pu p^Pt, . . . ) ,
and their equivalents

A, Dj-2Dj, Dl-SD^ + SDs... on (X'./C . * " . . . ) •
we obtain a set of linear differential equations of the first order, all
of them satisfied by 0.

Now, recalling the law of operation of J) on ( ), viz.,
£ . (\'.A*m. *"..,) = 0, Dx(\ ' . /xm.^. . .) = (\'-1. /i

m.v»...), D X (X)=1,
it is clear that any number less than the weight of (p, say K, none of
whose partitions are contained in (X'./u"J.vn...)t corresponds to a
differential equation of the form rf,^ = 0 ; and, whenever a sufficient
nnmber of such equations can be found, we are able to calculate the
value of (f» without reference to symmetric functions of inferior weight.
A case in point is Da", where the differential equations are

du d%, dt ...dn.x <j> = 0 ,
which, since they are of the first order, are more convenient to nse
than Dlt B%. D8,.. D,,_i ip = 0.

If <j> = (3*. 1), it is easily seen that dt<p = 0, ds<p = 0, da<j> = 0,
duf = 0, and these equations are, in this case, more than sufficient to
completely determine 9 ; in fact, without using d6<p = 0, we find
(34.1) =

10plpspi-pip0-7plpaplli+l7pap1

Whence

- 0**) =2>! - l \

Any of the other differential equations, ds <p = 3 (3s. 1), dt <p = 4 (38),
&c, may be used to verify the value of $ with the help of a table of
symmetric functions.

It may be noticed that, if by any method a table of symmetric
functions of weight n has been calculated, the complete table of weight
n—1 may be deduced from it by means of the operator dl.

If 0 = (5 .4 .3 . 2.1), the differential equations are found thus:
d,0 = 1^(5.4.3.2.1) = (5.4.3.2),
dtf = (DJ-2D,) (5 .4 .3 , 2.1)

= Dj(5 .4 .3 .2 .1)~2(5 .4 .S . l ) = ^ 2 ( 5 . 4 . 3 . 1 ) ,
; (5.4.3.2.1)

(5 .4 .3 .2 .1)
= -3(5 .4 .3)+3(5 .4 .2 .1) ,
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where, since partitions of all numbers up to 15 are contained in
5 . 4 . 3 . 2 . 1 , there is no equation of the form dK<j> = 0. The differ-
ential equations of the second order, d^dx <p = 0, d%d%$ = 0, d3du <p = 0,
eZjcZ18 (ft = 0, may in this case be utilized; and a method will be given
by which any symmetric function whatever may be calculated in-
dependently, assuming only the value of the coefficient of the general
term of S«" and the laws of combination of the operators.

6. The weight of an operator is the quantity by which it reduces the
weight of its subject. Thus the weight of either dx or Dx is X, and so

dm

for every operator of the present paper; -—7-—; is of order m
dfrdpdpand weight X+/*-f v-f..., and any operator of the form dxd^d.... is of

order w and weight \ + /i + v -f..., where m is the number of the
suffixes.

In the expanded value of any operator those differential coefficients
may be rejected as useless which are either of higher order than the
degree of the subject, or of higher weight than the weight of the
subject.

T h u s dxdr = c T d l t + d x + l l = : ( ^ — + P i ^ - — + • • • ) ( j - + P i y ~ — H . . . J

. d . d .
*P*** dPx+r+\

and if the subject be of weight X+/x + l, suppose

0 = 4Px+,+i + -z?2>iJPx+,.+ % 2 > , + I + Cpx+iA + -^PiiVP^+other terms,
then

+p + \-pl

dp ridp

The operator dm when performed on a subject of weight n, reduces

to -—t and any operator of the form dxd^d.... performed on a subject
a ft a

whose weight is equal to its own, reduces to -7—• V~ • 1—...>sinc© none
dpx dp,, dp,

but the over-weighted differential coefficients are affected with mul-
tipliers containing pu pit pit...

If 0 = So", and if in (9; and (10) respectively we put X + p = n and
• v = n, we have, since in this case dx = 0, d^ = 0, d, = 0,

dpxdpn.x ~~ dpn

2 <!±.
^, dpn'
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And, by an easy extension,
—JLJt— = ( _ r - i ( m _ i ) ! | i a 5 ) i

dp^dp.... dpn
where <f> = 2an, and \+fj. + v+... = n, the m suffixes \, ft, v...
being not necessarily all unequal.

For, by the nature of the operation dK, we have universally

(16),
where, if dK = 0, which happens when the subject is <j> = 2a", or if
dx d,. dv... = 0, or in some other cases, the left-hand side vanishes ; and if,
further, K+\+JX + y+... = n, the weightof the subject, (16) reduces to

dm+i dm dm , dm , _ 0

dpjpxdp^dp,... dpi^dppdp,... • dpxdp^Kdpr... dp^dp^dp,^...

(17),
where it is not necessary that the suffixes should be all uneqnal.

Now, if (15) holds for differentials of the mth order, each term of the

»itb order in (17) is equal to (— )m"1 (m—1) ! -—, and, since there are

m of them, the term of the (m+l)"1 order is equal to (—)mw ! — ;
dpn

hence (15), which has been seen to hold in the cases m = 1 and m = 2,
is true for all positive integral values of m.

From (15) and the known value of the coefficient of p,, in 2ctn, viz.,
(—)"*ln, it follows at once that the general term of 5j«n is

(-.)r+.fr_l)iw

a\b\c\.;.u PIP*P*-P» ^ 8 ; .
where a + 6 + c+. . . + Z = r, and the indices a,b,c...l are the positive
integral, including zero, solutions of the equation

Hence

2a" = Pi-np^

+np»-i{p5-(n-4!)pips}

f ||-) + (»-4)(n-5) $
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+
3! 2! 2!

+ (n-6)(n-7)(n-8)(n-9)?l| + &o..... , (19).

7. Formula (i2), combined with the principle of rejecting over-
weighted differential coefficients, furnishes a simple proof of a law of
symmetryi discovered by Prof. Cayley in 1856, but given without
proof at the end of the tables in Salmon's Higlier Algebra.
For, if (X1.,!•».„»...) = ...+Aplp;;pn; ... + ...

and (\*.f.f ...)= ...+Ayxfrg... + ...
the first equation of (a) combined with (12) gives

;'D"'... + (a),
since each side of (a') is equal to

[ \ ' . / im .V». . . ] .
Now, using each side of (a') as an operator on the opposite side of the
second equation of (a), since

(dld'^d1:... -r-l\m\n\ ...)p\p™p*...

= (jL\l(A.\m(A.Y pirtp?- - i
\dpj \dpj \dpj *"J!i»!nl... ~ '

and Dl. D? DnJ ... ( \ * . lx'm\ vm> . . .) = 1,
and no other terms survive the operation, we have A = A\ which, is
the first part of the law of symmetry.
If, moreover, p[Py\.. = ...+JB(\*.Ai/m\ S ...) + ...
and P'x.P?P*~> = ...+•»'( \'.fim.vn ...) + ... J
the second equation of (6), combined with (12), gives, as before,

and, using each side of equation (br) as an operator on the opposite
side of the first equation of (6), precisely the same reasoning as before
gives us 1? = 2?, which is the second part of the law of symmetry.

8. In this concluding article a method, of universal application,
for calculating symmetric functions, is illustrated by the calculation
of (3J.2M).
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If F(Vi,DttDit...) is a rational integral function, it is manifest,
from the nature of the operation D,, that (all terms in F may be re-
jected except such as are factors of DXD^D,..., where the subject is
(X. n. v . . . ) , of the same type; i.e., the X . f». v ... in ( ) corresponding
exactly with the suffixes of the D's. Thus, if the subject is (3*. 2*. 1),
all terms are to be rejected except factors of D8 D, Dv

When F(DV Dif D8, ...) = dn, the known value (18) of the general
term of 2an enables us to write down at once the terms to be retained.
Thus, retaining only factors of D8 P^ Dl in the expressions (8) for
dx, dg, d8, ... , we have

d, = - 7 A J
dg = 2 4 A ^
d8 =-9Dl

d18=-24D°D8

d8=-3D1D,+3P8

d4 = 2 ^ + 4 ^ 2 ) ,
d5 = 5AI>l-5D8D8

d, = - 2D3
a-12A D8 D8

; 8
With the values of d,, ds, d8, ... thus obtained we form products of
weight wt and of 1, 2, 3, ... m factors, where w.is the weight of the
function to be calculated and m its degree; rejecting in the process
all terms that would formerly have been rejected. When this has
been done, there remains, of each product, but a single term of the
same type as the function to be calculated, and of these terms only
the numerical coefficient is retained. These coefficients and their
corresponding products are placed opposite each other in contigaous
columns,—in the illustrative example thus:

d 8 d 1 0

d% d10

- 1 3 0 .
- 2 4
-132
- 1 6 5
- 9 0
-160
-119

0
- 3 0
- 2 7
- 1 6
- 3 5
- 1 2

-130
+ 106
- 2
-35
+40
- 3 0
+11
- 8 0
+ 31
- 8
- 2
+8
- 1 0

Pi Pit

PsPio

Pi Pi

dj dad0

dj ds d8

dj d5 d8

d8 d8 d7

ds d4 dt

- 1 0 8
- 1 9 2
- 8 4
- 1 5 0
- 1 8 9
-114
- 2 2 5
- 8 0

- 1 4
+ 5

Q

+ 1
• o

0
0
0

Pi Pi Pi

«d8

The numbers in the third column are the coefficients of terms
whose literal part is given in the fourth, and when these numbers
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have been found, the calculation is completed. This may be effected
in two distinct ways.

First, considering the operative character of the symbols, if
0 = (3 2 .2 \ l ) ,wehave

and dw=-130JD1D;Dj, d1du = -2W1BlDl Ac,

giving <2j8 ̂  = —130, dl d13 $ = — 24, d3 dn ty — -132, &c.
Whence

| l *£!*.=-24, - ^ _ + - ^ - = -13
dp dpdp d

dpidpu dpxi

and therefore -—— = 106, -=—7— = —2, &c.
dpidpu dpidpn

So also dl dj tZn >̂ = 0

d

which gives, after expanding and rejecting the over-weighted differ-
ential coefficients, as in Art. 6,

1 o

in which, substituting the values of the three last terms found above,

-we have finally _ , ;— = — 80.
dp\dpn

In this way any of the numbers in the third column may be found,
but the coeflBcients of terms of a lower degree must be found before
those of terms of the next higher degree.

Second, considering the symbols as symmetric functions of (3),
viz., dx = 2ax = [X], &c, using the Algebraic formnlae corresponding
to (9) and (10), and others of the same kind, we have

co. pxp\p\ in 2a*/3" = co. piP\p\ in (8, 8,-8»,)

= co. D^lDlin (d^l-d^J.
Thus, if

and therefore, by the law of symmetry,
co. PiPl0 in (3».2M) = - 3 5 .

So also
co. plp\p\ in 2axpry

= co.pxp\jl[ in {8k8,B9-8xB^.-8lt8t*x

= co. V,B\D\ in
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and if X = 2, /* = 4, v — 7, we have
co. pxp\p\ in 2a 7 /3V = - 8 4 + 132 + 90 + 119-260 = - 3 ,

and therefore, by the law of symmetry,

co. PtPiPj in ( 3 J . 2 \ 1) = - 3 .

In this way any of the numbers in the third column may be found,,
when those in the second are known. The method is in its essence
that given in all the text-books for finding symmetric functions from
the sums of the powers, but it is simplified by the rejection of super-
fluous terms and by the application of the law of symmetry.

On a Generalization of the Nine-Points Properties of a Triangle.
By Captain P. A. MACMAHON, R.A.

[Read Feb. 8th, 1883.]

In the triangle ABO (Fig. p. 130), let 0 be the centre of the circle
ABO, T the orthocentre; through 0 and JP draw the lines OL, TN
making angles a and TT—a respectively with the side BO, meeting
that side in the points L and N; again, draw the lines OT, TA[
making angles v — a and a with the same side, meeting it in the
points I and M; obtain in a similar manner eight other points, four
on each of the other sides : these twelve points lie six and six upon
two equal circles of radius gI2 cosec a, Ii being the radius of the
circle ABO.

These two circles also pass each throngh six other points, corres-
ponding to#the points bisecting TA, TB, TO which lie upon the nine-
points circle of the triangle.

When o = ^-, the two circles considered here coalesce into tho

nine-points circle. Also, as will be seen, the twelve other points men-
tioned coalesce in this case into three.

1. Let 8 be the nine-points centre, and draw SP at right angles to
O21, and OP making an angle a with SP. Then P is the centre of
the circle passing through the points L and N and the corre-
sponding points on the other sides of the triangle.

Draw 0A\ TC perpendiculars to BO, meeting it in the points A
and 0'.

Join P i , PN, PTt 8A\ SO'.
Since, in the two triangles LOP, A'OS,

angle LOP = angle A'OS,
VOL. xiv.—NO. 203. K


