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Nutes on the Tkeory of Automorphic Functions (continued). By
A. C. Dixon. Received March 7th, 1900. Read March 8th,
1900. Received, in rovised forin, November 1st, 1900.

The present paper is supplementary to one published {n the
Society's Proceedings (Vol. xxx1., pp. 297-314), the object of which was
to derive the fundamentnl theorems in Ricmann’s theory of the
Abelian integrals from the propertics of Poincard’s theta-Fuchsian
series. 1t appenred to me that, if our knowledge of the properties of
those scries were complete, we should be able to .deduce these
theorems from them. At one point (pp. 307, 308) 1 had to fall back
on the older methods to cover a want of rigour in the argument, and
my purpose now is to supply this defect.

The resnlts to be proved are numerical ; there ave three nnmbers
involved :—

2, where p+1 is the least number of poles.arbitrarily nssigned that
a I'achsian function can have, if it is to have no more ;

q1» the number of Abelian integrals of the first kind, or of theta-
Fuchsian functions of index 1 without poles ;

¢, the number of irreducible closed eirenits on the closed surface
formed from the polygon by fastening together corvesponding
sides. *

It is to be shown that p = ¢, = 39.

§§ 1-13 are tuken up in proving that p $¢,. IForthis it is necessary
to discuss the formation, by meuns of Poincard’s series, of theta-
Kuchisian and Fuchsian functions with assigned poles. Particular con-
sideration has to be given to the case when poles nre assigned at the
vertices of the pulygon, and account has to be tuken of the specinl
conventions as to the ovders of poles and zeroes at these points. The
proof would be incompletle if these puints were excluded from its
scope.

The next vesult (§ 14) is that q, € y—p; this was established iu
my former paper.

In §§ 15-19 the well known bilincar relation connecting the moduli

* Tu my former paper this number was denoted by .
YOL. XXX1L.—N0, 782, 2a
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of periodicity of two Abelian integrals of the first kind is used to
show that 2¢,%g. The rclation is proved in §§ 15, 16, and in
§§17, 18 it is rednced to the ordinary canonical form which is con-
venient for the argument of § 19.

The results p = ¢, = %g are thus established.

§ 20 deals with Poincaré’s theorem that all theta-Fuchsian functions
of integral index >1 can be expressed by means of his series.

The paper is concerned almost altogether with functions of the
first, 'second, and sixth families. The circular boundary of the
fanctions is generally taken to have centre 0, yadius 1.

1. Let ¢,(z, y) denote the function

()

where ¢ denotes one of the substitutions of a Fuchsian group of the
livst, second, or sixth family, and the summation extends to all sub-
stitutions of the group (compare Acta Math., Vol. 1., p. 242).
Suppose that

=B

Ty +d’

and that for the diffevent substitutions of the groups, e, B8, v, 8 are
distinguished by suflixes. The index m is taken to be un integer
greater than 1.

Then, giving y a tixed value ¢, we have for any substitution s, of
the group

Pu (8,2, 0) = }:__,_1__ (tlo_'q)"‘

s,z—sc \dc

s . (d.l_s)“
§i5—85¢ \ do

(by rearrangement of the terms)

30 o (s e

2 (7,548) S Lo (a0 48) ! (&)
S de
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1-m
Thus g (35, ©) (4F) =g 210)

dz
=3 () @)

= Cy+ U124+ 02+ ... + Coy 0273,
where the coelficients (! are theta-Fuchsian functions of ¢ of index m,
and without poles. Lt g, be the number of linearly independent
theta-Fuchsian functions of index m, without poles, whether ex-
pressible as theta-luchsian series or not. Let 6"} denote one of
these functions, » being one of the numbers 1,2, ..., q.. Then, if any
qu+1 values ¢, ¢, ..., ¢y wre taken within the fundamental
polygon, it is possible to choose coeflicients A,, 4y, ..., 4,4, 80 that
Vi *

1
S A6 (c)=0 (r=1,2 ..., q.).

ie
. . . 1, (2,
Now C, Cy, ..., Cu, ., ure linenr combinations of ¢y (), 6 (¢), .

T+l ’I\, o\ =1 Tt
Thus 3 AnGine) = (TF)T S g ().
ial tal-

dz
This holds when s, is any substitution of the group, and therefore
Gt

'El l"i¢m (':’ G‘)
is

is a theta-Fuchsian function of z of negative index 1—m having
qu+1 arbiteary poles ¢, ¢, ..., ¢, 010 and no others.*

2. By means of the derivutives of the function ¢u (2, €) theta-
uchsian functions of negative index with given multiple poles may

. o0
be constructed, since Ao ¢ (3, ¢) has a pole at ¢ of order a+1, and
. et
since

o o fdss\t oo
5;. ‘Pm (sl“? (') ( s ) - aa" P ("y C)
_w

= .’5'.' +z f"i'("! F .o ot d’“_("'_-’:“_:;':' .
de

det de

If, for ingtance, there is to be n donble pole at ¢ and a simple one

* Compare Lete Hath., Vol. 1., pp. 215, 246,
2 A2
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at each of the other points ¢, ¢, ..., ¢,,, we must choose coefficients
or residues 4,, B, 4,, ..., 4, so that

(v)
B % (‘1)+ EAG"’(c) =0 (r=1,2 ... q),
and then the function

Tm

B, »E—)- o (2, 0+ = Ao (5, ¢)
ac, i=l

will be a theta-Fuchsian function of z of index 1—m having its poles

as desired.

For & multiple pole of order a at ¢, we must use the values when
y =c of ¢ (2, ) and its tirst a—1 derivatives with respect to y, or,
in other words, the first a coefticients in the expansion of ¢, (z, ) in
nscending powers of 3 —c.

In this way a theta-Fuchsian function of index 1—m can be con-
structed with poles arbitrarily assigned, if the sum of the orders of
multiplicity of these poles is ¢,+1. The g,, + 1 residues must satisfy
¢» homogeneous linear equations, so that in general their ratios will
be determinate and the function will be defined save as to a constant
factor. If the g, equations ave not all independent, there will be two
or more functions of index 1—m with the assigned poles.

In particular cases one or more of the residues may come out with
the value zero, so that some of the assigned poles may disappear or
be of lower orders than were assigned.

Hence, if poles within the polygon are arbitrarily assigned, the sum
of whose orders of multiplicity vs q,,+1, at least ome thela-'uchsian
SJunction of megalive tndex 1 —m cun be constructed, having no poles other
than those assigned, and having mone of the wssigned poles to a higher
ovder than the assigned arder.

I shall call this LPotnucaré’s negalive construction.

4. Again, if z is supposed fixed within the polygon, ¢, (z, ¥) is n
theta-Fuchsian function of y of positive index m, und it has a simple
pole at z and no other within the polygon. The derivatives of
b (2, y) with respect to 5 or the functions

B __L _ ((ls‘l/ )'”
(z—sy)°

where a i3 o positive integer, are theta-Fuchsinn functions of y of

index m, having multiple poles at z.
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By menns of these, thetu- Puchsian functions of positive indexm (> 1)
can be constructed with arbitrary poles within the polygon of any orders
and with arbitrary rvesidues. When the poles and their orders arve
tixed, the number of arbitrary constant coefficients in such a function
i8 ¢,,+ the sum of the orders of the poles, for g,, is the number of
such fanctions without poles.

This may be called Poincare’s positive construction. In it we use
the coeflicients in a Taylor expansion of ¢, (s, y) considered as n
function of z.

5. Both counstructions need special investigation when one of the
assigned poles is at o vertex of the polygon. Let ¢ be this vertex,
2r/A the sum of the ungles of the eycle to which it belongs, ¢' the
inverse of ¢ with respect to the fundamental circle.

Then we must discuss the behaviour of ¢, (2, %) when y or =
approaches c. Now ¢, (z, ) is a theta-Fuchsian function of y of index
m, and thus

b (5 ) (y—e)" (y—c' )™

is a uniform function of (ng:i)" (Acte Math., Vol. 1., p. 218).
[d

vy —
Let Y= =y, 7=y,
y—c —C
then it follows that
b (2, ) = (L=0)"n"" ¢ (&, 7),
where ¢ denotes a uniform function.

. N . 1 o s
Siuce ¢, (z, ) containg a term -->~, ¢ must be infinite when
=y

7 = &, and must, in fact, hehave like
A (/]__C)'.":!m Znom—l

c—c¢ -
in the neighbourhood of this value of . ''hus ¢,, (2, ) behaves like

A

‘s
¢—cC

':, a2 r’nx-m cx-au-m-l
(L (g T2 ST

where a is any integer. Now ¢,, (2, ) does not beeome infinite when
z or y alone approaches ¢, and hence, if a is such that neither aX-—-m.
nor A—ad+m—1I ix negative, we have here an expression from which
o (5, y) will dilfer by a finite quantity when z or y approaches ¢, or
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when both appronch ¢. The necessary value of a is {ﬁ } +1,
where {x} denotes the integer next below . A

Now for the negative construction we take the succcssive co-
efficients in a Taylor expansion of ¢,, (2, y) as & function of y. Here
there is an expansion of the form

&n (2, y) = (L—y)2 p>-" [Z°+7"Z|+7)2‘\Z,+ ]’
and the functions thus available are
iy Ty gy ...

It is seen at once that these are equivalent to the series of derivatives
of ¢, (2, y) with respect to ¥ when v = ¢, bnt that in the series of
devivatives A—1 out of every consecutive A are nseless for our purpose,
being either identically zcro or else linenr combinations of lower
dervivatives.
For a small value of { the function Z, behaves like
A

c_c’ C\—nnn-l—mol)x (] __C)!—‘.’m,

and so appears to have a pole of ovder
- (at+n)A—m+1.

But, according to convention, this order must be divided by A, as the
pole is to be shared among all the polygons which meet in ¢. Thus
the order is

n
atn— N

in any one polygon; allowance is made in this number for all the
vertices of the cycle to which ¢ belongs.

Now the only orders that a pole at these vertices can have for
theta-Kuchsian function of index 1—m (Acta Math., Vol. 1, p. 218)
are the numbers

atn— "-'1;-11 (n=01,2 ..),

where a=1+ { .f’;_\"_ 2 .

Hence, by means of the functions Z,, %,, Z,, ..., the negutive con-
struction iy still possible when one of the assigned poles is at c. The
order assigned to this pole must be “ admissible,” that is, it -must he
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one of the numbers a4+ 2 — Wf;— The functions used in construct-

ing a function with a pole of admissible order % at ¢ will be
ZO! Zlv eery Z{]Lln

and others that are finite at ¢. Thus the number of residues at ¢
is {h} +1. It will be convenient to call this the “rank” of the
pole. 'I'he rank is the snme as the order when the order is integral;
otherwise the rank is the integer next above the order.

6. For the positive construction in this case we must take the
cocflicients in the expansion of ¢, (z, %) in ascending powers of £.
Suppose
b (2 y) = (L= 0> [ Y+ YL+ T8+ ... ]

Then it is seen from the above work that the first of the series
Y,, Y,, Y,, ... which becomes infinite when 5 =0.is

YA- axem -1y
and that this behaves like b;-'l—c n

T'he first that is infinite to a higher order than this is

Y'zx ~ax+m=1y

. . A
and this containg a term —~—n~>, and so on.

The infinite terms that occur ave multiples of n*, n~®, n~®, ...
P N n B

and a term in »~™ oceurs first in Yoy avem-1-
Hence the functions available for the positive construction are

the coeflicients of
CA-nlbm—l c.‘x»lxnn-l
y s ees

in the expansion of ¢, (2, y) in ascending powers of {. 'I'hese have
poles at ¢ of the orders

»

; —a+1, %——a+2, cery
the order being in each case the index of 5 * in the most important
term ; these are the only adinissible orders for a pole. "The ranks
are 1, 2, 3, ..., vespectively. It will be substantially the same
thing to use the series

U WL/ L PR
3 oy (g ) m=123 ).
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7. When & proposed pole is at a vertex ¢ which lies on the circular
boundary there are special difficulties, since this point is an essential
singularity of the functions.

The polygon may be altered, without affecting the group, so that ¢
shall form a cycle by itself. Suppose this done ; then the substitution
by which one of the sides that meet in ¢ is changed into the other
must be parabolic; for, if it were hyperbolic, the vertex ¢ could be
abolished, and the polygon would have as a side part of the funda-
mental circle; so that the functions would no longer have the
circular boundary.* Let ¢ be this parabolic substitution, its actual

* On this puint seo Klein's paper (Math. dun., Vol. xL., pp. 130-139). The
conclusion is that an automorphic group may quite well be gencrated by a polygon
with a hyperbolic cycle, but that as a fundamental region this polygon is incom-
plete. Parts of the area within which the corresponding functions exist are not
represented on the polygon, that is, cannot be brought. into the polygon by any of
the operations of the group.

Take, for instance, a Fuchsian group of real aubstitutions generated by a polygon,
two of whose corresponding sides OF, OG touch at the origin 0, F, G being
collinear with 0, as shown. The substitution that turns 0G into OF ig of the form

H K

¢ = kz, where k is real and > 1. Through F, @ describe two circular arcs cutting
the real axis orthogonally in two points 77, K to the left of 0, such that OH = £.0AK.
Then the group is unaltered if wo add to the polygon the half-meniscus OFH and
take awny UG K. :

Now it is clear that any point between OF and the imaginary axis is represented
in the old fundamentnl polygon by a point in the curvilinear triangle OFG, and
that therefore no point on the left of the imaginary axis is represented in the old
polygon at all. Poincaré originally concluded from this that the imaginary axis
was a netural boundary to the functions gencrated ; but this is not the case, for in
the new polygon any point in the second quadrant is represented by & point in the
region bounded by HK, the arcs JIF, KG, and the imuginary axis. Hence the
functions exist in the whole spuce nbove the real axis, und, moreover, can be con-
tinued ncross JIK, so that they exist in all the plane.  In the original polygon the
pert representing the second quadrant had shrunk up into the point 0.
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equation being

where u is real and positive.

Suppose the z-plane transformed by the substitution

¢ = 1 ¢+2

T 2u c—z’

so that the inside of the fundamental circle becomes the half of the
{-plane on the right of the imaginary axis. Let 7, ¢, r correspond
to v, s, ¢, so that

= Loty o Loetsz 1 ctlz g

= .- 2T = = - 2
2u c—y’ 2u c—sz’ 2u c—iz il
dsy _ 4 1 don_ (_1_+_1~’!fzi_)’ do
dy ~ (y—c)* (142uan)? dn ~ \1+2ucqm/ dn’

Now the substitution r gives a division' of the {-half-plane into
strips of breadth 2x parallel to the real axis, and each of these strips
is further divided by the other operations of the group. One polygon
in each strip reaches to infinity, and the sum of the areas of the rest
must, therefore, be finite ; so that the series

s

_’L‘{'}'l m
dn ‘

must be convergent if m €2 and 3’ denotes a summation over those
operations which turn the fundamental polygon into another belong-

ing to the same strip. This follows by Poincaré’s method, since the
3

don

an

arenl magnification is

Also 3 -'l;_,- is & convergent series. Thus the double series

&« 1| doy|”
b Boad)
el = n? | dy

is absolutely convergent, and its sum is the product of the sums of
the former two.

Now let f(n) denote a function of », uniform, finite, and continuous
over the right half-plare and its boundary, and such that

Lt 7 ()
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is finite or zero. Then, since all the points on lie in the right half-
plane, there is & superior limit to the quantities

7 | f (on+2um)], #°|f (en—2n—2ur)|;

and therefore the series

2., 3'f (on +2nur) (%,,)
that is, 2f (on) (%ﬂ ) ""

is absolutely convergent. The convergency is clearly uniform in the
domain of an ordinary value of .

This series represents then a continuons uniform *fnnction of n,
and, in fact, of exp 7, since its value is unaffected by the addition of

2ur ton. As % increases %’ﬂ diminishes without limit, except for
]
the identical substitution, and those of the form r*. Thus when n is

infinite the series reduces to Lt mg f (n+2nem), which is zero if the

ne® fla=—®
real part of » is made infinite. Hence when exp n is infinite the
function

3 en ()

vanishes, and is, in fact, of the same order as exp (—7), or some
integral power of this.

Going back to the variable y, we find that

(gs—!! m (_‘g—c— m “2m 2'40:']'_—.1_) (dd"l) "
EF(Sy)(dy) or y—c) % @pon+1) F(c2p.rrr)+1 dn
represents a theta-Fuchsian function of y, even if the function I (y)
has a pole at ¢, 8o long as the order of the pole is not higher than
2m—2. But this theta-Fuchsian function is zero at ¢ to the same
order as n y+o

—p)=2m e A .
(y c) xp 2/‘ y_c 4
‘where n is some positive integer; n is, in fact, the order of the zero
according to the convention (Acta Math., Vol. 1., pp. 216, 217). Thus
the positive construction in its ordinary form does not succeed. But
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it is now readily seen that

3 exp (1 G_tsy.) (ésy)“

2p c—sy/ \dy

represents a function suitable for the purpose. For this series may
he amxranged in the form
A+ 2up)*™ sy {1+2p (on+2rer) } ™™ expnon (tfioz)) )
re -2 . n

and we may suppose the fundamental polygon in the 7-plane to be
one which reaches to infinity. Then there is a finite superior limit to
{exp non| (except when o is the identical substitution) if » lies in
the fundamental polygon, and hence as » increases indefinitely all
the terms tend to zero in the aggregate except those of the series

(1+2un)* exp ny “2_” }142p (p+2rem) } -2

The sum of these terms is

) moxpry (B (LY 1
(1+2l‘"’)2 expny) ( ) exp (.,7+ Q]'F) -1

1

(2m—1)1\dy

which is infinite with 5 to the same order as

7" exp (n—1) 9,

2m n—1 c+
or (y—oc)"*exp o ;—_—%

Hence the function

sexp (2 oHY (d__sy)

= exp (2/1. c ~-s1) dy
is available for the positive construction. It has a pole at ¢ whose
order is n—1, for, according to vonvention, the order of a pole at ¢
for a theta-Fuchsian function 0, (y) of index m is the exponent of
exp » in the most important part of 8., (y) (y—e)*".

If a pole of order n—1 at ¢ is among those assigned to a theta-

Fuchsian function of index m which is to be constructed, the functions
available, besides those that are finite at ¢, are » in number, namely,

sexp (g ) (P) =12 m,

Hence the rank of such a pole is ». This agrees with the general
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rule that a pole of order 4 is of rank {h}+1if we remember that here
properly the order is infinitesimally greater than n—1, the integer A
of §§ 3, 6 being infinite.

8. The negative construction is somewhat simpler. The expression
¢ (2, ¥)(y—c)* is a uniform function of exp 5, and has a simple
pole when y = z, thatis, when exp 7 = exp{. Thusin the neighbour-
hood of this pole it behaves like

4

exp n— exp_t !

where A=Lt (y”—;_c;’_"_‘ (exp n—exp{)

y=3

c
=— Z(z—c)™%expl
" ) P

Let ¢, (3, ¥)(y—c)* be expanded in descending powers of cxp ».
The successive coeflicients will be functions available for the negative
construction. The coefficient of exp (—nnJ will contain a term

- -:7 (z—=c)™*expn{;

80 that this coefficient has at ¢ a pole of order =, or, rather, infinitesi-
mally below .

It is now easily seen that the rank of a pole at ¢ is equal to the
order in the case of a theta-Fuchsian function of negative index. Ko
the functions infinite at ¢ that may be used in the negative con-
struction when a pole of order » at ¢ is among those assigned ave the
costlicients of exp (—»), exp (—2»), ..., exp (—=n), and are therefore
n in number.

9. The results reached may now be stated as follows:—By the
negative construction ¢ is possible to form a theta-FPuchstan function of
given negative integral index —m, all of whose poles shall be included
among certarn pornts arbibrarily assigned with ranks respectively ot
exceeding certain positive tntegers arbitrarily assigned, whose sum s uol
less than e +1. If this sum is g,,,,+7, then r such functions can
be formed. By the positive construction ¢ vs possible to form a theta-
Fuchsion function of given positive integral index >1 with any yiven
poles, of any wdmissible orders, with any assigned residues.

The rank of a pole of order & is {k}+1, and it must be borne in
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mind that the order of a pole at a vertex lying on the circular
boundary is infinitesimally above or below an integer according as the
index of the function is positive or negative, since the integer X is
infinite for such a vertex. This convention will enable us to use the
same numerical formulm for elliptic and for parabolic vertices,
although the proofs of these formule® may not be the same.

10. With regard to theta-Fachsian functions of index 1, it is to
be noted that none of them can have one simple pole only. This will
now be proved. .

Let 6, (z) be a theta-Fuchsian function of index 1, ¢ one of its poles;
then the corresponding residue is

L'iurcu (z—c) 6,(2).

Any point sc, into which ¢ is transformed by an operation of the
group, is also a pole, and the residue corresponding to sc is

I:Jﬂi'r:x (z—sc) 6,(2),
or I:i_tcn (s2—sc) 6, (sz).
This is the same as the residue at ¢, since
6, (s2) = 0, (2) (‘{;) ”,
Also [ 6,(2)dz taken along two corresponding sides of the generating
polygon gives equal results and, therefore, when it is taken round

the whole perimeter of the polygon, the result is zero; therefore, the
sum of the residues of 8, (z) at all its poles within the polygon is zero.

11. In the interpretation of this result, the residue at a multiple

pole ¢ is, as usual, to be taken as the coefficient of L in the ex-
z—c¢

pansion in ascending powers of z—¢; there are also special con-
ventions relating to the vertices of the polygon when the sum of the
angles in a cycle is not 2r. Take an elliptic cycle in which the sum
of the angles is 2r/A, and suppose the polygon tramsformed, if
necessary, so that the cycle shall consist of a single vertex ¢. The
expansion of 0, (z)(z—¢)(z—c'), where ¢’ is the inverse of ¢ with

respect to the bounding circle, in powers of z—-_—c,, contains only

Z—

sich powers as the hA-th, where & is any whole number.



Mr. A. C. Dixon on the [June 14,

Let f, g be two corresponding points near to
¢ on the two sides that mecet at ¢. Suppose
f, to be joined by an arc; then it will be
necessary to take as the residue of a pole at ¢
the value of

1 (v
- f 8, (2) dz
-t s
taken along this arc, which must be so near ¢ that the triangle fye
does not include any other pole. Since the angle fcg of the polygon
is 2r/A, this residue i8 C + A (¢ ¢'), where ' is the absolute term
in the expansion of 6,(z)(z—c)(z—¢’) in ascending powers of
(s—0)(s—¢).
Yor, if h£0,

[ (t:(t‘: th (z {—lzc') BA (cl--c) (;:i )M’

which has the same value at f, g; when & = 0, we have

( (z—_c\“_._.fk U -
¢/ (z—c')'_c—c' Pl

v

which is greater at f than at ¢ by s g;—"

If the vertex ¢ is on the boundmg circle and the substitution
parabolic, let the substitution that turns ¢f into c¢g be
L TOPE O
S—¢ z—c ¢’
where p is a real positive quantity. Then 6,(z)(s—¢c)* in the
neighbourhood of ¢ may be expanded in ascending integral powers

of exp ; 1 .+c- Liet the absolute term of this expansion be C. Then
'L
. o () de = — L0
Do c

1

since any integral power of expz ate ha.s the same value ut f

and g. Thus —pC/c must be taken as the residue in this case.
With these specinl conventions the sum of the residues is zero, und
therefore, if there is only u simple pole, its residue must vanish, or a
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theta-Fuchsian function of index 1 with only a simple pole cannot
exist.* A pole of rank 1 is to be counted as simple.

12. Tt follows from the positive construction that the number of
arbitrary coeflicients in a theta-Fuchsian function of given index
m (>1) huving given poles of assigned ranks is

0w + the sum of the ranks.

" We may heuce find an expression for ¢,,—g,,., when m>2. Take a
particular theta-Fuchsian function of index 1, y, und let 6, denote
the most gencral theta-Fuchsian function of index . without poles,
3..-1 the quotient 6,,/n,, so that 3,,_; is a theta-Fuchsian function of
index m—1. The number of arbitrary coefficients in 3,,_, is the
same w8 in 6, that is, ¢,. Now the zeroes and poles of », are poles and
zeroes of 3,,_, in general, but the vertices of the polygon aguin need
special considerastion. Suppose the vertex ¢ to be u zero of order

1 . P .
h— N I being a positive integer. Then, since 6, has a zero

m m
» 1— M
{ A } + A?
8,21 has u pole of order

m—1 nm
et )

at ¢ of order .;Lt least

at most ; the 1unk of this pole is
m—13 _ vz}
"t { A } txse

* We have here u reason for not expecting theta-Fuchsiun series of index 1 in
the first, second, or sixth family to converge absolutely.  For, if they did, the fune-
tion ¢, (¢, 5) of §1 would oxist, and would be a theta-Fuchsian function of : of
index 1 with u simple pole at ¢ und no other, in contraveution of the theorem here
proved. The smne argument applies also to theta-Kleinian serics when any of the
regions within which the corresponding functions exist is only of finite extent.
Another proof is given by Ritter (Math..lun., Vol. xr1., p. 58). Lindemann, ou
the other hund, hus tried to prove tho contrury (Minchener Sitzugsbevichte,
Vol. xx1x., pp. 423-454).

It is possible that such series may converge cynditionally ; for the two series

(O] :
016 539) S5 and g1 (e, 2)

consist of the samo terms, but in different orders, and, if tho convorgency is con-
ditional, we cannot conclude that their sums are equal.
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which exceeds the order of the zero of 5, by

e B R R

This formula applies to an ordinary point by taking A =1, and to a
prrabolic vertex by taking A infinite, the result in either case being
7610,

If, on the other hand, ¢ is a pole of order A+ ~l~ , rank L +1, for 5,
then for 3, ., it is a zero of order

h_l’l._.l.;. { m } +1.

Now, for any theta-Fuchsian function of index m.—1, it 1s, if not a
pole, a zero of order at least

T'he order of the zero being here greater than this by

m m—1
’L"'{‘)T}—{ A }’
the coefficients in 9,,., are restricted by this number of conditions,
which falls short of the order of the pole by

(== - {23k

This is the same expression as before, and again it applies also to an
ordinary point and to a parabolic vertex.

‘I'he number of zoroes of », exceeds the number of its poles by

n—1-—3 —1);»,
where 2n is the number of sides. The zeroes, generally speaking, are
poles of $8,,.1» and increase the number of its arbitrary coeflicients ; the
poles, on the other lhand, are generally zeroes of $8,..1» and decrease
this number. It follows from the discnssion just given that tlie net
effect is to raise the number of arbitrary coefficients from gq,,.,, which
it would be if 3,,_, had no poles and no assigned zeroes, to

q,,,_l+n—l—2;-+2[{&;:l} { e } )‘]

. m—13 <{m
o1 Q- ,+n—-1+2{ Y } :1 }
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The summations are taken over the different cycles of vertices.
‘T'his number would have to be increased if any of the restrictions
arising from the zeroes that must be assigned to 3,,., were necessarily
sutisfied ; but this cannot be, since it would imply that the function
$,.—1m or 6,, could not possibly have the corresponding poles with
arbitrary residues, which we know from the positive construction to
be untrue.

It follows then that when m >

m m—1
qn;"‘qn.q:n—-l—ﬁ{-)\ ? +2{ X }'

s

This ceases to hold when m = 2, since the positive construction is
not available for the index 1. The vesnlt is, in fact, untime. The
number of mrbitrary coefficients in a theta-Fuchsian function of
index 1 with poles and vranks assigned is at most

¢1— 1+ the sum of the ranks,

since there cannot be just one pole of rank 1. Thus, by the above
method, we find that

{2 1
e O Rt I T
o O 2 )
or, say, G—q =n—2—3 { N ) -,

(=

where v is zero or a positive integer, for { - } =0 always.

>

It follows by summation that

go= =1+ Gu-D=D)—3{ ] -,

13. We can now discuss the formation of Muchsian functions with
assigned poles. et 3, be a theta-Fuchsian scries of index 2, having

a pole of order %— {;} for each cycle, and one other pole arbi-
trarily chosen. 'Thus it cannot be identically zevo. It will have
3

2(n—1)-=3 S( ™y } +1 zeroes.

By the negative construction two theta-Fuchsian functions ©_,, 0",
VOL. XXXIL.—NO. 733, 2 g
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ean be formed of index —2 with ¢;+2, that is,

g +2n—1-3 { —’z- } —v arbitrary poles.

The zeroes of 6_, or 0”4 or A0_, 4 BO., will be

@t 1—-3 {—;} + 2—)2:-—-;'

9
in number, each cycle contributing %— {%}, since A0 _,+BO’,

has an arbitvary zero as well as these at the vertices, it follows that
q,—v is not negative, so that the poles of ©_,, 07, are at least as
numerous us the zeroes of 3,.

Suppose then that the zeroes of 3, are all included among the poles
assigned to 0., 07, and take 07, to be the reciprocal of 3,, which is
allowable. Then the prodnct 0_,3; will not be conséant, but will be
a Iuchsian function having ¢,—v+1 arbitrary poles, namely, the
arbitrary pole of 3, and the g,—» poles that are still to be assigned
for O .,, and no others.

In this result, which depends on a combination of. the positive nnd
negative constructions, the poles assigned may be at the vertices as
well as anywhere else, the proof needing very little modification for
this case. The rank of a pole of a Fuchsian function is the same ag
its ovder, the conventions as to the order being derived from those for
a theta-Fuchsian function by taking the index of the function to be
ero.

Now, as at Proc. Loud. Math. Soc., Vol. xxxL., p. 307, let p+1 be
the least number of arbitrary poles that can be assigned to & Fnchsian
function which is to have no others, and let y be the number of
irreducible circuits, so that

g=n~k+1,

where 2n is the number of sides of the generating polygon, & the
number of cycles of vertices.  Then, from what we have just proved,

qQ—v { n

since & Fuchsian function with q,—v+1 arbitrary poles and mno
others can be forned . *

* It may not be superfluons to point out that, if by some other process it should
be possible to constract Fachsian functions with a lower number of arhitrary poles,
8o that p < ¢, —v, the vertices of the polygou would still Lehave like ordinary
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14. Other inequulities to be satisfied by the numbers p, ¢,, gy may
be found. Tt = be an Abelian integral of the first kind; then "%’:
is a theta-Fuchsian function of index 1, andis finite everywhere in the
polygon and on its boundary. Conversely, if 6,(z) is any such theta-
Fuchsian function, f 6,(z) dz will be a uniform function of z, finite
everywhere within the polygon and on its boundary, and the values
of this function at corresponding points in different polygons will only
differ by multiples of certain moduli of periodicity, the multiples
depending only on the particular polygous in guestion, Thus g,, the
number of theta-Fuchsian functions of index 1 withont poles, is the
number of Abelian integrals of the first kind, and the anrgument used
( Proc. Lond. Math. Soe., Vol. xxxt., p. 307) shows that this number
docs not fall below y—p.  We have then

n€yg—m
and, from § 13, n—r < p,
s0 that 29, € g+,

We must now investigate a superior limit for ¢,.
g 1

15. The moduli of any two Abelian integrals «, v of the first kind
are connected by a well known bilinear velation found by evaluating
fadv, taken round the perimeter of the generating polygon, ns
follows. Let ab, ed be two corresponding sides, so that the ex-

pression to be evaluated contaius the two terms J’h udv, r udv.
¢ a a
Denote the values of «, v at a, b, ¢, d by #,, v4 %, .... Then
U1, = 1, —2, being a modnius for u,
v,—v, = v,—2v, being the corvesponding modnlus for v,
rb r b
j udv-l-j' wdy = “ (n,—n,) dv = (,—n,) (v,—v,) = (w,— 1) (ve—2,).
“ d

-t

points in respect to this process, regard being had to the conventions.  For any
vertex may be one of the ¢;—v + 1 arbitrary poles of the process in the text, and, if
the other poles are ordinary points to which the new process applies, the fanction
with ¢,—» + 1 poles ean be reduced by subtraction of functions formed by the new
process, 8o as to have only p+ 1 poles, one heing the vertex in question and the
rest arbitrary.  The same argument will apply if the pole at the vertex is to be of
a higher order, the different orders being treated successively.

2 132
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The whole integral, being the sum of a set of expressions typified by
thisg, is therefore » homogeneous linear function of the moduli of u.
Also the term just written

= (up—13) vy— (2, —1,) v,
= (wy—2g) vy— (%, —2,) v,
= 1, (V4 =) ~2, (r—1,) + 1,0 — 20,0, — g2y + 2%

Now the four last terms in this disappear on summation, and the
expression songht is, therefore, linear and homogencons in the moduli
of v; in fact the effect of interchanging w, v is simply to change its
sign.

Since the modnlus of periodicity for an integral of the first or
second kind is zero in the case of an elliptic or parabolic substitn-
tion,* the contribution of two sides connected by such a substitution
to the integrnl just considered has been taken ag zero. This needs no
justification if the substitution is elliptic; but, if it is parabolic,
there is a difficulty, as the vertex in which the sides meet is an
essential singnlarity of the functions.

This difticulty may, however, be casily avoided. Take the notation
used for such a case in §§ 7, 8, 11. 'We may replace the integral along
Je, ey (Fig. § 11) by that along fy. -Now u, v are both unchanged by
the substitution ¢, and they are, thercfore, both uniforin functions of
exp (—9), or, sny, 4. The path in the Z-planc corresponding to fy
is a closed curve round the ovigin, and u, v are uniform, finite, and
continuous in the domain of the Z-origin, so that [ de, taken ronnd
this closed curve in the Z-plane, that is, along fg, will vanish ; which
was to be proved. A cycle of vertices lying on the cirenlar boundary
may be reduced to a single parabolic vertex, and will, therefore, now
cause no diflicalty.

Thus the value of [ndy ronnd the perimeter of the polygon is a
skew-symimetrical bilinear expression in the moduli of periodicity of
n, v. 'I'his is true when the Abelian infegrals «, v are of the first or
second kind; but, when both are of the first kind, we have the result
that this bilincar expression must vanish, since the uniform function
% ZL has no pole within the contour of integration.

~

# Proe. Lond. Math. Soc., Vol. xxx1., pp. 305, 307.
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16. It should further be shown that the bilinear relation thus
found between the moduli of «, v is not illusory. Now, if there are
irreducible circuits on the closed surface into which the polygon is
deformed by joining together corresponding sides, there will be at
least two pairs of corresponding sides which separate each other;
that is, if ab, cd are one pair, and ef, gh the other, the order in which
these four sides are met with in going round the perimeter will be,
say, ab, ef, dc, hg.* Now cut the polygon in two by & line from b to
d, and subtract the part b...ef...d, adding the corresponding
part of the polygon adjoining along L.g. Thus, a,b, d, c are four con-
secutive vertices of the new figure; ab still corresponds tocd ; suppose
Il to be the side corresponding to bd, the polygon being chus
abde...h...lk...g... . Cut this in two by a line from d'to ! and taka off
the piece dc...k...J, adding on the corresponding part of the polygon
adjoining along ab; let m be the vertex of this polygon which cor-
responds to I; then, in the new polygon, m, b, 4,1, k are five con-
secutive vertices, and mb, Id correspond, as also do bd, ki

Let 8, 1' be the operations that turn mb into ld, bd into X,
respectively, and let us examine the way in which 8, 1" enter into the
relations counecting the fundamental substitutions. The five points
m, 1, d, b, k belong to the same cycle of vertices, and the sequence
T 87'1'-'S will uceur in the relation arising from this cycle (sce Adctu
Math., Vol. 1., pp. 45-7) ; also the operations S, I’ will not occur in any
other of the relations. Thus the vestrictions upon moduli of periodicity
in general (Pvoc. Lond. Math. Soc., Vol. xxxr., p. 305, note) are obeyed
if we take arbitrarily the moduli corresponding to 8, 1'and make all
the otiier moduli zero. This will sccure the isomorphism referred to
in the passage cited last.

Now, if this were the case with the functions », »,t the value of
fudv round the rest of the perimeter would be zero, and from mb and
dl we should have the contribution

(rg—m) (11 —14),

* It in cawily seen that if no two puirs of conjugate sides separate ench other,
there must be sides adjacent to their conjugates.  These pairs being fastened
together, tho resulting surface muet again have sides adjacent to their conjugates.
Fastening these together, and continuing tho process, we arrive in the end ata
simply connccted closed surface.

t They would not of course bo integrals of the first kind; but for the present
purpose that does not matter, the object heing to khow that o relation which must
be satirficd when they aro of the first kind is not generully satisticd when they are
not of the first kind.
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from bd and Ik, (y—14) (v, —24).

The sum of these does not vanish identically, and hence the condi-
tion cannot be illusory.

17. If there are othor pairs of corresponding sides that separate
each other, this reduction may be carried further so as to bring the
polygon to a canonical form. Suppose U, ¢'d’ to be a pair of corre-
sponding sides, and ef’, ¢'A" another. the order of the vertices being

ab' . ef mbdlk. A Wy

Cut off the part k... d'¢’ and add on the corresponding part of the
polygon adjoining along a0’; let k" be the vertex of this polygon
correspouding to k; then the order of letters in the new perimeter is

WKL abdlke .
and «'k’, ¢’k are corresponding sides,

Now let the process of §16 be nsed, the sides a'k', <f, ke', by’
taking the place of ab, of, de¢, hg. The result will be to bring to-
gether two sets of four sides, in each of which the first and third
correspond, as also the second and fourth.

If two more pairs of sides separate eacl other, the snme process may
be applied again, and so on, until all such pairs are exhansted. Then
the perimeter will consist of a series of sets of four sides, in ench of
which the first corresponds to the third, the second to the fourth,
followed, possibly, by a series in which uo two pairs of corresponding
sides sepavate ench other. 1f this Iatter scries exists. it must include
some paiv of corresponding sides adjacent to each other, their common
end forming a cycle by itself. Let abed... denote the part of the
perimeter now being considered, ef, gf the first pair of adjacent
corresponding sides. Cut off the part a...ef and add on a corre-
sponding piece of the polygon adjoining along fy; then the number of
sides is not increased, but the first two have been made to correspond.
Tn the same way the next two may be made to correspond, and so on
till every side in this part of the perimeteris adjacent to the cor-
responding side. The order of the vertices will now be, with changed
notation, ‘

a,bc,dyazbyegdy..., abed e fiesfs.., €,f.,
corresponding sides being
a;b;, c;idiy bicy, diy,, (E=1,2, .., x=1);
"fxbn c.‘l.; b.c.y (l,L‘l 5 eif-': ficiel ("= L Q! seey P—l) 5 epfp'fpal'
(Compare Klein, Math. Annalen, Vol. xx1,, p. 184.)
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18. Let S;, T, U; denote the substitution hy which a;b;,, b, e f;
are transformed into the sides corresponding to them respectively.
Then the restrictions on moduli of periodicity for Abelian integrals
of the first two kinds are simply that those corresponding to

Uy Uy ..., U,
shall vanish; the others are arbitrary.

Let A;, B; be the moduli corresponding to S; for the functions «, v
respectively, and A;, B; those corresponding to 7. Then the bilinear
relation to be satistied if u, v ave everywhere finite is

S (AB—A4B)=0;
i=l

this is the well known form.

19. Thus, if any number j of Abelian integrals of the first kind are
known, the moduli of periodicity for each of these, as also for any
others, nmst satisfy j linear equations, which are all independent;
if they were not, the systems of moduli for the 5 known functions
would not be linearly independent, and, therefore, the j functions
themselves wonld not be. This is made very clear by the form in
which the bilinear relation was written at the end of § 18.

Thus the q, sots of moduli belonging to the g, Abelian integrals
of the first kind are common solutions of g, linear equations. Since
the number of moduli in each set is g, it follows that

('l T
or 29, % 9.
But now 20, € g+v,

where v is zero or positive. It follows that v = 0, and
G=39=%(O-k+1);
also pdqg—v and 4 g—q, sothat p=gq;

these are the desired results.
We have further, when m>1,

gn = } (n—Lk—1) + (m—1)(n—1) =3 {% } )

(Compare Acta Math., Vol. 1., p. 266.)
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20. Lastly, it must be possible to express all theta-Fuchsian
functions of index >1 and without poles as theta-Fuchsian series
(Acta Math., Vol. 1., pp. 244-246, 285). For, if of the ¢,, such func-
tions of index m not more than g,—1 can be expressed as series, the
coefficients Cy, C,, ... of § 1 must be linear combinations of these
gn—1, and thus by the negative construction a theta-Fuchsian
function of index 1—m can be formed with g, assigned poles only.
More generally r+1 can be formed with g¢,+7» given poles and no
others, and two of these, say 6,_,, and 6;_,,, will have r—1 assigned
zeroes.

Let these r—1 zeroes be the poles of any particular function 6,,., of
index m—1, and assign the zeroes of 6,,_, among the g, +r poles of
0-m 0i_... The sum of the orders of the poles thus assigned is

— —1)(n—1—-31
r—1+(m l)(n 1 21\),
@nd the sum of their ranks is easily found to be

r—=14+@m—1)(n—1)—= {L:— } .

m

Thus q.,.+1f(7n—1)(1z—1)+2{ _)\—} or q,

of the poles of #,_,, 6;_,, are still at our disposal. Now we may take
the reciprocal of 6,,_, to be 6,_,, and thus the product 6,,.,6,_,, i8 not
a constant, but ig & Fuchsian function having ¢, arbitrary poles and
no more. This is impossible, since 9, <p+1.

Thus every theta-Fuchsian function withont poles, of index > 1, can
be expressed as o theta-Fuchsian series. If a theta-Fuchsian function
of index >1 has poles, a theta-Fuchsian series can be formed by the
positive construction with the same poles and residues and the same
index ; the difference between this series and the function will be a
theta-Fuchsian function without poles. Hence every theta-Fuchsian
function of index >1, with or without poles, can be expressed as a
series of Poincaré’s form.

Also the product of a theta-Fuchsian and a Fuchsian function, or of
two theta-Fuchsian functions, is a theta-Fuchsian function. Thus,
any Fuchsian function or theta-Fuchsian function of index 1 can
be expressed as the quotient of two theta-Fuchsian series.

[I am indebted to the referces for pointing out some flaws in this
article as originally written. The effect of their suggestions has been
& considerable increase in its length.]





