Nutes on the I'keory of Automorphic Functions (continued). By
A. C. Dixon. Received March 7th, 1900. Read March 8th, 1900. Received, in revised form, November 1st, 1!)00.

The present paper is supplementary to one published in the Socicty's Proceedinys (Vol. xxxf., pp. 297-314), the object of which was to derive the fundamental theorems in Ricmann's theory of the Abelian integrals from the properties of Poincarés theta-Fuchsian series. It apponed to me that, if our knowledge of the properties of those series were complete, we should be able to deduce these theorems from them. At one point (pp. 307, 308) 1 had to fill back on the older methods to cover a want of rigour in the argument, and my purpose now is to supply this defect.

The resnlts to be proved are numerical ; there are three numbers involved:-
p, where $p+1$ is the least number of poles.arbitraily assigned that a liachsian function can have, if it is to have no more;
q_{1}, the number of Alelian intergals of the first kind, or of thetaFuchsian functions of index 1 withont poles;
y, the number of irreducible closed circuits on the closed surface formed from the polygon by fastening together corresponding sides.*
It is to be shown that $p=q_{1}=\frac{1}{2} g$.
§§ 1-13 are taken up in proving that $p \ngtr q_{1}$. For this it is necessar'y to discuss the formation, by means of Poincare's series, of thetaFuclisian and Fuchsian functions with assigned poles. Particular consideration has to be given to the case when poles me assigned at the vertices of the polygon, and account has to be taken of the speciad comventions as to the orders of poles mal zeroes at these points. The proof would be incomplete if these points were excluded from its scope.

The next result ($\$ 14$) is that $q_{1} \$!-p$; this was established in my former paper.

In §§ 15 -19 the well known bilincar relation comecting the moduli

[^0]Vol. xaxif.-No. 7i3: $\because \mathrm{Za}$
of periodicity of two Abelian integrals of the first kind is used to show that $2 q_{1} \ngtr g$. The relation is proved in $\S \S 15,16$, and in §§ 17,18 it is reduced to the ordinary canonical form which is convenient for the argument of § 19.

The results $p=g_{1}=\frac{1}{2} g$ are thus established.
$\S 20$ deals with Poincare's theorem that all theta-Fuchsian functions of integral index >1 can be expressed by means of his series.

The paper is concerned almost altogether with functions of the Grst, second, and sixth families. The circular boundary of the functions is generally taken to have centre 0 , radius 1 .

1. Let $\phi_{m}(z, y)$ denote the function

$$
\pm \frac{1}{z-s y}\left(\frac{d s y}{d y}\right)^{m},
$$

wheres denotes one of the substitutions of a Fuchsian gioup of the lirst, sccond, or sixth family, and the summation extends to all sub,stitutions of the group (compare Acta Math., Vol. 1., p. 242). Suppose that

$$
s y=\frac{a y+\beta}{\gamma y+\delta},
$$

and that for the different substitutions of the group $s, a, \beta, \gamma, \delta$ are distinguished by suflixes. The index m is taken to be an integer greater than 1.
Then, giving y a fixed value c, we have for any substitution i_{1} of the groul)

$$
\begin{aligned}
\varphi_{n 1}\left(s_{1} z, c\right) & = \pm \frac{1}{s_{1} z-s c}\binom{d_{s c}}{d c}^{m} \\
& = \pm \frac{1}{s_{1} z-s_{1} s c}-\left(\frac{d_{1} s c}{d c}\right)^{m}
\end{aligned}
$$

(by rearrangement of the terms)

$$
\begin{aligned}
& =\Sigma \frac{\left(\gamma_{1} z+\delta_{1}\right)\left(\gamma_{1} s+\delta_{1}\right)}{z-s c}\binom{d s_{1} s c}{d s c}^{m}\left(\frac{d s c}{d s}\right)^{m} \\
& =\left(\gamma_{1} z+\hat{c}_{1}\right) \pm \frac{1}{z-s c}\left(\gamma_{1} s c+\delta_{1}\right)^{-2 m+1}\binom{d s c}{d c}^{m t} .
\end{aligned}
$$

Thus $\phi_{m}\left(s_{1} z, c\right)\left(\frac{d s_{1} z}{d z}\right)^{1-m}-\phi_{m}(z, c)$

$$
\begin{aligned}
& =\Sigma_{z} \frac{1}{z-s c}\left\{\binom{\gamma_{1} z+\delta_{1}}{\gamma_{1} s c+\delta_{1}}^{2 m-1}-1\right\}\left(\frac{d s c}{d c}\right)^{m \prime \prime} \\
& =C_{0}+C_{1} z+C_{3} z^{3}+\ldots+C_{m-2} z^{2 m-2}
\end{aligned}
$$

where the coefficients 19 are theta-Kuchsian functions of c of index m, and without poles. Let q_{m} be the number of linearly independent theta-Fuchsian functions of index m, without poles, whether expressible as theta-fuchsian series or not. Let $\theta_{m}^{(1)}$ denote one of these functions, r being one of the numbers $1,2, \ldots, q_{m}$. Then, if any $g_{m}+1$ values $c_{1}, c_{0}, \ldots, c_{q_{m}+1}$ we taken within the fundamental polygron, it is possible to choose coefficients $A_{1}, A_{2}, \ldots, A_{q_{n+1}}$ so that

$$
\sum_{i=1}^{q_{m+1}+1} A_{i} \theta_{m}^{(r)}\left(c_{i}\right)=0 \quad\left(r=1,2, \ldots, q_{m}\right)
$$

Now $C_{0}, C_{1}, \ldots, \gamma_{y m-2}$ we lineme combinations of $\theta_{m}^{(1)}(c), \theta_{m}^{(2)}(c), \ldots$.
Thus

$$
\sum_{i=1}^{q_{m}+1} \Lambda_{i} \phi_{m}\left(s_{1} z, c_{1}\right)=\binom{d_{1} z}{d z}^{m-1}{\underset{i=1}{g_{m}+1}}_{\substack{1 \\ i=1}} i_{i} \phi_{m}\left(z, c_{i}\right) .
$$

This holds when s_{1} is niny substitution of the group, and therefore

$$
\sum_{i=1}^{y_{i=1}^{+}} A_{i} \phi_{m}\left(z, c_{i}\right)
$$

is a theta-Fuchsisun function of z of negative index $1-n$ having $q_{m}+1$ arbitary poles $c_{1}, c_{3}, \ldots, c_{q_{m+}+1}$, ind no others.*
2. By ineans of the derivatives of the function $\varphi_{m}(z, c)$ thetaFuchsian functions of negative index with given multiple poles mas be constructed, since $\frac{\partial \cdot}{\partial \partial_{c}:} \psi_{m}(z, c)$ has a pole at c of order $a+1$, and since

$$
\begin{aligned}
& \frac{\partial^{\bullet}}{\partial c^{*}} \psi_{m}\left(\varepsilon_{1} z, c\right)\binom{d_{1} \tilde{s_{1}}}{{ }_{1 z}}^{1-m}-\frac{\partial^{\omega}}{\partial c^{4}} \psi_{m}(z, c)
\end{aligned}
$$

If, for instance, there is to be a double pole at of, mod a simple ome

[^1]! А !
at each of the other points $c_{y}, c_{s}, \ldots, c_{q_{m}}$, we must choose coefficients or residues $A_{1}, B_{1}, A_{3}, \ldots, A_{9}$ so that
$$
B_{1} \frac{d \theta^{(r)}\left(c_{1}\right)}{d c_{1}}+\sum_{i=1}^{q_{m}} A_{i} \theta^{(r)}\left(c_{i}\right)=0 \quad\left(r=1,2, \ldots, q_{m}\right)
$$
and then the function
$$
B_{1} \frac{\partial}{\partial c_{1}} \phi_{m}\left(z, c_{1}\right)+\sum_{i=1}^{q_{m}} \Lambda_{i} \phi_{m}\left(z, c_{i}\right)
$$
will be a theta-Fuchsian function of z of index $1-n$ having its poles us desired.

For a multiple pole of order a at c, we must use the values when $y=c$ of $\phi_{m}(z, y)$ and its first $a-1$ derivatives with respect to y, or, in other words, the first a coefficients in the expansion of $\varphi_{m}(z, y)$ in uscending powers of 3 i-c.

In this way a theta-Fuchsian function of index $1-m$ can be constructed with poles arbitrarily assigned, if the sum of the orders of multiplicity of these poles is $q_{m}+1$. The $q_{m+1}+1$ residues most satisfy q_{m} homogeneous linear equations, so that in general their ratios will be determinate and the function will be defined save as to a constant factor. If the q_{m} equations are not all independent, there will be two or more functions of index $1-m$ with the assigned poles.

In particular cases one or more of the residues may come out with the value zero, so that some of the assigned poles may disappear or be of lower orders than were assigned.

Hence, if poles within the polygon are arlitrarily assigncel, the sumu of whose orders of multiplicity is $q_{m}+1$, at least one theta-Fuchsian function of negative index $1-m$ can be constructed, having no poles other. than those assigned, and having none of the assigned poles to a higher. wrler than the assigned arder.

I shall call this l'oincare's neyative construction.
4. Λ gain, if z is supposed fixed within the polygon, $\phi_{m}(z, y)$ is a theta. Fuchsian function of y of positive index m, and it has a simple pole at z and no other within the polygon. The derivatives of $\phi_{m}(z, y)$ with respect to z or the functions

$$
\Sigma \frac{1}{(z-s y)^{\circ}}\left(\frac{d s s!}{d y}\right)^{\prime \prime \prime},
$$

where a is Ω positive integer, are theta-Fuchsian functions of y of index m, having multiple poles at z.

By means of these, thetu- Fuchsian functions of positive index m (>1) can be constructed with arbitrary poles within the polygon of any orders and with arbitrary residues. When the poles and their orders are fixed, the number of arbitrary constant coefficients in such a function is q_{m} + the sum of the orders of the poles, for q_{m} is the number of such functions without poles.

This may be called Puincare's positive construction. In it we use the coeflicients in a Thaylor expansion of $\phi_{m}(z, y)$ considered as a function of \boldsymbol{z}.
5. Both constructions need special investigation when one of the assigned poles is at a vertex of the polygon. Let c be this vertex, $2 \pi / \lambda$ the sum of the angles of the cycle to which it belongs, e the inverse of c with respect to the fundamental circle.

Then we must discuss the behaviour of $\phi_{m}(z, y)$ when y or z approaches c. Now $\phi_{m}(z, y)$ is a theta-Fuchsian function of y of inilex m, and thins

$$
\phi_{m}(z, y)(y-c)^{\prime \prime \prime}\left(y-c^{\prime}\right)^{m}
$$

is a uniform function of $\binom{y-c}{y-c^{\prime}}^{\lambda}$ (Actu Mfath., Vol. 1., p. 218).
Let

$$
\begin{array}{ll}
y-c \\
y-c^{\prime}
\end{array}=\eta, \quad \begin{aligned}
& z-c \\
& z-c^{\prime}
\end{aligned}=\zeta
$$

then it follows that

$$
\phi_{m}(z, \eta)=(1-\eta)^{m^{m}} \eta^{-m} \psi\left(\zeta, \eta^{\wedge}\right),
$$

where ψ lenotes a uniform function.
Since $\dot{\phi}_{m}(z, y)$ contains a term $\frac{1}{z-y}, \psi$ must be infinite when $\eta^{\wedge}=\zeta^{\lambda}$, and nust, in fact, belave like

$$
\underset{c-c}{\lambda} \frac{(1-\zeta)^{4-2 m m} \zeta^{n+m-1}}{\zeta^{\lambda}-\eta^{\lambda}}
$$

in the neighbourhood of this value of η^{λ}. 'Ihus $\phi_{m}(z, y)$ behaves like

$$
\underset{c-c^{\prime}}{\lambda}(1-\eta)^{2 m}(1-\zeta)^{-2 m m} \eta_{\eta^{\alpha \lambda-m} \zeta^{\lambda}-\eta^{\lambda}}^{\eta^{\lambda}+m-1},
$$

where a is any integer. Now $\phi_{m, m}(z, y)$ does not become infinite when z or y alone appoaches c, and hence, if a is such that neither $a \lambda-m$. nor $\lambda-a \lambda+m-1$ is negative, we have here an expression fiom which $\phi_{m}(z, y)$ will differ by a finite quantity when z or y approaches c, or
when both nppronch c. The necessary value of a is $\left\{\frac{m}{\lambda}\right\}+1$, where $\{x\}$ denotes the integer next below x.

Now for the negative construction we take the successive coefficients in a Taylor expansion of $\phi_{m}(z, y)$ as a function of y. Here there is an expansion of the form

$$
\phi_{m}(z, y)=(1-\eta)^{2 m} \eta^{a \lambda-m}\left[Z_{0}+\eta^{2} Z_{1}+\eta^{2 \lambda} Z_{2}+\ldots\right]
$$

and the functions thus available are

$$
Z_{0}, Z_{1}, Z_{2}, \ldots
$$

It is seen at once that these are equivalent to the series of derivatives of $\phi_{m}(z, y)$ with respect to y when $y=c$, but that in the series of derivatives $\lambda-1$ out of every consecutive λ are nseless for our purpose, being either identically zero or else linenr combinations of lower derivatives.

For a small value of ζ the function Z_{n} heliaves like

$$
\frac{\lambda}{c-c^{\prime}} \zeta^{-4 \lambda+m-1-(n+1) \lambda}(1-\zeta)^{2-2 m},
$$

and so appears to have a pole of order

$$
(a+n) \lambda-n+1 .
$$

But, nccording to convention, this order must be divided by λ, as the pole is to be shared nomg all the polygons which meet in c. Thus the order is

$$
a+n-\frac{m-1}{\lambda}
$$

in any one polygon; allowance is made in this number for all the vertices of the cycle to which c belongs.

Now the only orders that a pole at these vertices can linve for a theta-Fuchsian function of index 1-m (Acta Math., Vol. 1., p. 218) are the numbers
where

$$
\begin{aligned}
& a+n-\stackrel{m-1}{\lambda} \quad(n=0,1,2, \ldots) \\
& a=1+\left\{\frac{m}{\lambda}\right\}
\end{aligned}
$$

Hence, by means of the functions $Z_{0}, Z_{1}, Z_{1}, \ldots$, the negative construction is still possible when one of the assigned poles is at c. The order assigned to this pole must be "ndmissible," that is, it must be
one of the numbers $a+n-\frac{m-1}{\lambda}$. The functions used in constructing a function with a pole of admissible order h at c will be

$$
Z_{0}, Z_{1}, \ldots, Z_{\{n\}}
$$

and others that are finite at c. Thus the number of residues at c is $\{h\}+1$. It will be convenient to call this the "rank" of the pole. The rank is the same as the order when the order is integral; otherwise the rank is the integer next above the order.
6. For the positive construction in this case we must take the cocflicients in the expansion of $\phi_{m}(z, y)$ in ascending powers of ζ. Suppose

$$
\phi_{m}(z, y)=(1-\eta)^{m m} \eta^{n \lambda-m}\left[Y_{0}+Y_{1} \zeta+Y_{2} \zeta^{2}+\ldots\right]
$$

Then it is seen from the nbove work that the first of the series $Y_{0}, Y_{1}, Y_{,}, \ldots$ which becomes infinite when $\eta=0$. is
and that this behaves like $\quad \underset{c-c}{\lambda} \eta^{-\lambda}$.
The first that is infinite to a higher order than this is

$$
Y_{2 \lambda-a \lambda+m-1},
$$

and this contrins a term $\frac{\lambda}{c^{\prime}-c} \eta^{-2 \lambda}$, and so on.
The infinite terms that occur are multiples of $\eta^{-\lambda}, \eta^{-2 \lambda}, \eta^{-\mathrm{s}}, \ldots$, and a term in $\eta^{-n \lambda}$ occurs first in $Y_{n \lambda-a \mid+m-1}$.

Hence the functions available for the positive construction are the coofficients of

$$
\zeta^{\lambda-a \lambda+m-1}, \zeta^{\lambda-a-\lambda^{2}+m-1}, \ldots
$$

in the expansion of $\phi_{m 1}(z, y)$ in ascending powers of ζ. These have poles at c of the orders

$$
\underset{\lambda}{\underset{\lambda}{-}}-a+1, \frac{m}{\lambda}-a+2, \ldots
$$

the order being in each case the index of $\eta^{-\lambda}$ in the most important term ; these are the only admissible orders for a pole. The ranks are $1,2,3, \ldots$, respectively. It will be substantially the same thing to use the series

$$
\Sigma \frac{1}{(s y-c)^{n k-d \lambda+m}}\left(\frac{d s y}{d y}\right)^{m} \quad(n=1,2,3, \ldots) .
$$

7. When a proposed pole is at a vertex c which lies on the circulaboundary there are special difficulties, since this point is an essential singularity of the functions.

The polygon may be altered, without affecting the group, so that c shall form a cycle by itself. Suppose this done ; then the substitution by which one of the sides that meet in c is changed into the other must be parabolic; for, if it were hyperbolic, the vertex c could be abolished, and the polygon would have as a side part of the fundamental circle; so that the functions would no longer have the circular boundary.* Let t be this parabolic substitution, its actual

[^2]
$z^{\prime}=k z$, where l is real and >1. Through F, G descrive two circular arce cutting the real axis orthogonally in two points $I I, K$ to the left of O, such that $O H=k . O K$. Then the group is unaltered if we add to the polygon the hulf-meniscus OFH and take away $O G K$.

Now it is clear that any point between OF and the imaginary axis is represented in the old fundamental polygon by a point in the curvilinear triangle OFG, and that therefore no point on the left of the imaginary axis is represented in the old polygon at all. Poincaré originally concluded from this that the imaginary axis was a natural boundary to the functions generated; but this is not the case, for in the new polygon any point in the second quadrant is represented by a point in the region bounded by $H K$, the arcs $H F, K^{\prime} G$, and the imaginary axis. Hence the functions exist in the whole space above the real axis, and, moreover, can be continued across $I I F$, so that they exist in all the planc. In the original polygon the part representing the second quadrant had shrunk up into the point 0 .
equation being

$$
\frac{1}{t z-c}=\frac{1}{z-c}+\frac{2 _\pi \mu}{c},
$$

where μ is real and positive.
Suppose the z-plane transformed by the substitution

$$
\zeta=\frac{1}{2 \mu} \frac{c+z}{c-z}
$$

so that the inside of the fundamental circle becomes the half of the ζ-plane on the right of the imaginary axis. Let η, σ, τ correspond to y, s, t, so that

$$
\begin{gathered}
\eta=\frac{1}{2 \mu} \frac{c+y}{c-y}, \quad \sigma \zeta=\frac{1}{2 \mu} \frac{c+s z}{c--s z}, \quad \tau \zeta=\frac{1}{2 \mu} \frac{c+t z}{c-t z}=\zeta-21 \pi, \\
d s y \\
d y \\
d y \\
\frac{4 c^{2}}{(y-c)^{2}} \frac{1}{(1+2 \mu \sigma \eta)^{2}} \frac{d \sigma \eta}{d \eta}=\left(\frac{1+2 \mu \eta}{1+2 \mu \sigma \eta}\right)^{2} \frac{d \sigma \eta}{d \eta} .
\end{gathered}
$$

Now the substitution τ gives a division of the ζ-half-plane into strips of breadth 2π parallel to the real axis, and each of these strips is further divided by the other operations of the group. One polygon in each strip reaches to infinity, and the sum of the areas of the rest must, therefore, be finite; so that the series

$$
\Sigma^{\prime}\left|\frac{d \sigma \eta}{d \eta}\right|^{m}
$$

must be convergent if $m \nless 2$ and Σ^{\prime} denotes a summation over those operations which turn the fundamental polygon into another belonging to the same strip. This follows by Poincare's method, since the areal magnification is $\left|\frac{d \sigma \eta}{d \eta}\right|^{2}$.

Also $\sum_{n=1}^{x} \frac{1}{n^{3}}$ is a convergent series. Thus the double series
is absolutely convergent, and its sum is the product of the sums of the former two.

Now let $f(\eta)$ denote a function of η, uniform, finite, and continuous over the right half-plare and its boundary, and such that

$$
\operatorname{Lt}_{\eta-\infty} \eta^{\mathbf{2}} f(\eta)
$$

is finite or zero. Then, since all the points $\sigma \eta$ lie in the right halfplane, there is a superior limit to the quantities

$$
n^{2}|f(\sigma \eta+2 n u \pi)|, \quad n^{2}|f(\sigma \eta-\overline{2 n-2} \iota \pi)| ;
$$

and therefore the series

$$
\begin{gathered}
\sum_{n=-\infty}^{n=\infty} \Sigma^{\prime} f(\sigma \eta+2 n \iota \pi)\left(\frac{d \sigma \eta}{d \eta}\right)^{m}, \\
\Sigma f(\sigma \eta)\left(\frac{d \sigma \eta}{d \eta}\right)^{m},
\end{gathered}
$$

that is,
is absolutely convergent. The convergency is clearly uniform in the domain of an ordinary value of η.

This series represents then a continuous uniform fanction of η, and, in fact, of exp η, since its value is unaffected by the aldition of $2 \iota \pi$ to η. As η increases $\frac{d \sigma \eta}{d \eta}$ diminishes without limit, except for the identical substitution, and those of the form $r^{\prime \prime}$. 'Ihus when η is infinite the series reduces to $L t \sum_{n=\infty}^{n+\infty} f(\eta+2 n ı \pi)$, which is zero if the real part of η is made infinite. Hence when $\exp \eta$ is infinite the function

$$
\Sigma f(\sigma \eta)\left(\frac{d \sigma \eta}{d \eta}\right)^{\prime \prime}
$$

vanishes, and is, in fact, of the same order as $\exp (-\eta)$, or some integral power of this.
Going back to the varinble y, we find that
$\Sigma F(s y)\binom{d s y}{\frac{d y}{l y}}^{m \prime}$ or $\left(\frac{2 c}{y-c}\right)^{2 m} \Sigma(2 \mu \sigma \eta+1)^{-2 m} F\binom{2 \mu \sigma \eta-1}{2 \mu \sigma \eta+1}\binom{d \sigma \eta}{d \eta}^{m "}$
represents a theta-Fuchsian function of y, even if the function $F(y)$ has a pole at c, so long as the order of the pole is not higher than $2 m-2$. But this theta-Fuchsian function is zero at c to the same order as

$$
(y-c)^{-2 m} \exp \frac{n}{2 \mu} \frac{y+c}{y-c},
$$

iwhere n is some positive integer; n is, in fact, the orden of the zero aucording to the convention (Acta Math., Vol. I., pp. 216, 217). Thus the positive construction in its ordinary form does not succeed. But
it is now readily seen that

$$
\Sigma \exp \left(\frac{n z}{2 \mu} \frac{c+s y}{c-s y}\right)\left(\frac{d s y}{d y}\right)^{m}
$$

represents a function suitable for the purpose. For this series may be arranged in the form

$$
(1+2 \mu \eta)^{2 m} \sum_{n=-\infty}^{r=\infty} \Sigma^{\prime}\{1+2 \mu(\sigma \eta+2 r \iota \pi)\}^{-2 m} \exp n \sigma \eta\binom{d \sigma \eta}{d \eta}^{m},
$$

and we may suppose the fundamental polygon in the η-plane to be one which reaches to infinity. Then there is a finite superior limit to $|\exp \eta \sigma \eta|$ (except when σ is the identical substitution) if η lies in the fundamental polygon, and hence as η increases indefinitely all the terms tend to zero in the aggregate except those of the series

$$
(1+2 \mu \eta)^{2 m} \exp n \eta \sum_{r=-\infty}^{r=\infty}\{1+2 \mu(\eta+2 r \iota \pi)\}^{-2 m} .
$$

The sum of these terms is

$$
-(1+2 \mu \eta)^{2 m} \exp n \eta \frac{(2 \mu)^{-2 m}}{(2 m-1)!}\left(\frac{d}{d \eta}\right)^{2 m-1} \frac{1}{\exp \left(\eta+\frac{1}{2 \mu}\right)-1},
$$

which is infinite with η to the same order as
or

$$
\begin{gathered}
\eta^{2 m} \exp (n-1) \eta, \\
(y-c)^{-2 m} \exp \frac{n-1}{2 \mu} \frac{c+y}{c-y} .
\end{gathered}
$$

Hence the function

$$
\Sigma \exp \left(\frac{n}{2 \mu} \frac{c+s y}{c \cdot s y}\right)\left(\frac{d s y}{d y}\right)^{m "}
$$

is available for the positive construction. It has a pole at c whose order is $n-1$, for, according to convention, the order of a pole at c for a theta-Huchsian function $\theta_{m}(y)$ of index m is the exponent of $\exp \eta$ in the most important part of $\theta_{m}(y)(y-c)^{2 m}$.
If a pole of order $n-1$ at c is among those assigned to a thetaFuchsian function of index m which is to be constructed, the functions available, besides those that are finite at c, are n in number, namely,

$$
\Sigma \exp \left(\frac{r}{2 \mu} \frac{c+\Delta y}{c-s y}\right)\left(\frac{d s y}{d y}\right)^{m} \quad(r=1,2, \ldots, n) .
$$

Hence the rank of such a pole is n. This agrees with the general
rule that a pole of order h is of rank $\{h\}+1$ if we remember that here properly the order is infinitesimally greater than $n-1$, the integrer λ of $\S \S 5,6$ being infinite.
8. The negative construction is nomewhat simpler. The expression $\phi_{m}(z, y)(y-c)^{y_{m}}$ is a uniform function of $\exp \eta$, and has a simple pole when $y=z$, that is, when $\exp \eta=\exp \zeta$. Thusin the neighbourhood of this pole it behaves like
where

$$
\frac{A}{\exp \eta-\exp \zeta}
$$

$$
\begin{aligned}
A & =\mathrm{Lt}_{\nu=\mathrm{s}} \frac{(y-c)^{2 m}}{z-y}(\exp \eta-\exp \zeta) \\
& =-\frac{c}{\mu}(z-c)^{2 m-2} \exp \zeta .
\end{aligned}
$$

Let $\phi_{m}(z, y)(y-c)^{2 m}$ be expanded in descending powers of exp η. The successive coefficients will be functions available for the negrative construction. The coefficient of $\exp (-n \eta)$ will contain a term

$$
-\frac{c}{\mu}(z-c)^{2 \mu \mu-2} \exp n \zeta ;
$$

so that this coefficient has at c a pole of order n, or, rather, infinitesimally below n.

It is now easily seen that the rank of a pole at c is equal to the order in the case of a theta-Fuchsian function of negative index. F'orthe functions infinite at c that may be used in the negative construction when a pole of order n at c is among those assigned are the coefficients of $\exp (-\eta), \exp (-2 \eta), \ldots, \exp (-n \eta)$, and are therefore n in number.
9. The results reached may now be stated as follows:-By the negative construction it is possible to form a theta-Fuchsian function oj given negative integral iudec $-m$, all of whose poles shall be incliuded among certain points arbitrarily assigned with ranks respectively nut exceeding certain positive integers arbitrarily assigned, whose sum is not less than $q_{m+1}+1$. If this sum is $q_{m+1}+r$, then r such functions can be formed. By the positive construction it is possible to form a thetaF'uchsian function of given positive integral index >1 with any given poles, of any udmissible orders, with any assigned residues.

The rank of a pole of order h is $\{h\}+1$, and it must be borne in
mind that the order of a pole at a vertex lying on the circular boundary is infinitesimally above or below an integer according as the index of the function is positive or negative, since the integer λ is infinite for such a vertex. This convention will enable us to use the same numerical formulæ for elliptic and for parabolic vertices, although the proofs of these formule may not be the same.
10. With regard to theta-Fuchsian functions of index 1 , it is to be noted that none of them can have one simple pole only. This will now be proved.

Let $\theta_{1}(z)$ be a theta-Fuchsian function of index $1, c$ one of its poles; then the corresponding residue is

$$
\operatorname{Lim}_{z a c}(z-c) \theta_{1}(z) .
$$

Any point $s c$, into which c is transformed by an operation of the group, is also a pole, and the residue corresponding to $s c$ is
or

$$
\begin{aligned}
& \operatorname{Lim}_{z=s 0}(z-s c) \theta_{1}(z), \\
& \operatorname{Lim}_{z=c}(s z-s c) \theta_{1}(s z) .
\end{aligned}
$$

This is the same as the residue at c, since

$$
\theta_{1}(s z)=\theta_{1}(z)\left(\frac{d s z}{d z}\right)^{-1} .
$$

Also $\int \theta_{1}(z) d z$ taken along two corresponding sides of the generating polygon gives equal results and, therefore, when it is taken round the whole perimeter of the polygon, the result is zero; therefore, the sum of the residues of $\theta_{1}(z)$ at all its poles within the polygon is zero.
11. In the interpretation of this result, the residue at a multiple prole c is, as usual, to be taken as the coefficient of $\frac{1}{z-c}$ in the expansion in ascending powers of $z-c$; there are also special conventions relating to the vertices of the polygon when the sum of the angles in a cycle is not 2π. Take an elliptic cycle in which the sum of the angles is $2 \pi / \lambda$, and suppose the polygon transformed, if necessary, so that the cycle shall consist of a single vertex c. The expansion of $\theta_{1}(z)(z-c)\left(z-c^{\prime}\right)$, where c^{\prime} is the inverse of c with respect to the bounding circle, in powers of $\frac{z-c}{z-c,}$, contains only such powers as the $h \lambda$-th, where h is any whole number.

Let f, g be two corresponding points near to c on the two sides that meet at c. Suppose f, to be joined by an arc; then it will be necessary to take as the residue of a pole at c
 the value of

$$
-\frac{1}{2} \int_{t \pi}^{\theta} \int_{S}(z) d z
$$

taken along this arc, which must be so near c that the triangle fyr: does not include any other pole. Since the angle $f c g$ of the polygron is $2 \pi / \lambda$, this residue is $C \div \lambda\left(\begin{array}{cc}c & c\end{array}\right)$, where $(C$ is the absolute term in the expansion of $\theta_{1}(z)(z-c)\left(z-c^{\prime}\right)$ in ascending powers of. $(z-c) /\left(z-c^{\prime}\right)$.

For, if $h \neq 0$,

$$
\int\left(\frac{z-c}{z-c^{\prime}}\right)^{h \lambda-1} \frac{d z}{\left(z-c^{\prime}\right)^{2}}=\frac{1}{h \lambda\left(c-c^{\prime}\right)}\left(\frac{z-c}{z-c^{\prime}}\right)^{\Lambda \lambda},
$$

which has the same value at f, g; when $h=0$, we have

$$
\int\left(\begin{array}{l}
\left.z-\frac{c}{z-c^{\prime}}\right)^{-1} \quad d z \\
\left(z-c^{\prime}\right)^{3}
\end{array}=\frac{1}{c-c} \log \frac{z-c}{z-c^{\prime}},\right.
$$

which is greater at f than at g by $\frac{1}{c-c^{\prime}} \frac{2 \iota \pi}{\lambda}$.
If the vertex c is on the bounding circle and the substitution parabolic, let the substitution that turns of into cy be

$$
\underset{z-c}{1}=\frac{1}{z-c}-\frac{2 \mu \pi}{c},
$$

where μ is a real positive quantity. Then $\theta_{1}(z)(z-c)^{2}$ in the neighbourhood of c may be expanded in ascending integral powers .of $\exp \frac{1}{\underline{y}_{\mu} z+c} \underset{z+c}{z+c}$. Let the absolute term of this expansion be C. Then

$$
-\frac{1}{3 i \pi} \int_{\rho}^{y} \theta_{1}(z) d z=-\frac{\mu}{c} O,
$$

since any integral power of $\exp \frac{1}{2 \mu} \frac{z+c}{z-c}$ has the same value ut f and g. Thus $-\mu C / c$ must be taken as the residue in this case.

With these special conventions the sum of the residues is zero, and therefure, if there is only a simple pole, its residue must vanish, or a
theta-Fuchsian function of index 1 with only a simple pole cannot. exist.* Λ pole of rank 1 is to bo counted as simple.
12. It follows from the positive construction that the number of arbitrary coeflicicats in a theta-Wuchsian function of given index $m(>1)$ having given poles of assigned ranks is

$$
q_{m}+\text { the sum of the ranks. }
$$

We may hence find an expression for $q_{m}-q_{m-1}$ when $m>2$. Take a particular theta-Fuchsian function of index $1, \eta_{1}$, and let θ_{m} denote the most general theta-Fuchsian function of index m without poles, ϑ_{m-1} the quotient θ_{m} / η_{1}, so that ϑ_{m-1} is a theta-Fuchsian function of index $m-1$. The number of arbitrary coefficients in ϑ_{m-1} is the same as in θ_{m}, that is, q_{m}. Now the reroes and poles of η_{1} are poles and zeroes of $9_{\ldots-1}$ in general, but the vertices of the polygon again need special consideration. Suppose the vertex c to be a zero of order $h-\frac{1}{\lambda}$ or η_{1}, h being a positive integer. Then, since θ_{m} has a \%ero at c of order at least

$$
\left\{\frac{m}{\lambda}\right\}+1-\frac{m}{\lambda},
$$

$\overbrace{i \ldots-1}$ has a pole of order

$$
h+\frac{m-1}{\lambda}-\left\{\frac{m}{\lambda}\right\}-1
$$

at most ; the rank of this pole is

$$
\mu+\left\{\frac{m-1}{\lambda}\right\}-\left\{\begin{array}{c}
m \\
\lambda
\end{array}\right\}
$$

[^3]which exceeds the order of the zero of η_{1} by
$$
\left\{\frac{m-1}{\lambda}\right\}-\left\{\frac{m}{\lambda}\right\}+\frac{1}{\lambda} .
$$

This formula applies to an ordinary point by taking $\lambda=1$, and to a purabolic vertex by taking λ infinite, the result in either case being zero.
If, on the other hand, c is a pole of order $h+\frac{1}{\lambda}$, rank $h+1$, for η_{1}, then for $\vartheta_{n, 1}$ it is a zero of order

$$
h-\frac{m-1}{\lambda}+\left\{\frac{m}{\lambda}\right\}+1
$$

Now, for any theta-Fuchsian function of index $m-1$, it is, if not a pole, a zero of order at least

$$
\left\{\frac{m-1}{\lambda}\right\}+1-\frac{m-1}{\lambda} .
$$

The order of the zero being here greater than this by

$$
h+\left\{\frac{m}{\lambda}\right\}-\left\{\frac{m-1}{\lambda}\right\}
$$

the coefficients in ϑ_{m-1} are restricted by this number of conditions, which falls short of the order of the pole by

$$
\left\{\frac{m-1}{\lambda}\right\}-\left\{\frac{m}{\lambda}\right\}+\frac{1}{\lambda} .
$$

This is the same expression as before, and again it applies also to an ordinary point and to a parabolic vertex.

The number of zeroes of η_{1} exceeds the number of its poles by

$$
n-1-\Sigma \frac{1}{\lambda},
$$

where $2 n$ is the number of sides. The zeroes, generally speaking, are poles of ϑ_{m-1}, and increase the number of its arbitrary coeflicients; the poles, on the other hand, are generally zeroes of ϑ_{m-1}, and decrease this number. It follows from the discussion just given that the net effect is to raise the number of arbitrary coefficients from q_{m-1}, which it would be if ϑ_{m-1} had no poles and no assigned zeroes, to
nr

$$
\begin{gathered}
q_{m-1}+n-1-\Sigma \frac{1}{\lambda}+\Sigma\left[\left\{\frac{m-1}{\lambda}\right\}-\left\{\frac{m}{\lambda}\right\}+\frac{1}{\lambda}\right] \\
q_{m-1}+n-1+\Sigma\left\{\frac{m-1}{\lambda}\right\}-\Sigma\left\{\frac{m}{\lambda}\right\} .
\end{gathered}
$$

The summations are taken over the different cycles of vertices. 'This number would have to be incrensed if any of the restrictions arising from the zeroes that must be assigned to ϑ_{m-1} were necessarily sutisfied; but this cannot be, since it would imply that the function $\vartheta_{m-1} \eta_{1}$ or \forall_{m} could not possibly have the corresponding poles with mbitrary residues, which we know from the positive construction to be untrue.

It follows then that when $m>$ -

$$
q_{m}-q_{m-1}=n-1-\Sigma\left\{\begin{array}{c}
m \\
\lambda
\end{array}\right\}+\Sigma\left\{\frac{m-1}{\lambda}\right\} .
$$

This ceases to hold when $m=2$, since the positive construction is not available for the iudex 1. The result is, in fact, untrue. The number of abitrary coefficients in a theta-Fuchsian function of index 1 with poles and ranks nssigned is at most

$$
q_{1}-1+\text { the sum of the ranks, }
$$

since there cannot be just one pole of rank 1: Thus, by the above method, we find that
or', say,

$$
\begin{aligned}
& g_{2}-q_{1} \ngtr n-2-\Sigma\left\{\frac{2}{\lambda}\right\}+\Sigma\left\{\begin{array}{c}
\frac{1}{\lambda}
\end{array}\right\}, \\
& q_{2}-q_{1}=n-2-\Sigma\left\{\begin{array}{l}
2 \\
\lambda
\end{array}\right\}-v,
\end{aligned}
$$

where ν is zero or a positive integer, for $\left\{\begin{array}{c}1 \\ \lambda\end{array}\right\}=0$ always.
It follows by summation that

$$
q_{m}=q_{1}-1+(m-1)(n-1)-\Sigma\left\{\begin{array}{l}
m \\
\lambda^{2}
\end{array}\right\}-v .
$$

13. We can now discuss the formation of Fuchsian functions with assigned poles. Let 9_{2} be a theta-Fuchsian series of indox $\stackrel{2}{ }$, having a pole of order $\frac{2}{\lambda}-\left\{\begin{array}{l}3 \\ \frac{3}{\lambda}\end{array}\right\}$ for each cycle, and one other pole arbitrarily chosen. Thus it cannot be identically zero. It will have

$$
2(n-1)-\leq\left\{\frac{3}{\lambda}\right\}+1 \text { zeroes. }
$$

By the negative construction two theta-Fuchsian functions $\boldsymbol{\theta}_{-2}, \boldsymbol{\theta}^{\prime}$: rol. xexiri-no. 733.
can be formed of index -2 with $q_{8}+2$, that is,

$$
q_{1}+\varrho_{n}-1-\Sigma\left\{\frac{3}{\lambda}\right\}-v \text { arbitrary poles. }
$$

The zeroes of θ_{-2} or θ_{-3}^{\prime} or $A \theta_{-2}+B \theta_{-2}^{\prime}$ will be

$$
q_{1}+1-\Sigma\left\{\frac{3}{\lambda}\right\}+\Sigma \frac{2}{\lambda}-1
$$

in number, each cycle contributing $\frac{2}{\lambda}-\left\{\frac{3}{\lambda}\right\}$; since $A \theta_{-2}+B \theta_{-2}^{\prime}$ has an arbitiary zero as well as these at the vertices, it follows that $q_{1}-\nu$ is not negative, so that the poles of $\theta_{-2}, \theta_{-2}^{\prime}$ are at least as numerous as the zerocs of 9 .

Suppose then that the zeroes of ϑ_{2} are all included among the poles assigned to $\theta_{\ldots}, \theta_{-2}^{\prime}$, and take Θ_{-2}^{\prime} to be the reciprocal of ϑ_{2}, which is allowable. Then the product $\Theta_{-2} 9_{y}$ will not be constant, but will be a Fuchsian function having $q_{1}-v+1$ abitury poles, namely, the arbitrary pole of ϑ_{2} and the $q_{1}-v$ poles that are still to be assigned for $\Theta_{.2}$, and no others.

In this result, which depends on a combination of the positive and negative constructions, the poles assigned may be at the vertices as well as anywhere else, the proof needing very little modification for this case. The rank of a pole of a Fuchsian function is the same as its order, the conventions as to the order being derived from those fora thetn- Fuchsian function by taking the index of the function to be zero.
Now, as at Proc. Loud. Math. Soc., Vol. xxxi., p. 307, let $p+1$ be the least number of abitany poles that can be assigneal to a Fachsian function which is to have no others, and let y be the number of irreducible circuits, so that

$$
g=n-k+1
$$

where $2 n$ is the number of sides of the generating polygon, k the number of cycles of vertices. 'Then, from what we have just proved,

$$
q_{\mathrm{i}}-\nu \nless p,
$$

since a Fuchsian function with $q_{1}-\nu+1$ arbitrary poles and no others can be formed.*

[^4]14. Other inequalities to be satisfied by the numbers $p, q_{1},!$ many be found. liet u be an Abelian integral of the tirst kind; then $\frac{d_{n}}{\lambda_{z}}$ is a theta-Fuchsian function of index 1 , and is finite everywhere in the polygon and on its boundary. Conversely, if $\theta_{1}(z)$ is any such thetaFuchsian function, $\int \theta_{1}(z) d z$ will be a uniform function of z, finite everywhere within the polygon and on its boundary, and the values of this function at corresponding points in different polygons will only differ by multiples of certain modnli of periodicity, the multiples depending only on the particular polygous in question. Thus q_{1}, the number of thetr-Fuchsian functions of index 1 withont poles, is the number of Abelian integrals of the first kind, and the argument used iproc. Sumed. Meth. Sue., Vol. xaxi., p. 307) shows that this numberdoes not fall below ! $-p$. We have then
and, from § 13,
$$
g_{2} \nless!!-p,
$$
so that
\[

$$
\begin{aligned}
q_{1}-v & \nless p, \\
2 g_{1} & \nless!+\nu,
\end{aligned}
$$
\]

We must now investigate a superior limit for q_{1}.
15. The moduli of any two Λ belian integrals u, v of the first kind are comected by a well known bilincar relation found by evaluating $\int u d v$, taken round the perimeter of the generating polygon, as follows. Let $a b, c d$ be two corresponding sides, so that the expression to be eviluated contains the two terms $\int_{a}^{b} u d v, \int_{a}^{c} u d v$. Denote the values of u, v at a, b, c, d by $u_{a}, v_{a}, u_{b}, \ldots$. Then

$$
u_{a}-u_{c}=u_{b}-u_{d} \text { being a modulus for } u,
$$

$v_{a}-v_{c}=v_{b}-v_{d}$ being the conresponding modulus for v,
$\int_{a}^{b} u d v+\int_{d}^{v} u d v=\int_{a}^{n}\left(u_{a}-\mu_{r}\right) d v=\left(u_{n}-u_{r}\right)\left(v_{l}-v_{n}\right)=\left(u_{a}-u_{c}\right)\left(v_{d}-v_{c}\right)$.
pointe in respect to this process, recrard being had to the comventions. For any vertex may be one of the $\eta_{1}-\nu+1$ arbitrary poles of the process in the text, and, if the other poles are ordinary pwints to which the new process applies, the fanction with $\eta_{1}-\nu+1$ poles can bo reduced by subtraction of functions formed by the new process, so an to have only $p+1$ poles, one luang the vertex in fuestion and the restarbitrary. The same argment will apply if the pole at the vertex is to be of a higher order, the different orders being treated successively.
(2) 13

The whole integral, being the sum of a set of expressions typified by this, is therefore a homogeneous linear function of the moduli of u. Also the term just written

$$
\begin{aligned}
& =\left(u_{b}-u_{d}\right) v_{b}-\left(u_{n}-u_{c}\right) v_{a} \\
& =\left(u_{b}-u_{d}\right) v_{d}-\left(u_{a}-u_{c}\right) v_{c} \\
& =u_{b}\left(v_{d}-v_{b}\right)-u_{a}\left(v_{c}-v_{a}\right)+u_{b} v_{b}-u_{d} v_{u}-u_{d} v_{d}+u_{c} v_{c}
\end{aligned}
$$

Now the four last terms in this disappear on summation, and the expression sought is, therefore, linear and homogeneous in the moduli of v; in fact the effect of interchanging u, v is simply to change its sigu.

Since the modulus of periodicity for an integral of the first or second kind is zero in the case of an elliptic or parabolic sulbstitution,* the contribution of two sides connected by such Ω substitution to the integral just considered has been taken as zero. This needs no justification if the substitution is elliptic; but, if it is parabolic, there is a difficulty, as the vertex in which the sides mect is nul essential singularity of the functions.

This difliculty may, however, be casily avoided. Take the notration used for such Ω case in $\S \S 7,8,11$. We may replace the integral along $f c, c_{!}$(Fig. § 11) by that aloing f!. Now u, v are both unchanged by the substitution t, and they are, thercfore, both uniform functions of exp $(-\zeta)$, or, say, \%. The path in the \%-plane comesponding to $f g$ is a closed curve round the origin, and u, v are uniform, finite, and continuous in the domain of the Z-origin, so that $\int u d r$, taken round this closed curve in the Z-phanc, that is, along fy, will vanish; which was to be proved. A cycle of vertices lying on the cirentar boundary may be reduced to a single parabolic vertex, and will, therefore, now canse no difficulty.

Thus the value of $f u l$ b rond the perineter of the polygon is n. skew-symmetrical bilinear expression in the moduli of periodicity of n, v. 'This is true when the Abelian integrals u, v are of the first or second kind; but, when both are of the first kind, we have the result that this bilinear expression must vanish, since the uniform function $u_{d z}^{d r}$. has no pole within the contour of integration.

[^5]16. It should further be shown that the bilinear relation thus found between the moduli of u, v is not illusory. Now, if there are irreducible circuits on the closed surface into which the polygon is deformed by joining together corresponding sides, there will be at least two pairs of corresponding sides which separate each other; that is, if $a b, c d$ are one pair, and $e f, g h$ the other, the order in which these four sides are met with in going round the perimeter will be, say, $a b, e f, d c, h g .{ }^{*}$ Now cut the polygon in two by a line from l to d, and subtract the part $b \ldots e f . . . l$, adding the corresponding part of the polygon adjoining along lg . Thus, a, b, d, c are four consecutive vertices of the new figure; ab. still corresponds to $c d$; suppose $k l$ to be the side corresponding to bul, the polygon being thus $a b d c . . . l \ldots . . l k . . . g \ldots$. Cut this in two by a line from d 'to l and tak $\begin{aligned} & \text { off }\end{aligned}$ the piece $d c . . . h \ldots l$, adding on the corsesponding part of the polygon adjoining along $a b$; let m be the vertex of this polygon which corresponds to l; then, in the new polygon, m, b, d, l, k are five consecutive vertices, and $m b, l l$ correspond, as also do $b d, k l$.

Let S, I' lee the operations that turn $m l$ into $l l, b d$ into $k l$, respectively, and let us examine the way in which S, I' enter into the relations connecting the fundamental substitutions. The five points m, l, d, b, k belong to the same cycle of vertices, and the sequence I $S^{-1} T^{-1} S$ will oceur in the relation arising from this cyele (sce Actu Math., Vol. r., pp. 4.5-7) ; also the operations S, I' will not occur in any other of the relations. Thus the restrictions upon moduli of periodicity in general (1'roc. Lond. Math. Socc., Vol. xxxi., p. 305, note) are obeyed if we take arbitrarily the moduli corresponding to S, I, and make all the other moduli zero. This will secure the isomorphism referred to in the passage cited last.

Now, if this were the case with the functions u, v, t the value of $\int u d v$ round the rest of the perineter would be \%ero, and from $m b$ and $d l$ we should have the contribution

$$
\left(u_{d}-u_{l}\right)\left(r_{l}-v_{d}\right),
$$

[^6]from $b d$ and $l k, \quad\left(u_{1}-u_{d}\right)\left(v_{1}-v_{u_{d}}\right)$.
The sum of these does not vanish identically, and hence the condition cannot be illusory.
17. If there are other pairs of corresponding sides that separate each other, this reduction may be carried further so as to bring the polygon to a canonical form. Suppose $a^{\prime} b^{\prime}, c^{\prime} d^{\prime}$ to be a pair of corresponding sides, and $e^{\prime} f^{\prime}, g^{\prime} h^{\prime}$ mother. the order of the vertices being
$$
a^{\prime} b^{\prime} \ldots e^{\prime} f^{\prime} \ldots m b d l k \ldots l^{\prime} c^{\prime} \ldots l^{\prime} g^{\prime} \ldots .
$$

Cut off the part $k \ldots d^{\prime} c^{\prime}$ and add on the corresponding part of the polygon adjoining along $a^{\prime} b^{\prime}$; let k^{\prime} be the vertex of this polygon corresponding to k; then the order of letters in the new perimeter is

$$
\text { "'k'... } l^{\prime} \ldots . . e^{\prime} f^{\prime} . . . m b u l l l k c^{\prime} . . . h^{\prime} g^{\prime} . . .
$$

and a'lc', cik are corresponding sides.
Now let the process of $\S 16$ be nsed, the sides $n^{\prime} l^{\prime}, c^{\prime} f^{\prime}, k c c^{\prime}, h^{\prime} g^{\prime}$ taking the place of $a b$, ef, $l c, h g$. The result will be to bring together two sets of four sides, in each of which the first and third correspond, as also the second and fourth.

If two more pairs of sides separate ench other, the same process may be applied again, and so on, until all such pairs are exhausted. Then the perimeter will consist of a series of sets of four sides, in ench of which the first corresponds to the third, the second to the fourth, followed, possibly, by a series in which wo two pairs of corresponding sides separate each other. If this latter scrics exists. it most inclucle some pair of corresponding sides aljacent to cach other, their common ond forming a cycle by itsolf. Let abcd... denote the part of the perimeter now being considered, of, if the first pair of adjacent corresponding sides. Cut off the part a...of and add on a corresponding piece of the polygon aljoining aloug fy; then the number of sides is not increased, but the first two have been made to correspond. In the same way the next two may be made to conespond, and so on till every side in this part of the perimeter is adjarent to the corresponding side. The order of the vertices will now be, with changed notation,

$$
a_{1} b_{1} c_{1} d_{1} a_{2} b_{2} c_{2} d_{2} \ldots, a_{k} b_{k} c_{k} d_{k} r_{1} f_{1} r_{2} j_{2} \ldots, e_{\rho} f_{\rho}
$$

corresponding sides being

$$
\begin{aligned}
& a_{i} b_{i}, c_{i} d_{i} ; b_{i} c_{i}, d_{4} d_{i+1} \quad(i=1,2, \ldots, \kappa-1) ; \\
& a_{k} b_{k}, c_{k} d_{*} ; b_{k} c_{k}, l_{k} e_{1} ; e_{i} f_{i}, f_{i} c_{i+1}(i=1, \underline{2}, \ldots, \rho-1) ; e_{\rho} f_{\rho}, f_{\rho} a_{1} .
\end{aligned}
$$

(Compare Klein, Mfath. Amalen, Vol. xxı., p. 184.)
18. Let S_{i}, T_{i}, U_{i} denote the substitution by which $a_{i} b_{i}, b_{i} \varepsilon_{i}, e_{i} f_{i}$ are transformed into the sides corresponding to them respectively. Then the restrictions on moduli of periodicity for Abelian integrals of the first two kinds are simply that those corresponding to

$$
U_{1}, U_{2}, \ldots, U_{\rho}
$$

shall vanish ; the others are arbitrary.
Let A_{i}, B_{i} be the moduli corresponding to S_{i} for the functions u, v respectively, and $A_{i}^{\prime}, B_{i}^{\prime}$ those corresponding to T_{i}^{\prime}. Then the bilinear relation to be satistied if u, v are everywhere finite is

$$
\sum_{i=1}^{*}\left(A_{i} B_{i}^{\prime}-A_{i}^{\prime} B_{i}\right)=0 ;
$$

this is the well known form.
19. Thus, if any number j of Abelian integrals of the first kind are known, the moduli of periodicity for each of these, as also for any others, must satisfy j linear equations, which are all independent; if they were not, the systems of moduli for the j known functions would not be linearly independent, and, therefore, the j functions themselves would not be. This is made very clear by the form in which the bilincar relation was written at the end of § 18 .
Thus the q_{1} sets of moduli belonging to the q_{1} Abelian integrals of the first kind are common solutions of q_{1} linear equations. Since the number of moduli in each set is g, it follows that

$$
g-q_{1} \nless q_{1}
$$

${ }^{\circ}$

$$
2 q_{1} \ngtr g .
$$

But now

$$
2 q_{1} \nless g+\nu,
$$

where ν is zero or positive. It follows that $\nu=0$, and

$$
q_{1}=\frac{1}{2} g=\frac{1}{2}(n-k+1) ;
$$

ulso $\quad p \ngtr q_{1}-\nu$ and $\nless g-q_{1}$, so that $p=q_{1}$;
these are the desired results.
We have further, when $m>1$,

$$
q_{m}=\frac{1}{2}\left(n-l_{i}-1\right)+(m-1)(n-1)-\Sigma\left\{\frac{m}{\lambda}\right\} .
$$

(Compare Acta Math., Vol. I., p. 266.)
20. Lastly, it must be possible to express all theta-Fuchsian functions of index >1 and without poles as theta-Fuchsian series (Acta Math., Vol. I., pp. 244-246, 285). For, if of the q_{m} such functions of index n not more than $q_{m}-1$ can be expressed as series, the coefficients C_{0}, C_{1}, \ldots of $\S 1$ must be linear combinations of these $q_{m}-1$, and thus by the negative construction a theta-Fuchsian function of index $1-m$ can be formed with q_{m} assigned poles only. More generally $r+1$ can be formed with $q_{m}+r$ given poles and no others, and two of these, say $\theta_{1-\ldots}$ and $\theta_{1-\ldots}^{\prime}$, will have $r-l$ assigned zeroes.
Let these $r-1$ zeroes be the poles of any particular function θ_{m-1} of index $n-1$, and assign the zeroes of θ_{m-1} among the $q_{m}+r$ poles of $\theta_{1-m}, \theta_{1-m}^{\prime}$. The sum of the orders of the poles thus assigned is

$$
r-1+(m-1)\left(n-1-\Sigma \frac{1}{\lambda}\right),
$$

and the sum of their ranks is easily found to be

Thus

$$
r-1+(m-1)(n-1)-\Sigma\left\{\frac{m}{\lambda}\right\} .
$$

$$
q_{m}+1-(m-1)(n-1)+\Sigma\left\{\frac{m}{\lambda}\right\} \text { or } q_{1}
$$

of the poles of $\theta_{1-m}, \theta_{1-m}$ are still at our disposal. Now we may take the reciprocal of θ_{m-1} to be $\theta_{1-m,}^{\prime}$, and thus the product $\theta_{m-1} \theta_{1-m}$ is not a constant, but is a Fuchsian function having q_{1} arbitrary poles and no more. This is impossible, since $q_{1}<p+1$.

Thus every thetn-F'uchsian function withont poles, of index >1, can be expressed as a theta-Fuchsian series. If a theta-Fuchsian function of index >1 has poles, a theta-Fuchsian series can be formed by the positive construction with the same poles and residues and the same index; the difference between this series and the function will be a theta-Fuchsian function without poles. Hence every theta-luchsian function of index >1, with or without poles, can be expressed as n series of Poincaré's form.

Also the product of a theta-Fuchsian and a Fuchsian function, or of two theta-Fuchsian functions, is a theta-Fuchsian function. Thus, any Fuchsian function or theta-Fuchsian function of index 1 can be expressed as the quotient of two theta-Fuchsian series.
[I am indebted to the referees for pointing out some flaws in this article as originally written. The effect of their suggestions has been a considerable increase in its length.]

[^0]: * In my former paper this number was deooted by c.

[^1]:

[^2]: *On this point see Klcin's paper (Math. Aun., Vol. xl., pp. 130-139). The conclusion is that an automorphic group may quite well be generated by a polygon with a hyperbolic cycle, but that as a fundamental region this polygon is incomplete. Parts of the urea within which the corresponding functions exist are not represented on the polygon, that is, cannot be brought into the polygon by any of the operations of the group.
 Take, for instance, a Fuchsian group of real substitutions generated by a polygon, two of whose corresponding sides $O F, O G$ tonch at the origin O, F, G being collinear with O, as shown. The substitution that turns $O G$ into $O F$ is of the form

[^3]: *We have hore a reason for not expecting theta-Fuchsian series of index 1 in tho first, second, or sixth family to converge absolntely. For, if they did, the function $\phi_{1}(c, z)$ of $\$ 1$ would exist, and wonld be a theta-Fuchsian function of z of index 1 with a simple pole at c and no other, in contravention of the theorem here provel. The same argument applies also to theta-Kleinian series when any of the regions within which the corresponding functious exist is only of finite extent. Another proof is given by Ritter (Math...inn., Vol. xir., p. i8). Limemam. on the other hand, has tried to prove the contrary (Ifunchrner Sitaurywhrocher, Vol. xxix., plp. 423-451).
 It is possible that such series may converge cunditionally ; for the two sories

 $$
 \phi_{1}\left(c, s_{1}=\frac{d s_{1} z}{d z} \text { nud } \varphi_{1}(c, z)\right.
 $$

 e:onsist of the same terms, but in different orders, and, if the convorgency is comditional, we cannot conclude that their sums are equal.

[^4]: - It may not be superfluons to point out that, if by some other process it should be possible to coustruct Jiochnian functions with a lower numher of anhitrary pohen. so that $p<\Omega_{1}^{-\nu}$, the vertiees of the polygon would still bubave like ordinary

[^5]: " I'roc. Lourl. Math. Soc., Vol. xxxi., pp. 305, 307.

[^6]: * It in casily seen that if mo two paire of emjugate sides separate ench other, there must be wides adjacent to their conjugatew. These pairs being fantened together, the resulting surface must again have sides adjacent to their conjugates. Fartening these together, and continuing tho process, we arrive in the oud at a simply connected closed surface.
 t They would not of course bo integrals of the first kind: but for the present purpose that doee mot matter, the ohject beiner to show that, a relation which must be natisficd when they aro of the first kind is not generally satisfied when they are not of the first kind.

