CERN openlab Summer Student Report 2016

Data Quality Monitoring at
CMS with Machine
Learning

July-August 2016

Author:
Aytaj Aghabayli

Supervisors:
Jean-Roch Vlimant

Maurizio Pierini

CERN openlab Summer Student Report 2016

15 years
CERNopenlab



CERN openlab Summer Student Report 2016

Abstract

The Data Quality Monitoring (DQM) of CMS is a key asset to deliver high-quality data for
physics analysis and it is used both in the online and offline environment. The current
paradigm of the quality assessment is based on the scrutiny of a large number of histograms
by detector experts comparing them with a reference. The project aims at applying recent
progress in Machine Learning techniques to the automation of the DQM scrutiny. We
explored the landscape of existing ML algorithms with particular attention to supervised
problems (for offline DQM) to demonstrate their validity and usefulness on real test cases
using CMS data.



CERN openlab Summer Student Report 2016

Table of Contents

1 Introduction
2 Golden JSON at CMS
3 DQM system of Yandex at CMS
4  Applying DQM system to 2010 data of CMS
4.1 Loading data
4.2 Features extraction
4.3 Data merging
4.4  Applying learning algorithm
4.5 ROC curves
5 Structure of 2016 CMS data and future work




CERN openlab Summer Student Report 2016

1 Introduction

The Data Quality Monitoring (DQM) of the Compact Muon Solenoid (CMS) silicon
tracking detectors (Tracker) at the Large Hadron Collider (LHC) at CERN is a software
based system designed to monitor the detector and reconstruction performance, to
identify problems and to certify the collected data for physics analysis. Its flexibility
allowed its integration in two environments: online, for real-time detector monitoring;
offline, for the final, fine-grained data certification. Online, DQM is designed to detect
real-time response immediately, to analyze any problem and solve it quickly in order to
registrate as much good-quality data as possible. Unlike online DQM, offline DQM can
additionally rely on high-level quantities, derived during the CPU-expensive event
reconstruction (performed in the CMS TO, hosted in the CERN computing center).

To turn the DQM into an automatic system, we reformulated the problem in terms of
defining the optimal binary classification algorithm to separate good and bad portions of
the data. This is done considering a dataset in which each entry is a luminosity section,
the smallest quantum of CMS data, consisting of about 23 seconds of recorded collisions.
To train the algorithm, we separate the available data according to the decision taken by
experts (the human-based DQM currently in use by CMS). We then train an algorithm to
replicate this decision.

2 Golden JSON at CMS

The CMS offline data certification process results in a file with the list of good
luminosity sections, written in JSON format and usually referred to as "the golden json".
An example of golden json file is shown in Fig. 1.

{r2m31s8": M1, 127810, "273382": [[1, 45911, "273462": [[100, 29211, "273d403": [[1, 5311, "27348d4": [[1, 1811, "273405": [[2, 2511, '2734e6": [[1, 11211, "273408": [[1,
611, "273489": [[1, 30911, "27341": [[1, 9011, "273411"; [[1, 2911, "273425": [[62, 3521, [354, 73311, "27344d": [[1, 3311, "273847": [I1, 1031, [115, 41211, "273448":
(1, 39110, "273449": [[1, 21411, "273450"; [[1, 214], [219, 64711, "273492": [[71, 711, [73, 2621, [284, 3251, [327, 33811, "273493": [I1, 2331, "2734%4": [[1, 1921,
"273502": (73, 2561, (258, 3181, [320, 8131, [B15, 106411, "273503": [[1, 59811, "273554": [[77, 43711, "273555": [[1, 17311, "273725": [[83, 2521, (254, 254511, "273728":
[[1, 10011, "273730": [[1, 1814], [1820, 212611, "274604": [[165, 33211, "274146": [[1, 6711, "274159": [[1, 4311, "274260": [[1, 26711, "274161": [[1, 51611, *274172":
(31, 9511, "274198": [[81, 1911, "274199": [[1, 62311, "274280": [[1, 678]1, "274240": [[1, 48], [42, 8211, "274241": [[1, 296], [298, 1152], [1181, 1176]], "274044":
[[1, 66711, "274258%; [[1, 1881, (199, 2281, (230, 2091, (301, 365], [307, 308], [311, 313], [315, 3261, (328, 3281, (330, 3351, [337, 33711, "2mdas1™: (11, 54611,
274283 (12, 1911, “274284": [11, 20011, "274286": [[1, 154]], *274304": (197, 97], [99, 18], "274315": [[1, 3751, (377, 44]], "204316": [[1, 98911, "27417": (1,
311, "274319": (11, 22511, "274335": [[66, 06311, "274336": [[1, 1411, "274337": [[3, 1711, "274338": [[1, 69811, "274339": [[1, 291, (31, 311, (33, 331, [35, 9311,
A3 (11, 63211, "27434s": (01, 17011, "274382": (194, 14411, "274387": [[88, 43011, "274388": [[1, 17381, (1732, 182011, "274426": [[94, 26811, "274421": [[1, 34211}

Fig. 1: example of a golden json file.

The general format of a CMS json file is:



CERN openlab Summer Student Report 2016

{"Run Number":[Lumi range, Lumi range, Lumi range, ...],

"Run Number":[Lumi range, Lumi range, Lumi range, ...],

)

The data collected by CMS are separated into different datasets, based on the output of

the online trigger filter.

Index of /cms-service-dgm/CAF/certification/Collisions10/7TeV/Reprocessing

=
o
=
o

Last modified Size Description

Parent Directory -
Cert_132440-13353]1 7TeVW_MinimumBias_Apr20ReReco_Collisions10 CMSSWConfig.txt 07-May-2010 18:50 2.8K
Cert_132440-133531 7TeV_MinimumBias_Apr2eReReco_Collisionsl® CMSSWConfig v2.txt 12-May-201@ 22:43 2.8K

-

Cert _132440-133531 7TeV MinimumBias_Apr20ReReco_Collisionsl@ JSON.txt 07-May-2010 18:50 1.0K
Cert_132440-133531 7TeV MinimumBias_Apr2@ReReco_Collisions10 JSON_v2.txt 12-May-2010 22:41 824
Cert 132440-134725 7TeV MinimumBias May6ReReco Collisions1@ CMSSwConfig.txt 18-May-2010 18:87 3.3K
Cert_132440-134725 7TeV MinimumBias_May6ReReco Collisions18®_JSON.txt 18-May-2010 18:07 1.3K
Cert 132440-136119 FTeV May27thReReco Collisions1® CMSSwConfig.txt 17-Jun-2810 28:33 6.0K
Cert 132440-136119 JTeV May27thReReco Collisions1® JSON.txt 17-Jun-2010 20:33 2.7K
Cert_132440-137028 7JTeV_June9thReReco_Collisions1®_CMSSWConfig.txt 089-Jul-2010 18:54 6.8K
Cert 132448-137028 7TeV_June9thReReco Collisionsl® CMSSWConfig v2.txt 16-Jul-2016 108:22 6.7K
Cert _132440-137028 7TeV_June9thReReco Collisions1® JSOM. txt ©99-Jul-2010 18:54 3.1K
Cert_132440-137028 7TeV_June9thReReco Collisionsl® JSON w2.txt 16-Jul-2010 18:22 3.0K
Cert 132440-137028 7TeV_JuneldthReReco Collisions1® CMSSWConfig.txt 02-Jul-2010 19:02 6.8K
Cert_132440-137028 7TeV_JuneldthReReco Collisionsl_CMSSWConfig _w2.txt 16-Jul-2010 18:03 6.7K
Cert_132440-137028 JTeV_JuneldthReReco_Collisionsl@_JSON.txt 02-Jul-201@ 19:82 3.1K
Cert_132440-137028 7TeV¥_JuneldthReReco_Collisions10 JSON w2.txt 16-Jul-2010 18:83 3.0K
Cert_132440-144114 7TeV_Sepl7ReReco Collisionsl@_CMSSWConfig.txt 11-Nov-2818 15:53 14K
Cert 132440-144114 JTeV SepliReReco Collisionsl® CMSSWConfig MuonPhys.txt 23-Nov-2018 18:59 15K
Cert_132440-144114 7TeV_Sepl7ReReco_Collisions1@_CMSSWConfig v2.txt 22-Nov-2010 17:48 15K
Cert_132440-144114 7TeV_SepliReReco Collisionsl® JSON.txt 11-Nov-2810 15:53 8.0K
Cert _132440-144114 7TeV_SeplReReco Collisions18 JSON MuonPhys.txt 23-Nov-2010 18:58 8.8K
Cert_132440-144114 FTeV_Sepl7ReReco Collisions1@ JSON v2.txt 22-Nov-2010 17:48 8.8K
Cert 136833-149442 7TeV Apr2lReReco Collisions1® CMSSWConfig.txt 25-May-2011 14:52 15K
=] Cert 136833-149442 7TeV Apr2lReReco Collisions1@ JSON MuonPhys v2.txt ©82-Jun-2813 06:086 8.7K
Cert 136033-149442 7TeV Apr21ReReco Collisionsl® JSON v2.ixt ©82-Jun-2013 06:06 B.7K
Cert 136033-149442 7TeV Dec2?ReReco Collisions1@ CMSSWConfig.txt 25-Jan-2011 15:33 15K
Cert _136033-149442 7TeV Dec22ReReco Collisionsl® CMSSWConfig MuonPhys.txt 25-Jan-2011 15:31 14K
Cert 136033-149442 7TeV Dec22ReReco Collisionsl@ CMSSWConfig MuonPhys v2.txt 28-Jan-2011 18:37 14K
Cert_136033-149442 JTeV Dec22ReReco Collisions1@ CMSSWConfig MuonPhys v3.txt 089-Feb-2011 15:00 15K
Cert 136033-149442 7TeV Dec22ReReco Collisionsl® CMSSWConfig MuonPhys v4.txt 21-Mar-2011 16:31 15K
Cert_136833-149442 7TeV Dec2?ReReco Collisions18 CMSSWConfig w2.txt 28-Jan-2011 18:30 15K
Cert_136033-149442 JTeV_Dec22ReReco_Collisionsl@_CMSSWConfig v3.txt 089-Feb-2011 14:52 15K
Cert 136033-149442 7TeV Dec22ReReco Collisionsl@ CMSSWConfig v4.txt 21-Mar-2011 16:29 15K
Cert_136033-149442 JTeV Dec22ReReco Collisions1@_JSON.txt 25-Jan-2011 15:33 8.7K
Cert_136033-149442 7TeV_Dec22ReReco Collisionsl@® JSON_MuonPhys.txt 25-Jan-2011 15:31 8.8K
Cert _136033-149442 7TeV Dec2?ReReco Collisions1@ JSON MuonPhys v2.txt 28-Jan-2011 18:37 8.8K
Cert_136033-149442 7TeV Dec22ReReco Collisions1@ JSON_MuonPhys v3.txt ©89-Feb-2011 15:00 8.8K
Cert 136033-149442 7TeV Dec22ReReco Collisionsl® JSON MuonPhys v4.txt 21-Mar-2011 16:31 B8.8K
Cert_1360633-149442 JTeV_Dec22ReReco_Collisions1@ JSON_v2.txt 28-]an-2011 18:30 8.7K
Cert_136033-149442 JTeV_Dec22ReReco Collisionsl® JSON_v3.txt 09-Feb-2011 14:52 8.7K
Cert 136033-149442 7TeV Dec22ReReco Collisionsl0® JSON v4.ixt 21-Mar-2011 16:29 8.7K
Cert_136033-149442 7TeV_Nov4ReReco Collisions1®_CMSSWConfig. txt 22-Nov-2010 17:38 15K
Cert 136033-149442 7TeV Nov4ReReco Collisions1® CMSSWConfig MuonPhys.txt 23-Nov-2010 18:53 15K
Cert_136033-149442 7TeV_MNov4ReReco Collisionsl@_CMSSWConfig MuonPhys v2.txt 21-Mar-2011 17:29 15K
Cert_136033-149442 JTeV_Nov4ReReco Collisionsl® CMSSWConfig w2.txt 21-Mar-2011 17:18 15K
Cert 136033-149442 7TeV Nov4ReReco Collisions1® JSON.ixt 22-Nov-2010 17:38 8.7K
Cert_136033-149442 7TeV_MNov4ReReco Collisions1®_JSON_MuonPhys.txt 23-Nov-2010 18:54 8.8K
Cert 136033-149442 JTeV Nov4ReReco Collisions1® JSON MuonPhys v2.ixt 21-Mar-2011 17:29 B8.8K
Cert_136033-149442 7TeV_Nov4ReReco_Collisionsl8_JSON_v2.txt 21-Mar-2011 17:18 8.7K
Cert_139779-146159 7TeV_Julyl6thReReco_Collisionsl@_COMSSWConfig.txt 17-Jul-2010@ 16:39 2.1K
Cert 139779-146159 7TeV Julyl6thReReco Collisionsl8 JSON.txt 17-Jul-2010 16:39 744




CERN openlab Summer Student Report 2016

Fig. 2: List of JSON files
A data tier may contain multiple data formats, as mentioned below for reconstructed data

(See Fig. 3).

: ‘ Electrons H Photons ‘

‘ KtJets ‘ ‘ ConeJets H ‘

1 1 |
I 1
! : ' :
i 1 : : 1 1
I ‘ TracksExtra ‘: I ‘ BasicClusters ‘ ‘ SuperClusters ‘ Eig . AOD
1 1! I |
1
: ‘ TraoksHirs‘ : | ‘ Ceh‘s‘ : : :
P! 1 |
1 ! 1=] 1
1 P ! BT
| i | TrackDigis | : i | EcalDigis | ' 1| HealDigis i
[ Ly |
1 1! I 1
'\ TrackRaw | 1! | EcalRaw 11 | HealRaw 1 RAW
| o | i :
1 .
+ Tracking | E/Gamma il Jets :
i i 1) I

Fig. 3: Data tiers

For our exercise, we used the list of luminosity sections officially listed as good. For the
bad luminosity sections, we created a dedicated list accessing the CMS run registry and
selecting data periods for which any sub detector was excluded for the run. The causes of
the exclusion could be of different kind. This is the most general definition of "bad" that
we could define through code. Yandex team has experienced on the CMS public data, so
that my task was to apply, what they did within CMS.

3 DQM system of Yandex team

The classification problem is that each lumi section can belong to one of 3 groups, which
are ‘white zone’, ‘black zone’ and ‘grey zone’. The DQM system, defined by the Yandex
team, on which we worked, consist of automatized data quality system for the CMS
experiment. This system learns to predict experts’ decisions who labeled data collected
by CMS as “good” and “bad”. The system continuously learns from proficients and leave
only non-trivial cases of data for them. A tunable fraction of the data is classified as good
and bad, the acceptable mislabeling rate being a tunable parameter at training time. The
unlabeled data are then returned to experts for scrutiny. While this formulation does not
remove the need of a human operator, it strongly reduce the amount of work required. It
is easy to train very accurate classifiers while keeping the fraction of unlabeled data
below 50%. The algorithm, used by the Yandex, team is a supervised algorithm
consisting of a Random Forest classifier. Three datasets are taken as input: Minimum
Bias, Muon, Photon streams. For each dataset, a specific list of features is used. For the
main particles in the dataset (e.g., muons for the muon dataset) p;, 1, ¢, m, £ _ , and

> XY,z



CERN openlab Summer Student Report 2016

additional are total momentum, number of events, etc. From the distribution of this
quantities, quantiles at 0, 0.25, 0.5, 0.75, 1 + mean + sigma are extracted.

" expert O\

automatic = = deciS-anJ .
decision i
0 Cut “bad” Cut “good” 1

Fig. 4: DOM system classification principle;

More information can be found here
https://indico.cern.ch/event/532992/contributions/222463 1 /attachments/1303860/1947683/anomaly-detection-vandex.pdf .

We consider the following quantities:
Rejection Rate = Rejected / Positive + Negative + Rejected;
Pollution Rate = False Positive / True Positive + False Positive = 1 - precision;

Loss Rate = False Negative / True Positive + False Negative = 1 - recall;

Rejection Rate 0.8 i Pollution Rate

i 0.7
|
08 i 08
0.6
o 0.5 e
|
0.4 8
5
04 i o3 0.4
i J
il 0.2
0.2 0.2
| 0.1
= 0.0

10 02 0.4 0.6 08 10
Cut "good* Cut "good”

Loss Rate

03310, 0.8803

2842 0.7336

02278 0.5869

Cut "bad”
Cut "bad

0:3205, 0.4403

0.1137 0.2936

0.0568 0.1469

0.0000 0.0002

Fig. 5: Rejection Rate, Polutin Rate, Loss Rate;

4 Applying DQM system to 2010 data of CMS

In this section, we describe the different steps taken to apply the Yandex classification
algorithm to the 2010 CMS data: loading data, extraction features, merging data,
applying learning algorithm, testing data and analyzing of ROC Curves.

4.1 Loading data

First of all, we imported JSON files contained link of data, which represented root files.
Data are loaded from root files, by running the sketch load.py, which have been written in
python. All existed lumi sections, also needed features were read, where branch sizes
were less than considered in respective config files.

This process contains changing data format from “root” to “pickle”, which took about
one week and was one of the limiting factors for the effectiveness of this study. Data
loading commands have the following structure: “data-extraction/bin/load.py <config>
<URL list> <output directory>". Config files are JSON files, which have been divided


https://indico.cern.ch/event/532992/contributions/2224631/attachments/1303860/1947683/anomaly-detection-yandex.pdf

CERN openlab Summer Student Report 2016

into 2 groups: per lumisection and per_event. An example of config files with more
details is given below in paragraph 5.

4.2 Features extraction

The piece of code, which is shown below, has written on python and contains the process
of extraction of features. Percentiles were taken as 1, 25, 50, 75, 99 and extracted given
features such as p;, 1, @, m, f___. Out 9 shows all needed features, which we used.

X,y,z*
percentiles = [1, 25, 50, 75, 99]
def extract features(block data, weights = None):
n_features per column = len(percentiles) + 2
n = block data.shape[1]
n_features =n * n_features per column + 2
result = np.ndarray(shape = n_features, dtype='float32')
for j in xrange(block data.shape[1]):
x = block datal:, j]
offset =j * n_features_per column
result[offset] = np.mean(x)
result[offset + 1] = np.std(x)
for i, q in enumerate(percentiles):
result[offset + 1 + 2] = np.percentile(x, q = q)
result[-2] = block data.shape[0]
result[-1] = np.mean(weights > 0.0)
return result

In [8]: with open(data_files['muons'][@], 'r') as f:
import cPickle as pickle
df = pickle.load(f)
d = group by lumi map({df, extract features, get feature names, weight column='instantLumi ")

In [9]: d

Out[9]: PF_Px_mean |PF_Px_std |PF_Px_p1 |PF_Px_p25|PF_Px_p50|PF_Px_p75 PF_Px_p99 PF_Py mean |PF_Py std |PF_

0.016587 5566961 |(-15.490458 |-2.461476 |0.080778 |2.231963 |15.396275 |-0.144609 3.501009 |-10.

0.041701 5952976 |(-14.936056 |-2.248693 |0.028245 |2.162389 |18.130831 |-0.246512 3.486799 |-10

-0.268982 6.343867 |-21.439753 |-2.537246 |-0.056034 |2.326667 |15.797176 |-0.303397 3.277447 |-94

0.657939 6.687335 |[-14.726583 |-1.872376 |0.234515 |2.550721 |26.616590 |-0.004989 3.626891 |-9.C

-0.020756 7.298374 |-17.165285|-2.354466 |-0.089530 |2.120409 |17.338858 |-0.398925 3.105963 |-9.1

0

1

2

3

410.246321 5511532 |-13.665376|-2.141167 |0.155575 |2.240264 |17.127756 |-0.202404 3.701674 |-10.
5

6-0.159594 6.585812 |-17.551569 |-2.183115 |-0.085770 |1.871124 |16.947123 |-0.229837 3.864945 |-9.2
7

0.131800 5585125 |(-16.232183|-2.032980 |0.110132 |2.448308 |15.451523 |-0.459735 2920705 |-9.4

8 rows x 901 columns

Fig. 7: Features of data
4.3 Data merging

In the process of merging data, we took all features, joined them together and saved
results in files “merged.pickle” as data with pickle format. In addition, extracted labels
and saved them in “labels.npy” file as numpy array data. As conclusion, both of them we
used in the classification of CMS data, which is described in the paragraph 4.4.



CERN openlab Summer Student Report 2016

In [31]:

In [32]:
out[32]:

In [33]:

merged.to_pickle('/mnt/cms/version2/merged.pickle’)

np.mean(labels)

6.54615196078431372

np.save('/mnt/cms/version2/labels', labels)

Fig. 8: Data merging

4.4 Applying learning algorithm

In [9]:

In [18]:

In [11]:

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=64, min_samples leaf=18, n_jobs=-1, random state=77
77)

build predictions(clf, X, y, n_folds=5)
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=64, min_samples_leaf=18, n_jobs=-1, random_state=77
77)

build_predictions(clf, X, y, n_folds=10)
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=96, min_samples leaf=108, n_jobs=-1, random state=77
FE)

build predictions(clf, X, y, n_folds=18)

Fig. 9: Classification function

As we said before the system is using Random Forest Classifier. In the Fig. 9 there is
classifier with different number of estimators and the results are different, what we will
see on ROC curves.

4.5 ROC curves

On ROC curves we can quantify the accuracy of the trained algorithm. From the first

figure is

shown below, we can see that the true positive rate tends to 1.0, which means

almost all good lumi sections were predicted correctly, also the fact, that the false
positive rate does not depart from 0.0, confirmed the same. As conclusion, accuracy of
classification is taken as 1.00, which means white and black data sets contain correct data
and just little part of them needs decision of experts.



CERN openlab Summer Student Report

Pollution-Loss curve

2016

Pollution/Loss rates

ROC curve
10 - T 10 10 -
(— .7 — pollution rate
-
— loss rate
08 . 08| 08 [ 1
-
u ¢ |
g 06 // 0.6 0.6 |
2 | . £ ' I
:g - f & |
o # n e |
£ o4l 7 & 0s} 04} a
£ ’ }J
= L |
s !
02k -’ 1 DZI 8 0.2 /A
.
.
- — AUC=1.00 — AUC=025 _/
00 I I 1 1 00 L\— I 1 1 00 —
0.0 0.2 04 0.6 08 10 0.0 0.2 04 0.6 08 140 0.0 02 0.4 0.6 0.8 10
False Positive Rate Pollution Rate threshold

Fig. 10: ROC curves, Loss rates, Pollution rates

5 Structure of 2016 CMS data and future work

To order to apply this strategy to 2016 data, one needs to update the list of features.
This is done editing the config files, taken as input by the Yandex python scripts.
These changes reflect the changes in the collections stored by CMS in their data.
Below you can see the “branches minibias.config” file of 2010 data.

{

"per_lumisection" : [

"EventAuxiliary.id_.run_",

"EventAuxiliary.id_.luminosityBlock_",

"EventAuxiliary.time_.timeHigh_",

"EventAuxiliary.time_.timeLow_",

"LumiScalerss_scalersRawToDigi_ RECO.obj.instantLumi_

LI

"per_event" : {
"calo" : {
"read_each" : 2,
"batch" : 64,

"branches" : [

"recoCaloJets_ak5CaloJets___RECO.obj.pt_",



CERN openlab Summer Student Report 2016

"recoCaloJets_ak5Calolets_ RECO.obj.eta_",
"recoCalolets_ak5CaloJets__RECO.obj.phi_",
"recoCaloJets_ak5Calolets_ RECO.obj.mass_",
"recoCaloJets_ak5CaloJets__ RECO.obj.vertex_.fCoordinates.fX",
"recoCaloJets_ak5Calolets_ RECO.obj.vertex_.fCoordinates.fY",

"recoCalolets_ak5CaloJets__RECO.obj.vertex_.fCoordinates.fZ"

et

"photons" : {

"read_each" : 2,

"batch" : 32,

"branches" : [
"recoPhotons_photons__RECO.obj.pt_",
"recoPhotons_photons__ RECO.obj.eta_",
"recoPhotons_photons__RECO.obj.phi_",
"recoPhotons_photons__ RECO.obj.vertex_.fCoordinates.fX",
"recoPhotons_photons__RECO.obj.vertex_.fCoordinates.fY",

"recoPhotons_photons__ RECO.obj.vertex_.fCoordinates.fZ"

e

"muons" : {

"read_each" : 2,

"batch" : 32,

"branches" : [
"recoMuons_muons__RECO.obj.pt_",
"recoMuons_muons__RECO.obj.eta_",
"recoMuons_muons__RECO.obj.phi_",

"recoMuons_muons__RECO.obj.mass_",



CERN openlab Summer Student Report

"recoMuons_muons__RECO.obj.vertex_.fCoordinates.fX",
"recoMuons_muons__RECO.obj.vertex_.fCoordinates.fY",

"recoMuons_muons__RECO.obj.vertex_.fCoordinates.fZ"

e

"PF" : {
"read_each" : 8,
"batch" : 1536,
"branches" : [
"recoPFCandidates_particleFlow__ RECO.obj.pt_",
"recoPFCandidates_particleFlow__RECO.obj.eta_",

"recoPFCandidates_particleFlow___RECO.obj.phi_"

b
b

We also read as input the new data, not from the EOS Open Data repository but from
the private CMS eos area, where the data were temporarily stored for this exercise to
be performed. Attempt to read the data remotely did not succeed. I would like to

2016

mention that some information was mixing, notably the instantaneous luminosity of

the LHC, which serves to equalize the content of different luminosity section. This

raised an issue that the CMS collaboration is now trying to fix.

In the future, once this problem is solved, one could add new features, try other

learning algorithms and change existed classification to multiclass classification for
each bad JSON, which we already created. Main purpose of this is to analyze how

different changes will affect to quality of real CMS data.



