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On Ourves oblained by an extension of Maclaurin’s method of con-
structing Conics. By SamueL RoBerts.

[Read Feb. 8th, 1883.]

"In Maclaurin’s construction, the points of a conic are marked by the
vertex of a variable triangle, whose sides pass respectively throngh
fixed points, and whose remaining vertices move on given straight
lines. The generalisation above referred to is briefly noticed in
Salmon’s Higher Plane Curves (1st edition, p. 247), where the degree
of the locusis given in several comprehensive cases. In what follows,
I treat the subject in rather more detail by determining the degree
and class of the loci under slightly more general conditions. There
are special cases which seem to be of some interest; but many of these
are of a simple character, and have been elsewhere given in a more or
less isolated way. I confine myself generally to conditions which do
not lead to very complicated singularities. Analogous results could
probably be obtained in more intricate cases, if for any special purpose
it became desirable. Thus, instead of ordinary double points or mul-
tiple points on a curve directrix, we might assame singularities equi-
valent to a certain number of double points and cusps, and so forth.
It will often happen that, under such circumstances, the degree and
class will still be given by the general formula.

For shortness I use the symbol O, to denote a curve of the m'™:
degree and n** class. '

1.—If the sides B0, 04, AB of a triangle AB0O pass respectively
through the fixed points P, @, R, while the vertices B, 4 move
respectively on the curves O, On, and if P is multiple on the curve
O... to the order p, Q is multiple on the curve U, to the order g, and

R is multiple on the curve O, to the orderr, and on the curve O, to
the order 7 ; then the degree of the locus of the vertex O is

(my—p) (myg—1") + (mg—g) (m,~7),
and the class is
2 (my—p—r) (my—q—7) +m (my—r') +ny (m—7)—2pg.

The points P, Q, R are supposed to be simply multiple on the
directrices. o

The circumstance to be specially noticed here and in subsequent
cases, is that the degree of the locus is not affected by point singulari-
ties on the curve directrices, except when they exist in special
situations, as for example at the points P, @, R, or on the liné joining
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P, Q. This a.ppea.ré by the actual process of the generation, for point

singularities on the directrices in general produce point singularities
on the locus.

" Let us take then, for Chm., m, straight lines, of which p pass through P
and r through R; for Cj., m,straight lines, of which g pass through Q
and +* through R.

If m, = my; = 1, n, = n, = .0, we have Maclaurin's construction for
conics. If, however, P or Ris on ()., Q or R on C,,, the locus is a
straight line through the point. If both P and E or Q and E are on
the directrix of B in the first instance, or of A4 in the second, the
locus is still a straight line. If P is on the directrix of B, and @ on
that of 4, or if the directrices meet in R, the degree is zero. The fact
of Pbeing on the directrix of 4, or @ on that of B, does not affect the
degree.

There results then, for the general degree,

2 (m—p—1) (my—g—7) + (m—p) g+ (my—g) p
+(m—p—1) 7'+ (my—g—r) 7
= (my—p) (my—7)+ (my—g) (my—1).
-We may now consider the general curves 0,','.', Cn. If any trans-
_versal is drawn through P, there are on it only-(m,—p)(m;—r) points
of the locus distinct from P. Hence P is a multiple point of the order
(m3—q) (my—7), and by symmetry Q is a multiple point of the order
(m,—p) (mg—17"). Except when further special -conditions are im-
posed, the tangents at these multiple points will be distinct ; that is,
. the points are ordinary multiple points.
Consider now the tangents which can be drawn to the locus from
and at the point P, counting those at P twice.

From P we can draw nl—-2p tangents to C),. (unlessa branch through
P ig rectilinear, which case is exccptlonal), und these are multiple tan-
gents to the locus, having in general m,—1" distinct points of contact.
If we draw tangents to C,. from E, they also are in general 2,—2¢ in
namber (the case of a rectilinear branch through R being exceptional)
and determine m,—r tangents to the locus from P.

This includes all the ways in which tangents to the locus from P
arise.

The necessity for excluding the case of rectilinear branches follows

_from the circumstance that n,—2p does not express the number of

tangents which can be drawn from a point (p = 1) on a straight line,
or from a multiple point of the order p forming the intersection of lines,
one or more of which are straight. ~ Sometimes the general expression
for the class will in such a case become negatlve, thus mdxcatma the
discontinunity, but it may happen otherwise.
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Taking the number of tangents at and from P to the locus, we get
the class

2 (my—q) (my—1) +(n,—2p) (my—1") + (1= 2r") (m, —17)

=2 (m—p—7) (my—q—7") +n, (my—1) +-my (m, —7) ~ 2pg.
Certain results of the generation can be immediately discerned. The
intersections of the curve directrices are points on the locus. The
straight line joining @, R meets O, in m,—r points distinct from P,
and these are multiple points on the locus of the order my—g —7'.
Similarly the straight line joining P, R meets C}, in m,—1 points
distinct from @, and these are multiple pointson the locus of the
order m, ~p—r. :

The degree of the locus suffers a reduction, if intersections of the
directrices lie on the straight line joining P, @ ; for the sum of the
ovders of the multiple points at P and @ is the general degree.

The degree may also suffer a reduction in consequence of trans-
versals through P being common tangents to the directrices. These
create additional double points. If there are ¢ such common
tangents, the class is reduced by 2¢.

A double point or cusp on ), occasions my—1 double  points or
cusps on the locus. Mutatis mutandis, the same holds for Cj..

The following particular cases occur :—

It p=g=r=7r=1 and m=m=2,
or if p=r=my=1 ¢g=r=0 m=2
or if g=r=m=1, p=r=0, m=2,

the locus is a conic.

If p=g=1 r=r=0 t=2 m=m=2,
the locus is of the fourth degree and fourth class, breaking up into
two conics (Salmon’s Conics, 5th edition, Ex. 7, p. 288).

If p=r=1r=19¢=0,m=m=2 orifp=g=r=1,r=0,

m=my=2, orif g=r=92"=1, p=0, m =my=2,

the locus is a unicursal cubic.

If p=g=r=1r=0, m=m=2 t=0,
thz locus is of the eighth degree and sixteenth class. But, if £ = 2, the
locus is of the twelfth class, breaking up into two unicursal quartics.
The points P, ¢ are double on both; the other two double points
correspond to the common tangents to the directrices through I2.

If p=¢g=1, m; = m, =2, r=1"= 0, and one interscction of the
conic dircetrix lies on the straight line joining P, @, the locus is of
the third degree and sixth class.
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The three intersections of the conics not on P@ are on the locus—
call them 1, 2, 3. Then P is the coresidual of 1, 2, 3, @, and Q is the
coresidual of 1, 2, 3, P.

II. If in the construction of I. the points P, Q, R are collinear, the

degree of the locus of O hecomes
(m—p) (my—1") +p (my—g—1")+1" (m,—7) = ""1”"5—1’7""’7‘»
and the class is ‘

2p (my—g =)+ 2" (m—7) + (m—2p) (my—1") + (ny—2") (m, ~7)

= mgn, +mm,—rn,—r'n,—2pq.
‘When we take two straight lines for directrices, the locus is a straight
line, unless P is on the directrix of B, and Q on that of 4. If this is
the case, the degree of the locus is zero.

Taking then, for C,,, m, straight lines of which p pass through P,
and for C,’, m, straight lines of which ¢ pass through Q, we get for
the degree

(m—p) (my— q) + (m,—p) g+ (my—q) p,
which is the general degree for the case r = 7'= 0.

Now, suppose, instead of straight lincs, we take for C,',',‘I M conics, p
of which pass through P and r through It; and for C.: AL conics, of
which ¢ pass through @ and +* through R.

For two conic directrices, both passing through E, the locus is &
cubic, and so also 1fp =¢=1.

The degree for C“, and Oy as dir ectnces is then
4 {(M—p—r) (M'—q—r) + (M—p) g+ (M'—p) p

+(M—p—7)r"+ (A —g—1)r} +3 (pg+7¥)
= 4MM' —pg—1r'.

To meet thie case of m, or m, odd, or both, we mayadd a straight line to
O or Coxpr, or both ; the addition is 2M or 23’ or 2 (A[+ AL’ +1) in the
respective cases. Hence the general expression is

mmy— pg—11".

As to the class, the number of points on the locus lying on a trans-
versal through P and distinct from P is (m;—p) (my—+"). Henco
there is a maultiple point of the order p (m;—q—1")+1" (m—1) at P,
In general, this will bo an ordinary multiple point. Taking the tan-
gents to the locus through P, and counting those at I’ twice, we have
for the class

2P (my—g—1')+ 27 (= 1) + (1, —2) (=) + (13— 2) (1)
= g+ mghy — 1 1 = rug—2pq.

For a particalar caso, wehave p=q=1,r =+'= 0, m, =m, =2;
the locus is a cubic of the sixth class.

VoL, 31v.—No. 202, 1
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In fact, a general cubic can thus be drawn. For the tangents to the
.conics at P, @ are tangents to the locus at the same points, and their
intersection is the common tangential of P, Q. If then we havegiven
two tangents OP, 0OQ of a cubic through O, P, @ (P, @ being the
‘points of contact), we can draw a conic having OP for a tangent at P,
and passing through three arbitrary points. We can also draw
another conic having OQ for a tangent at @, and passing through the
same three points. If we draw two straight lines through P and @
respectively, meeting in a fourth arbitrary point, we determine I2.
Thus we can describe by the present method a cubic through four
.arbitrary points, and having at P, @) the tangents OP, 0Q, whose
.common tangential is 0. The points O, P, @ are also optional.

The fourth intersection of the conics is common to the cabics of the
system passing through the three arbitrary points first taken.

. Ifa transversal through P touches the directrices in points distinct
from R, there arvises a double point on the locus. The class reduction
is 2¢ for ¢ such transversals. :

Thus, if m; =my=2,p =¢=r=1¢"= 0, t = 2, thelocus breaks up
into two conies. If we take for directrices two circles and a centre of
‘similitude R, with two points P, @ collinear with R, one part of the
locns is a circle, and the other a conic through the finite intersectiqns
of the circle directrices. Otherwise, the two factors of the locus are
.analogonsly related. :

The result is equivalent (as to the circle factor of the locus) to an
elementary property of homologous points on three circles.

The centres of similitude lie collinearly in threes. If we take three
homologous points, one on each circle, and join them in pairs by straight

lines, these will respectively pass through .one of three collinear
centres of similitude. Thus, if p, ¢, r are the homologous points, and
" P, @, 1t the centres of similitudo through which the straight; lines g7,
-7p, ¢ respeetively pass, pgr forms a triangle conditioned in the manner
supposed in the general construction. Hence, if q, r move on their
circles, p describes the third circle.  But if we take anti-homo-
logous points for ¢, r, the locus of p is a conic analogously related to
the figure.

I Lave shown elsewhere® that, if my=1, p =¢=r=1¢=0, the
degreo of the locus is m, and the class n,; and that the locus is really
& homographic transformation of Cf..

IT1I. We will now suppose that the directrices Ch, Om, of L, coin-

‘cide with (.. The degree of the locus is then

(m—p) (m—r-1) +(m—q) (m-r—1) = (Cm—p—gq) (m—r—1),

# Repriot of dathcmatics from the Eduoational Times, Vol. xxix., p. 96.
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and the class is
2 (m—gq) (m—r—1)+(n—2p) (m~r—1) + (n—2r) (m—r—2).

The curve C, is assumed to have a multiple point of the order p at
P, one of the order ¢ at @, and one of the order » at R.

Take for O, M conics, of which p pass through P, g throngh @, and
r through I2 ; thess conics may be taken as distinct. Then, remember-
ing that, in the case of a pair of conic directrices, either may be a
directrix of B and also of 4, we find\for the degree

M—p—g—r)(M—p—g~—r—1)
(8+8) > : .

+ (84+6) (M—p—g—7) (p+q)+4(M—p—g—7)
+ (8+4) {(M—p—g—7)r+pg}

+6+6) {2221 4 2@V 4 (444) (22=1)
+ (5+46) {p+qg}r+3(p+g+7)
=8(M—p—g~r)(M—p—gq—r-1)
+(M—p—g-7) (14p+149+12r+4)
+ar(r—=1)+6{p(p—-1)+g(¢—1}+11(p+9)r
+3(p+g+r)+12pg
=8M'—4AM-2M (p+q+I)+p+g+prtgr .
=2m (m—1)—m (p+g+2r)+p+g+pr+gr, if 2M=1m,

To meet the case of m odd, we may add a straight line to C,, ; the
addition to the degree is

8(M—p—-—g—r)+(“4+3)p+(4+3)¢g+(B+3)r=8M—p—g—2r,
giving the same result.

The points of the locus distinct from P on a transversal throngh
that point, are in number (m—p) (m—r—1). There is, thercfore, a
multiple point of the order (m —¢) (n—r—1) at P; and similarly one
of the order (m—p) (m—7r—1) at Q.

Counting tangents from and at P as in previous cases, we find for
the class '

2 (m—q) (m—r—1)+(n—2p) (m=—r—1)+ (n—2r) (m—r—2).

Ifm=2, p=qg=1, r=0, the locus is a conic. Thisis an in-
structive example, for the locus remains the same for any conie
directrix passing through P, @, and any two points on the original
directrix collinear with R. It remains the same, thercfove, for au
infinitc number of straight dirvectrices in pairs. In fact, we may take
as directrices the two sides of any gencrating trinngle, which pass
through P and @ respectively. The locus is that of the points of

' 12
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contact of tangents from R to the system of conic directrices. Thisis
an instance in which the class formula fails for the straight directrices,
n—2p being negative and illusory.*

IV. If, in ITIL,, P, @, R are collinear, the degree is

(m—p) (m—r—-1)+p (m—qg—r—1)+r(m—r=1)

. =m (m—-1)—pg—r(r+1),

and the class is

2p(m—g—r—1)+2r(m—r—1)+ (n—2p)m—r—1)+(n—2r)(m—r—2)
=n(2m—-3)-2 (n—1)r—2pq.

As in the preceding case, we take for O, M conics. Then the
degree is ir
(4+4) { (M—p- q—r)(gl—jp—q—r—l)

+(M—p—-g—r)(p+g+7) +qr+p"} +
(4+3)pg+2(M—p—g—1r)+3r(r—1) +4p(p—1) +49(q—1) +2p+2¢q

=2M (2M—-1)—py—r (r+1).
We may again meet the case of m odd by adding a straight line. The
consequent addition is
4 (M—p—g—r)+(2+2) (p+g+r) =4M.

The general degree then is

m (m—1)—pg—r (r+1).

On a transversal through P, there are (m—p) (m—r—1) points of
the locus distinct from P. There is then at I’ a multiple point of the
order p (m—g—r—1)+r (m—r—1). As in previous cases, we get
the class above given.

If m=n=2 p=q=1, r=0, the locus is a straight line,
evidently the polar of B with respect to tho conic.

If m=3, n=6, p=g=r=1, the locus is also a cubic of the
sixth class.

* The lines RP, RQ are tangents to the locus at £, Q. Two points on the conic
directrix collinear with R determine, thorefore, a fifth point of the conic locus.
* Analytically, the result comes out as follows :-—

Let RP, PQ, QR be the sides B, 7y, a of the triangle of reference, and
Oy* +2DBy + 2Eay + 2FaB = 0 the equution of the conic directrix. .

Then, ifa tranversal through  (a, 8) meets the conic in the points (o’ 8'), (a”, 8”),
we have, putting a — k8 = 0 for the equation of the transversal,

BIB'I _ C _ Blall .
_7'77 = -Z-FT/; = 717"/‘ H
and X, ¥, Z being the current coordinates, so that
Z8=-Yy =0, Za'—Xy"=0,

wo have (22—2FXY = 0 indepcndently of D, E.
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V. If the p sides of a polygon pass through fixed points respectively

) . . n n” Yip-1
and all the vertices but one move on curves Gm'l. C’m” C,: , Tespec-
-

tively, the degree of the locus of the remaining vertex is 2m;m,...m,_y,
and the class is
2mymy ... My_1+nmgmy ... My F NGy My Ty L My
It may be shown (Salmon's Higher Plane Curves, 1st ed., p. 247) that
on a transversal through (say) .the fixed point on a side of the de-
scribing vertex, there are m;m, ... m,_, points of the locus distinct from
that point, and that the point itself is multiple in the locus to the
order mym, ... m,_;. Or we can separate the polygon into triangles.
Thus, if the polygon is a quadrilateral Af, M, M, C, C being the de-
scribing vertex, let P, P, P;, P, be the fixed points throngh which
pass respectively CM,, M, M, M, M, AM;C. Produce A,C and AL, Al
to meet in X. Then the locus of K is of the degree 21, A, with
P,, Py for multiple points of the order i, m,.
Again, the locus of C is, by the formula of I,,
mg (2m, my—m,my) +my (2mymg—m my) = 2m, m,yms.
We can use the same process for the general polygon. As to the class,
for the quadrilateral, the class of the locus of XK is
2m mg+ mny +mgn,,
and the class of the locus of C is, by IIL,
2(2m, my—my My —mymy) Mg+ (200, My -+ 1y g+ Mgmy) g 025 (20m, Mg — M)
= 2m, mymg =+ n, mymg+ nymy Mg+ ngMm, My,
We can now assume the formula for a polygon of p—1 sides (taking
notice also of the multiple points at two of the fixed points), and

thence, as above, show that the same formula lolds for a polygon of
p sides.

We may, indeed, similarly treat the case in which the fixed points

are multiple points on the respective directrices with which they are
associated.

It will be sufficient to take the case of a quadrilateral, A/, AL, 41, C.
Suappose on C,, that P, is a multiple point of the order p,, and P, a
multiple point of the order p,, Let the corresponding orders for I,
P;on C,., and P, P, on Cin. be 75, 75 and sg, s,

Then the degree of the locus of K is

. (my—py) (my=15) + (my—pg) (my—13),
and the class is

2 (my—py~pg) (Mg —13—135) + 1, (mg—1;) + 1, (im,~p,) —2pys, by L
The locus of C is then of the degree
(mg=s4) (g = py) (g - 75) + (mg—s5) (my—p,) (my—1,),
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and the class is

3 (my— ;) (my—13) + 12 (my—p, ~py) (mg—7y—15) + 1, (my—15)
+ 1y (M, —pg) — 2py7s } (my—8,) — 26, (14— ) (1ng—13)
= 2 (my—8y—s,) (my—ry—15) (my—p, — py)
+ 71y (my—ps) (1~ 15) 415 (1 —pg) (M3 —83) + 7y (my—1) (15— 85)
—2my8,r3—2img sy Py — 2my 1y Py + 25,0y Ty + 28,7305 + 28,0175 + 2P Tes
VI. For the fixed points of I, wWe may substitute curves
Cuis Car Car, which are touched respectively by the sides BC, 04, AB
of the generating triangle. These curves are supposed mnot to have

special relations to the other directrices.

The degree of the locus is then 2N, N, Ny, m,, and the class is
N, N, N, (2m, mg+nymy+ngm,) +m, thy (N, Ny My + N, Ny My + N, N, AL).

In fact, if we take for G;: N, points, for C':;: N, points, and for
C’;;: N, points, the degrce of the locus is 2N, N, N,m,mg by what
precedes, and this result remains unaltered by the double tangents
arising from the points N, taken two and two, the points N, taken
two and two, or the points Nj taken two and two.

A double tangent of this kind does, however, affect the class, since
it occasions, if existing on C:,', (now considered as a proper curve),
N, N,m,my double points on the locus. The case is similar for the
other directrices Cyr and Cy’. Making allowance for this, and also
for the existence of double tangents and inflexions, we must add to the
first result N, V; N, (2m,mg+n,my+ngm,) the following complement

mymy (N, Ny My + Ny Ny M, + N, Ny I,

If we generalise IIL. in a similar fashion, the degree obtained is
2N, Nym (m— 1), and the class is .
Ny NNy {n (2m—8)+2m (m—1)}
+m (m—1)(N,N, A, + N, N, ML, + N, N, ML,).
It will, without doubt, be remarked how far the cases which I have
dealt with fall short of being exhaustive. Some additional ones
could be added if we were content with the determination of the
degree of the locus. The determination of the class is accompanied
with special difliculties, and the few results-I have obtained in this
direction are imperfect. The problem, in its ultimate form, requires
us to determine the degree and class of the locus when the directrices
of the two vertices of the generating triangle, and those which are
touched by the sides, coincide in one curve. Intermediate cases lead
up to this, '
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On the use of certain Diﬁerentml Opnrators in the l'heory of
' Equatwns By J. HaMmonDp.

[Read Feb. 8th, 1883.]

1. If D, D, D , ... denote operators defined by the equation

. ¢(P1_?’Pn_‘g' P—"j )

= (1—y ' Dy +y ' Dy—y~"Dy+...) ¢ (1, Py Pgs +0-)-evreeees(1)y
it has been shown ‘in a former paper (Proceedings, Vol. xiii,, p. 79)
. that when

¢-(P1> P0s Py -+2) = Za? a; a;ﬁ;ﬂ; e B Y171 v 'y:. cer

= (A.p™ »"...) suppose,
where a,, ay, ... By, B4, ... 71, 73 --- are TOOtS Of the equation
l—z'pt2?p~2?pst ... = 0.cerenreeveennnnn (2),

D.(N.pm»..)=0, D,(N.pm.»* . )=N"1u"v.), D,(N)=1
The operators of the present paper are the symmetric functions of
the roots of the equation

1—y'D,+y? D;—y 2 D, +.. =0 ...... (3),
considered simply as rational integral functions of D,, D,, ooy
when operating on (A'.u™.v"...) and as differential operators on
¢ (21 Py Py -..). It is easy to see that these operators follow the -
ordinary laws of quantity in their combinations with constants and
with each other; e.g., if ¢ (p, Py Py ---) = (A'. ™. 9" ...), we have

DD, p = (N'.p™'.v" ..) = D, Dy g,
and D,, D, obey the commutative law. In the case of the remaining
laws, a formal proof is hardly required.

The meaning of equation (3), or of its roots, does not at all concern
us, a8 they are only used for purposes of concise definition; thus, if

1—y~' D,y Dy—y-*Dy+... = (1—%) (1—%) (1—§)

and if Sa*b*e’ ... =[A.pu.v...], using [] instead of () to show that
the roots refen ed to are a, b, ... instead of a, f3, ..., we have

=3Sa= [1], D, = Sab = [1%],
D, = [1'] and Dj—2D, = 3a* = [2].
This notation was suggested by Professor Cayley.
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2. A line placed over any expression will be used .to denote that all
its symbols are to be combined by the ordinary laws of quantity ; thus
from (1) we obtain directly "

1 /,d d d .
D, =={5- - — 4. )=
* o« (dpl T dp +p’dpa+ )

l_.
k!

where, for shortness,

d d d 3
=——+p— + p— + &
& dp, 2 dp, P dpg
-4, 4 4
b= dp, o dp, * Pgdl‘q. t e (%)
d | d d L e e .
=——+p +p— + &e
ds dpg Pl d_p4 pﬂdpu
d d d
dy=-—+p — &e.
* dpx p dp;+1+Pa dpL¢2 + )
1 =  1— ) e —
Now &\ D, = Hd“ T = z-!dh di+ (T——-_]j_' & dyars

the last term arising from the differentiation of D, considered as an
explicit function of p,, p,, ps, ...
This result may also be written

dl Dx = dhol Dx-l + dk
Reducing by means of (6), we have,
da_da-l D1+dx-2Ds""‘da—3 D3+ e +('—),'-l d1 D,\-l

= dl_(dl"'dx-l Dl) + (dx-l D1+dx-2 -Dg)“(dx-z Da +‘I7«-8 Da)+
vt (—')x-l (dn Dx-2+ dl ]JA-I)

=)
~
o2}
N

— -1
(A=1)
Hence d,—d,.,D,+d,sDy—d, 3 Dy+...+(=*AD,=0......... ",

which, with reference to (3), is Newton's rule for the sums of the
powers of the roots, and gives

=(-—)""(m_—|= !E= (=)*'AD,

d, = D,
d’ = _'D:_Q_D2 .
dy=D,~3D,D,+3D, (T (8),

d, = D}—4D; D,+2D;+4D, D3—4D4)

and in the general case d, =\
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3. The differential operators corresponding to the other symmetric
functions are found in terms of dy, d,, dy, ... by a process parallel to
the expression of the symmetric functions in terms of the sums of
the powers in the ordinary Algebraic Theory. For

fd d d d od d
d. = (— —_— — 4. )= — _—...
e Qﬁ+“dmu+“¢mu+ )(@u+“¢mu+“4mn+ )

a a d d d
= (L 4p -2 i R +..
(dp,+p‘ ot ) (dp tog ot )+ e P dpriin

Or, after abbreviation and transposition,
Ao, = dydy—dysp ceeenerrrereerinseenneenes (9).
Comparing this with the well-known Algebraic formula.
3@ =8, 8,— S
. we see that m =[A.p].
All other formuls of this class a.re; deducible from (9) ; for example,
dyd,d, = & (2, d,+4,..)
=G4 a4 Dy A AL Gt Tyt e

which, after further reduction of the three middle terms on the right

by means of (9). becomes
dyd,d,=d,d,d—d.d,.—d.d,.,—d d.+2,,....... (10),

showing that did,d,=[A.p.v]. )

But the law dd,d,...=[A.pu.v..],

whfch is perfectly general when A, g, », ... are all different, requires
modification to meet the case where some of them are equal. This is
8 necessary consequence of the modification of the Algebraic formula
which gives Z«*3*y" ... in terms of the sums of the powers, and
makes no difference in formule such as (9) and (10), which are
absolutely correct, even when all the snffixes A, p, », ... are equal.
Thus, as particular cases of (9) and 10), we have

;E = di_dzx

a_i__ d3—3d, dy,+2ds, crevereeeees (11),

d b = d, d2—d, ty,—2d, d,,,+2d,,,,
which, when compared with the corresponding Algebraic formule

2! Sa* = 8} -8,

3! 3a* f*y* = 83—38, Su+28y,

21 Sa*fryr =8, 82— 8, 8. --28, Si., + 285150
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give the identities
_ E+21=[N], &+3!1=[N), dd+2!=[rul
And, from these considerations, it follows in general that
dardr.. +~Umlnl = am "] e (12).

4. Every known symmetric function formula now gives a relation
between the operators, and wice versd. Thus formule (6) and (7)
(Proceedings, Vol. xiii., p. 81) give immediately : ‘

E;“ -—m ! = D,’,.—ZD,,,-, Dm+l+2Dm-2 Dm+2—"‘ + (___)m 2D2D;U
d;" d; “—m = Dm Dmol_3Dm-1 -Dml,2+5DM-2 DHHU— e
wo k(=)™ (2m+1) Doy
and if, in (6) of the present paper, we put A = 1, x = n—1, we have
dl Dyy= dg Du-2+d| D, .,

- the last term of which is »D,, since D, = E’{ +x!,
Hence dyd,* + (n—2) ! = D, D,.,—nD,,
which gives the Algebraic formula

(2 . 1"") =P1Pn-l—npn-
The general formula (6) gives, when interpreted,

P3¢ = QA+1. "N+ A1) e (18).
If now in (13) we make x+X=r1n =const. and (A.1"*) =u,
we have Uy a2, = Puy St

‘Whence, the value of 4, being known,
(21770 = uy = p,par—1pa,
(8.1°%) = w, = pu_s (P1—2P)) —Pu-1Pr + 1P
“G.1"Y =« = Pn-s( 21— 3P, Py +805) —Pa-3( £1—205) + Pa-Ds—Pn»

and generally . _
= Paan S =P a3 (= ) 0P el (14).
This includes Newton’s series, giving
Sa"=p,Za"'—p,Ta* 4 p,Sa" - &e,,
Za"'B =p;Sa"~pZa*+p,Sa" -,
3a"? By = pyZa"—p,Za""!+p,3a" '~ &e,,

the last term in every case being =% np,.
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5. If in (8) we consider d,, dy, dy ... as operating on ¢ ( 2y, 25, Psy --+)»

and their equivalents

D,, D;—2D,, D}—8D,D,43D,... on (N'.p™.»"...),
we obtain a set of linear differential equations of the first order, all
of them satisfied by ¢.

Now, recalling the law of operation of D on (), viz.,
D(N.pg™m.)=0, D,(N.pmo )= (N "), DL(A) =1,
it is clear that any number less than the weight of ¢, say «, none of
whose partitions are contained in (A'.p™.»"..), eorresponds to a
differential equation of the form d, ¢ = 0; and, whenever a sufficient
number of such equations can be found, we are able to calculate the
value of ¢ without reference to symmetric functions of inferior weight.
A case in paint is 2a”, where the differential equations are

dyydy dy...dyy ¢ =0,
which, since they s.re of the first order, are more convenient to use
‘than D, D,. D, ... D,_ ,¢—O

If ¢ = (3. 1), it is easily seen that dy¢p =0, dyp = 0 dg¢ =0,
d, ¢ = 0, and these equations are, in this case, more than sufficient to
completely determine ¢ ; in fact, without using dy¢ = 0, we find

(8'.1) = Pl ps—2p0:, 0% — DsPuPe + 5papspy— Spipy + 493 0 — TP py
+2p, s p; + 8per— 40,05 ps + 11p, p 0y —13py pg + 7P,Po

—10p, pspy—p. 20— PP+ 1 7P+ lo.plpll —13p;pu
—10p, pis+13p,s-
Whence

d, ¢ = (3) = p| — Spspups+3pap; + 8F; Po—3pupiPs— 3p1 1o+ 3P}
— 3pyPs Py + 61 P D7 — 8pop; + 3P, pa— 3p1 paps — 3pps
—3p10,Po+ 6p3 1+ 8P} Pro— 3Py P10 — 8P1 P+ 3.
Any of the other differential equations, dy ¢ = 3 (3% 1), d, ¢ =4 (8%,
&c., may be used to verify the value of ¢ with the help of a table of
symmetric functions.

It may be noticed that, if by any method a table of symmetrio
functions of weight # has been calculated, the complete table of weight
o—1 may be deduced from it by means of the operator d,.

If = (5.4.3.2.1), the differential equations are found thns-

d¢=D(54.3.2.1)=(5.4.8.2),
dy¢ = (D|—2D,) (5.4.3.2.1)
. =D;(5.4.3.2.1)—2(5.4.8.1) = =2 (5.4.3.1),
'dy¢p = (D}—8D,D,+3D,) (5.4.3.2.1)
‘= (~8D,D;+3D,) (5.4.8.2.1)
. =-3(5.4.3)+3(5.4.2.1),. ) PR
dg¢ = (4D, D,—4D)(5.4.3.2.1)=4(5.4.2) -4(5.8.2.1),

(XY} voe X s e see ase
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where, since partitions of all numbers up to 15 are contained in
5.4.3.2.1, there is no equation of the form dg¢ = 0. The differ-
ential equations of thesecond order, dyd, ¢ =0, dyds¢ = 0, dyd,, 9 = 0,
d,d,; ¢ = 0, may in this case be utilized; and a method will be given
by which any symmetric function whatever may be calculated in-
dependently, assuming only the value of the coefficient of the general
term of S«" and the laws of combination of the operators.

6. The weight of an operator is the quantity by which it reduces the
weight of its subject. Thus the weight of either d, or D, is A, and so

for every operator of the present paper; r‘l—dTp— is of order m
A 3 v

and weight A+ p+»+ ..., and any operator of the form d, d, d, ... is of
order m and weight A+pu+»+..., where m is the number of the
suffixes.

In the expanded value of any operator those differential coefficients
may be rejected as useless which are either of higher order than the
degree of the subject, or of higher weight than the weight of the
subject.

P d d d d
Thus d,d, = d,d,+d,,, =(a; +p1d—p;_,1+"') (E; +pld.P_A+1+"')
. Cood d
+—+p, —+.,
dpx.,‘ B dpxnul

and if the subject be of weight A+ +1, suppose
¢ = Apl*»+l+'BplPHn+ Opli,n*|+ DPMIP»'*'EPIPAP»‘*'Other terms,
then & & - & d d
g = (C’dep» P Tt P apdpen e, dpu,..x)
=p (E+D+0+B+A4).
The operator d,, when performed on a subject of weight »#, reduces

d ——
to dpy and any operator of the form d,d,d, ... performed on a subject

. : 3 d d
h ht 1 to it; duces to - ~. =~ 7~
‘whose welg 18 equal to 1ts own, reauces th; df'p dp.

but the over-weighted differential coefficients are affected with mul.
tipliers containing p,, p,, P ...

If ¢ = Sa" and if in (9, and (10) respectively we put A +u = and
A+pu+v =n, we have, since in this case d, = 0,d, = 0, d, = 0,

...,8ince none

_de _ _ds
dPx dpu-x dpu
e _,de

apdp,dp, ., dp,
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And, by an easy extension,

dm(b — _ m-1 — 1 d¢
T = (=) 2 1),

where ¢ = 3a”, and A+p+v+...=mn, the m suffixes A, p, ...
being not necessarily all unequal.
For, by the nature of the operation d,, we have universally
d.dd.d,.. =dddd,..+d,.4d4d,..+dd,.d,. +ddd,,,..+&c.
. vevrnnennnan (16),

where, if d, = 0, which happens when the subject is ¢ = Za", or if

d,d,d, ... = 0,0r in some other cases, the left-hand side vanishes ; and if,
further, k+A+p+v+... = n, the weight of the subject, (16) reduces to
dmﬂ dm dm ) dm

+ + + +..=0
dp,dp,dp,dp, ... = dp,.Ap.dp,... ~ dp\dp,..dp,... ' dp,dp,dp,.....
e (A7),

where it is not necessary that the suffixes should be all unequal.

Now, if (15) holds for differentials of the m* order, each term of the
m™ order in (17) is equal to (=)™ (m—1)! dZ) , and, since there are
m of them, the term of the (m+1)™ order is equal to (—)™m ! Fd—;
hence (15), which has been seen to hold in the cases m=1 and m =2,
is true for all positive integral values of m.

From (15) and the known value of the coefficient of p, in Za", viz.,
(=)**n, it follows at once that the general term of Sa” is

(=)y"tr=Dln_, 4, ,
m_plp;ps...p; ......-....-......(18),

where a+b+c+...+1 =7, and the indices a, b, ¢ ... ! are the positive
integral, including zero, solutions of the equation

a+2b+3c+-..+nl = n.
Hence

2
Za" = pl—np}~ p,+up]~ py—np]t {pr (n—3) -é—’f}
' +"P:-a { ps— (n—4) py ps}
n -6 Pa pa
=y {po=(n=5) (22 + 21) + (=0 0—5) Tt |

w

1" { 7= (=0) (k120 + (n=5)(n—6) Tae |
) pﬂ '
—np;? {pa—(n—7) (PaPo'*‘PaTs"‘ él,)

+(n—6)(n—"7) (2;4’1 + 12;_{'3) —(n—=8)(n—G)(n—7) %}
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+"P:-° {Po_ (n—8)(psp;+ps patpips)

+=-D0=8) (B2 +pppt B) - (-0 (a-7) (-9 B2 ]

—np}™ {Plo ('"'—9) (P2P8+P5P7+P4P6+P‘ )

4 —8)(n=9) (B2 + pupops + P4 2L)

— (0 —7)(n—8)(n— 9)(P Byt ﬁ) |

+(n—6)(n—"T) (n—8) (n—-9)%’i' } T TSR UTRTOO ¢ I:) ¥

7. Formnla (12), combined with the principle of rejecting over-
weighted differential coefficients, furnishes a simple proof of & law of
symmetry, discovered by Prof. Cayley in 1856, but given without .
proof at the end of the tables in Salmon’s Higher Algebra.

For, if Npmon ) = L+ Ap p Pl +}
and \ A, ""’. ~ )—. _pxp Pt e
’ the first equa.txon of (a) combmed with (12) gives

_ Eardr +Ulmlal..= . +ADLDE Dt . (a),
since each side of (a") is equal to
. A pmo ] .
.. Now, using each side of (a") as an operator on the opposite side of the
" second equation of (a), since

BT+ Umlnl ) p prph..

d\'(d\"(d\» nprplh...
= — —_— — L = 1,
(dp,) (dp,,) (dp,) imlnll,
" and DLDED .. () =1,
and no other terms survive the operation, we have 4 = 4’, which is
the first part of the law of symmetry.

v (2),

If, moreover, p|plp?... = BT ™ N } ®)

and ‘p;',p"::'p"‘,'... =..+B(N. g™ )+ B ’

the second equation of (b), combined with (12), gives, as before,
DiDNDY ... = .. +Bddd . +lmlal ... ..

and, using each side of equation (&") as an operator on the opposite
side of the first equation of (), precisely the same reasoning as before
gives us B’ = B, which is the second part of the law of symmetry.

8. In this concluding article a method, of universal application, .

for calculatmg symmet.rm fanctions, is 1llnstra.ted by the celculation
of (3'.2%.1).
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If F(D, D, D,, ...) is a rational integral function, it is manifest, .
from the nature of the operation D,, that lall terms in F' may be re-
‘jected except such as are factors of D, D, D, ..., where the subject is
(\.u.»...), of the same type; i.e., the X p.v...in () corresponding

" exactly with the suffixes of the D's Thus, if the sub]ect is (3:.24.1), .
all terms are to be rejected except factors of D} D; D,.

When F(D,, D,, D,, ...) =d,, the known va,lne (18) of the general
term of Sa” enables us to write down at once the terms to be retained.
Thus, retaining only factors of D} DD, in the expressions (8) for
d,, dy, dy, ..., we have

d,=D, : d, =~17D, Dy+ 7D, D,+ 7DD,
. dy=—2D, dy = 24D, D} D;~8D, D;

dy =—3D, D,+ 3D, dy =—9D; D,—27D, D, D,

d, = 2D}+4D, D, o dyy=—40D, D, D;+15D; D

dy=5D,D;—5D,D, d,, = 66D, D, D

dy=—2D} —12D1D,D,+3D’ d,y =—24D; T}

d,» =—130D, D, D;. -

-With the values of d,, d,, d;, ... thus obtained ‘we form products of
weight w, and of 1, 2, 3, ... m factors, where w.is the weight of the
function to be calculated and m its degree; rejecting in the process
all terms that would formerly bave been rejected. When this has
been done, there remains, of each product, but a single term of the
same type as the function to be calculated, and of these terms only
the numerical coefficient is retained. These coefficients and their
.corresponding products are placed opposite each other in contignous
columns,—in the illustrative example thus:

dy | —130 | —130 | py dyd,d, | —-108 | —14 p:p,, + 21
didg | —24 | +106 | p, py Cdydydy | —192 [ +5 | Pypspa -
dydy | —132 | -2 PsPn ) dydid, | —84 | -3 |ppupy
dydy | —165 | -85 | PsPro dydydy | —150 | +1 |, psps
dydy | —90 | +40 |p;p, ’ dydsd, | —189 ] 0

Cdydy | —160 | —30 |pyps diddy | —114 0

ded, | —119 | +11 |pep, 7 dydyd; | —225 0

ddd, | 0 |—80 |p'p, 2! dydd, [ =80 | O
dydydyy | =30 | 431 |p,pspie

didyd, | —27 | -8 |p,pspy

diddy, |—-16 | —2 D1 PePs

dydyd, | —35 |+8 » PiPsPr

dided, | =12 | =10 |p,p; + 2!

:The numbers in the third column are the
whose literal part is given in the fourth, and

coefficients--of terms
when these numbers
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have been found, the calculation is completed. This may be effected
in two distinct ways.
Fu‘sb considering the opera.twe character of the symbols, 1f
= (8%.2°.1), we have
D,D;D;(8*.2*.1) =1,
and d,; =—130D, D} D;, d,d,,=—24D, D} D}, &c.,

278
giving dy;9 =—130, d,dy,¢p =—24, d,d, ¢ =-132, &e.
“Whence

B __y30, Lo, 38 __gy Lo
% L= +———-132 &oc.,
dpys ’ dp, (lPu dpys _ dp,dpy,  dpys
and therefore @dﬂ;; = 106, Eﬁ% =-2, &c.
1 13 3 11
So also dd,dyo=0

YN SURYE S RO YE S |

- (‘lP1 A dps +) dp, th dp, +) (dp,, th dpg thg - dp,s ) &
which gives, after expanding and rejecting the over-weighted differ-
‘ential coefficients, as in Art. 6,

do d’¢ 2o d¢
2 _ 49 +22 =9,
dp; dp, dpydpyy ~ dp, dpy dPla
in which, substituting the values of the three last terms found above,
d*

-we have finally

In this way any of the numbers in the third colamn may be found,
but the coefficients of terms of a lower degree must be found before
those of terms of the next higher degree.

Second, considering the symbols as symmetric functions of (3),
viz., d, = Za* = [A], &c., using the Algebraic formuls corresponding
to (9) and (10), and others of the same kind, we have _

co. p,p,p, in Za* B = co. p,pip:in (8, 5,—-8,.,)
= co. D, D D} in (d, d,—d,,,).
Thas, if
A=10, p=3, co. p pip,in a3 = -—165+130 = -~35,

and therefore, by the law of symmetry,
co. pypy in (3'.2°.1) = —35
So also
co. p,p;p; in Ta*fiy”
= co. p, 7, p; in (5, 8,8,-8, 8,..—8.8,,,—-8,8,,.+28,,,..)
=co. D\ D, I} in (yd,d,—d d,,,~d,d, ,~d,d\,,+2d,,...),
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andif A=2, pu=4, v =7, we have
co. p,pip! in a7 f'y? =—84+132+90+119—260 = -3,
and therefore, by the law of symmetry, _
co. PPy in (3%.2°.1) =-3.
In this way any of the numbers in the third column may be found,.
when those in the second are known. The method is in its essence
that given in all the text-books for finding symmetric functions from

the sums of the powers, but it is simplified by the rejection of super-
fluous terms and by the application of the law of symmetry.

On a Generalization of the Nine-Points Pfoperties of a Triangle.
By Captain P. A. MacManown, R.A.
(Read Feb. 8th, 1883.]

In the triangle ABC (Fig. p. 130), let O be the centre of the circle
ABO, T the orthocentre ; through O and 1' draw the lines OL, TN
making angles a and #—a respectively with the side DC, meeting
that side in the points L and N; again, draw the lines OI, TAl
making angles #—a and a with the same side, meeting it in the
points I and 3 ; obtain in a similar manner cight other points, four
on each of the other sides: these twelve points lie six and six upon
two equal circles of radius }I cosec a, Il being the radius of the
circle ABC. ’

These two circles also pass each throngh six other points, corres-
ponding to-the points bisecting T'd, 1'B, T'C which lie upon the nine-
_points circle of the triangle.

T . . o
When « = 5 the two circles considered here coalesce into the

nine-points circle. Also, as will be seen, the twelve other points men-
tioned coalesce in this case into three.

1. Let 8 be the nine-points centre, and draw SP at right angles to
OT, and OP making an angle a with SP. Then P is the centre of
the circle passing through the points L and N and the corre-
sponding points on the other sides of the triangle.

Draw 04, TC’ perpendiculars to BC, meeting it in the points 4
and C'. o

Join PL, PN, PT, S4’, SC'.

Since, in the two triangles LOP, 4’08,

angle LOP = angle 4°08,
voL. X1v.—No. 203. K



