
CERN openlab Summer Student Report 2016

Data Quality Monitoring at
CMS with Machine
Learning

July-August 2016

Author:
Aytaj Aghabayli

Supervisors:
Jean-Roch Vlimant
Maurizio Pierini

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Abstract

The Data Quality Monitoring (DQM) of CMS is a key asset to deliver high-quality data for
physics analysis and it is used both in the online and offline environment. The current
paradigm of the quality assessment is based on the scrutiny of a large number of histograms
by detector experts comparing them with a reference. The project aims at applying recent
progress in Machine Learning techniques to the automation of the DQM scrutiny. We
explored the landscape of existing ML algorithms with particular attention to supervised
problems (for offline DQM) to demonstrate their validity and usefulness on real test cases
using CMS data.

CERN openlab Summer Student Report 2016

Table of Contents
1 Introduction

2 Golden JSON at CMS

3 DQM system of Yandex at CMS

4 Applying DQM system to 2010 data of CMS

4.1 Loading data

4.2 Features extraction

4.3 Data merging

4.4 Applying learning algorithm

4.5 ROC curves

5 Structure of 2016 CMS data and future work

CERN openlab Summer Student Report 2016

1 Introduction

The Data Quality Monitoring (DQM) of the Compact Muon Solenoid (CMS) silicon
tracking detectors (Tracker) at the Large Hadron Collider (LHC) at CERN is a software
based system designed to monitor the detector and reconstruction performance, to
identify problems and to certify the collected data for physics analysis. Its flexibility
allowed its integration in two environments: online, for real-time detector monitoring;
offline, for the final, fine-grained data certification. Online, DQM is designed to detect
real-time response immediately, to analyze any problem and solve it quickly in order to
registrate as much good-quality data as possible. Unlike online DQM, offline DQM can
additionally rely on high-level quantities, derived during the CPU-expensive event
reconstruction (performed in the CMS T0, hosted in the CERN computing center).

To turn the DQM into an automatic system, we reformulated the problem in terms of
defining the optimal binary classification algorithm to separate good and bad portions of
the data. This is done considering a dataset in which each entry is a luminosity section,
the smallest quantum of CMS data, consisting of about 23 seconds of recorded collisions.
To train the algorithm, we separate the available data according to the decision taken by
experts (the human-based DQM currently in use by CMS). We then train an algorithm to
replicate this decision.

2 ​Golden JSON at CMS
The CMS offline data certification process results in a file with the list of good
luminosity sections, written in JSON format and usually referred to as "the golden json".
An example of golden json file is shown in Fig. 1.

Fig. 1: example of a golden json file.

The general format of a CMS json file is:

CERN openlab Summer Student Report 2016

{"Run Number":[Lumi range, Lumi range, Lumi range, ...],

 "Run Number":[Lumi range, Lumi range, Lumi range, ...],

 ...}

The data collected by CMS are separated into different datasets, based on the output of

the online trigger filter.

CERN openlab Summer Student Report 2016

Fig. 2: List of JSON files

A data tier may contain multiple data formats, as mentioned below for reconstructed data

(See Fig. 3).

Fig. 3: ​ Data tiers

For our exercise, we used the list of luminosity sections officially listed as good. For the
bad luminosity sections, we created a dedicated list accessing the CMS run registry and
selecting data periods for which any sub detector was excluded for the run. The causes of
the exclusion could be of different kind. This is the most general definition of "bad" that
we could define through code. Yandex team has experienced on the CMS public data, so
that my task was to apply, what they did within CMS.

3 DQM system of Yandex team
The classification problem is that each lumi section can belong to one of 3 groups, which
are ‘white zone’, ‘black zone’ and ‘grey zone’. The DQM system, defined by the Yandex
team, on which we worked, consist of automatized data quality system for the CMS
experiment. This system learns to predict experts’ decisions who labeled data collected
by CMS as “good” and “bad”. The system continuously learns from proficients and leave
only non-trivial cases of data for them. A tunable fraction of the data is classified as good
and bad, the acceptable mislabeling rate being a tunable parameter at training time. The
unlabeled data are then returned to experts for scrutiny. While this formulation does not
remove the need of a human operator, it strongly reduce the amount of work required. It
is easy to train very accurate classifiers while keeping the fraction of unlabeled data
below 50%. The algorithm, used by the Yandex, team is a supervised algorithm
consisting of a Random Forest classifier. Three datasets are taken as input: Minimum
Bias, Muon, Photon streams. For each dataset, a specific list of features is used. For the
main particles in the dataset (e.g., muons for the muon dataset) p​T​, η, φ, m, f​x,y,z​ and

CERN openlab Summer Student Report 2016

additional are total momentum, number of events, etc. From the distribution of this
quantities, quantiles at 0, 0.25, 0.5, 0.75, 1 + mean + sigma are extracted.

Fig. 4: DQM system classification principle;

More information can be found here
https://indico.cern.ch/event/532992/contributions/2224631/attachments/1303860/1947683/anomaly-detection-yandex.pdf​ .
We consider the following quantities:
Rejection Rate = Rejected / Positive + Negative + Rejected;
Pollution Rate = False Positive / True Positive + False Positive = 1 - precision;
Loss Rate = False Negative / True Positive + False Negative = 1 - recall;

Fig. 5: Rejection Rate, Polutin Rate, Loss Rate;

4 ​Applying DQM system to 2010 data of CMS
In this section, we describe the different steps taken to apply the Yandex classification
algorithm to the 2010 CMS data: loading data, extraction features, merging data,
applying learning algorithm, testing data and analyzing of ROC Curves.

4.1 Loading data
First of all, we imported JSON files contained link of data, which represented root files.
Data are loaded from root files, by running the sketch load.py, which have been written in
python. All existed lumi sections, also needed features were read, where branch sizes
were less than considered in respective config files.
This process contains changing data format from “root” to “pickle”, which took about
one week and was one of the limiting factors for the effectiveness of this study. Data
loading commands have the following structure: “data-extraction/bin/load.py <config>
<URL list> <output directory>”. Config files are JSON files, which have been divided

https://indico.cern.ch/event/532992/contributions/2224631/attachments/1303860/1947683/anomaly-detection-yandex.pdf

CERN openlab Summer Student Report 2016

into 2 groups: per_lumisection and per_event. An example of config files with more
details is given below in paragraph 5.

4.2 Features extraction
The piece of code, which is shown below, has written on python and contains the process
of extraction of features. Percentiles were taken as 1, 25, 50, 75, 99 and extracted given
features such as p​T​, η, φ, m, f​x,y,z​.​ Out 9 shows all needed features, which we used.
percentiles ​=​ [​1​, ​25​, ​50​, ​75​, ​99​]
def​ ​extract_features​(block_data, weights ​=​ ​None​):
 n_features_per_column ​=​ ​len​(percentiles) ​+​ ​2
 n ​=​ block_data​.​shape[​1​]
 n_features ​=​ n ​*​ n_features_per_column ​+​ ​2
 result ​=​ np​.​ndarray(shape ​=​ n_features, dtype​=​'float32'​)
 ​for​ j ​in​ ​xrange​(block_data​.​shape[​1​]):
 x ​=​ block_data[:, j]
 offset ​=​ j ​*​ n_features_per_column
 result[offset] ​=​ np​.​mean(x)
 result[offset ​+​ ​1​] ​=​ np​.​std(x)
 ​for​ i, q ​in​ ​enumerate​(percentiles):
 result[offset ​+​ i ​+​ ​2​] ​=​ np​.​percentile(x, q ​=​ q)
 result[​-2​] ​=​ block_data​.​shape[​0​]
 result[​-1​] ​=​ np​.​mean(weights ​>​ ​0.0​)
 ​return​ result

Fig. 7: Features of data

4.3 Data merging
In the process of merging data, we took all features, joined them together and saved
results in files “merged.pickle” as data with pickle format. In addition, extracted labels
and saved them in “labels.npy” file as numpy array data. As conclusion, both of them we
used in the classification of CMS data, which is described in the paragraph 4.4.

CERN openlab Summer Student Report 2016

Fig. 8: Data merging

4.4 Applying learning algorithm

Fig. 9: Classification function

As we said before the system is using Random Forest Classifier. In the Fig. 9 there is
classifier with different number of estimators and the results are different, what we will
see on ROC curves.

4.5 ROC curves
On ROC curves we can quantify the accuracy of the trained algorithm. From the first
figure is shown below, we can see that the true positive rate tends to 1.0, which means
almost all good lumi sections were predicted correctly, also the fact, that the false
positive rate does not depart from 0.0, confirmed the same. As conclusion, accuracy of
classification is taken as 1.00, which means white and black data sets contain correct data
and just little part of them needs decision of experts.

CERN openlab Summer Student Report 2016

Fig. 10: ROC curves, Loss rates, Pollution rates

5 ​Structure of 2016 CMS data ​and future work
To order to apply this strategy to 2016 data, one needs to update the list of features.
This is done editing the config files, taken as input by the Yandex python scripts.
These changes reflect the changes in the collections stored by CMS in their data.
Below you can see the “branches_minibias.config” file of 2010 data.

{

 "per_lumisection" : [

 "EventAuxiliary.id_.run_",

 "EventAuxiliary.id_.luminosityBlock_",

 "EventAuxiliary.time_.timeHigh_",

 "EventAuxiliary.time_.timeLow_",

 "LumiScalerss_scalersRawToDigi__RECO.obj.instantLumi_"

],

 "per_event" : {

 "calo" : {

 "read_each" : 2,

 "batch" : 64,

 "branches" : [

 "recoCaloJets_ak5CaloJets__RECO.obj.pt_",

CERN openlab Summer Student Report 2016

 "recoCaloJets_ak5CaloJets__RECO.obj.eta_",

 "recoCaloJets_ak5CaloJets__RECO.obj.phi_",

 "recoCaloJets_ak5CaloJets__RECO.obj.mass_",

 "recoCaloJets_ak5CaloJets__RECO.obj.vertex_.fCoordinates.fX",

 "recoCaloJets_ak5CaloJets__RECO.obj.vertex_.fCoordinates.fY",

 "recoCaloJets_ak5CaloJets__RECO.obj.vertex_.fCoordinates.fZ"

]

 },

 "photons" : {

 "read_each" : 2,

 "batch" : 32,

 "branches" : [

 "recoPhotons_photons__RECO.obj.pt_",

 "recoPhotons_photons__RECO.obj.eta_",

 "recoPhotons_photons__RECO.obj.phi_",

 "recoPhotons_photons__RECO.obj.vertex_.fCoordinates.fX",

 "recoPhotons_photons__RECO.obj.vertex_.fCoordinates.fY",

 "recoPhotons_photons__RECO.obj.vertex_.fCoordinates.fZ"

]

 },

 "muons" : {

 "read_each" : 2,

 "batch" : 32,

 "branches" : [

 "recoMuons_muons__RECO.obj.pt_",

 "recoMuons_muons__RECO.obj.eta_",

 "recoMuons_muons__RECO.obj.phi_",

 "recoMuons_muons__RECO.obj.mass_",

CERN openlab Summer Student Report 2016

 "recoMuons_muons__RECO.obj.vertex_.fCoordinates.fX",

 "recoMuons_muons__RECO.obj.vertex_.fCoordinates.fY",

 "recoMuons_muons__RECO.obj.vertex_.fCoordinates.fZ"

]

 },

 "PF" : {

 "read_each" : 8,

 "batch" : 1536,

 "branches" : [

 "recoPFCandidates_particleFlow__RECO.obj.pt_",

 "recoPFCandidates_particleFlow__RECO.obj.eta_",

 "recoPFCandidates_particleFlow__RECO.obj.phi_"

]

 }

 }

 }

We also read as input the new data, not from the EOS Open Data repository but from
the private CMS eos area, where the data were temporarily stored for this exercise to
be performed. Attempt to read the data remotely did not succeed. I would like to
mention that some information was mixing, notably the instantaneous luminosity of
the LHC, which serves to equalize the content of different luminosity section. This
raised an issue that the CMS collaboration is now trying to fix.
In the future, once this problem is solved, one could add new features, try other
learning algorithms and change existed classification to multiclass classification for
each bad JSON, which we already created. Main purpose of this is to analyze how
different changes will affect to quality of real CMS data.

