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On the Function which denotes the difference between the number
of (4m+1)-divisors and the number of (4m+3)-divisors of a
Number. By J. W. L. Graisger, M.A., F.R.S.

[Read Feb. 14th, 1884.]

1. The excess of the number of the divisors of a number » which
have the form 4m+1 over the number of divisors which have the
form 4m+ 3, is & quantity which occurs in researches connected with
the Theory of Numbers, and also as coefficient in certa.ln systems of
g-series in Elliptic Functions.

If we denote this quantity by F (), so that

E (n) = number of divisors of # of the form 4m+1 }
- ” » ”» dm+3

then it is obvious that, if » = 2°r, where r is uneven (so that r is the
greatest uneven divisor of n), we have F (n) = E (7).

It is also easy to see that, if n be a number of the form 4m+3,
then E (n) = 0, for to every divisor of the form 4m+1 there must
correspond a conjugate divisor of the form 4m+3. It can be shown
also that F (n) cannot be negative (see § 2). -

2. In §40 of the Fundamenta Nova, Jacobi states that, if n = 2”uv,
where « is an uneven number having all its prime factors of the form
4m +1, and v an unéven number having all its prime factors of the form
4m+3, then B (n) =0 unless v is & square number, in which case

| B (n) = ¢ (),
where ¢ (u) denotes the number of the divisors of .

This important theorem may be proved in the following manner.
The case of n uneven need alone be considered, as the uneven divisors
of 27uv are evidently identical with those of uv:

As already remarked, the theorem is obviously true if n is of the
form 4m+ 3, for the product of two factors, both of which are of the
form 4m 41 or 4m+3, is of the form 4m +1 ; so that, in the case of a
number of the form 4m +3, there corresponds to every divisor of the
form 4m 41 a conjugate divisor of the form 4m+38; and the number
of divisors of the one form is therefore equal to the number of divisors
of the other.

If » is of the form 4m+ 1, suppose, first, that it = a*b% ..., where
a, b, ¢, ... are all prime factors of the form 4m+3. Then the divisors
of n are the terms in the developed expression obtained by multiply-
ing out the factors in the product

(l=—at+@—..ka)(l=b+b. £b)(A—ct ...+ ...
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The sign of each term in the developed expression is positive in the
case of a divisor of the form 4m+1, and negative in the case of a
divisor of the form 4m+3. Thus E (n) is equal to the value of this
product when a, b, ¢, ... are all replaced by unity; whence it follows
that B (n) = 0, unless a, 0, v, ... are all even,in which case F (n)=1.
Next, suppose that n = a*b% ... #s°t" ... where g, b, ¢, ... are, as beforo,
prime factors of the form 4m+3, and where 7, 4,¢, ... are prime
factors of the form 4m+1. Then, reasoning as above, we see that
E (n) is equal to the value of
(l—a+d’.. . £a)(1=b+0"..£b) ...

X(A+r+2. 4+ r)Q+s+s...+5) ...,
when a, b, ... 7, 8, ... areall replaced by unity.

Denoting, as above, by ¢ (p) the number of divisors of p, we havo
therefore L (n) = E (a*b ...) X ¢ (rs°C"...),
which, by means of the result found in the first case,

=¢ (st ...) or O,
according as a, 8, y, ... are all even, or are not all even.

It has thus been shown that E (n) = 0 unless all the prime factors
of n, which are of the form 4m+-3, occur with even exponents; in
which case, if n = 2°uv?, all the prime factors of % being of the form
4m+1, and all the prime factors of v of the form 4m+3, then
E(n) =¢ (u). We see also that F(n) cannot ever be negative.

3. It follows from the preceding investigation that, if n = n,n,n, ...,
where n,, 25, n, ... are any relatively prime numbers, then

E(n) =E () E (ny) E(n) ...
It is evident that, if p be a prime of the form 4 +1, then
E(p) =r+],
and that, if p be a prime of the form 4m 43, then
E(p)=1 or 0,
according as 7 is even or uneven.

Also E@Q)=1.

By means of these formule we may write down atonce the value of
E (n), when n has been resolved into its prime factors. For example,
since 495000 = 23 x 3*x 5* x 11,
we have B (495000) = 1x1x5x 2 = 10.

4. Tho following table, which was calculated in tho manner just
explained, contains the values of ¥ (n) for all the valucs of n, up to
n= 1000, for which E (n) is not equal to zero.
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TaBLE oF TRE VALUES OF K (n) FrRoM n =1 10 = = 1000.

n (Ex)f n {E@)] n (B} n (BE@)] n (E®)] n l E(n)
1{ 1 §136( 2 |293| 2 J464| 2 640 | 2 |80} 4
2] 1 J137| 2 J296 | 2 J466| 2 fe41| 2 |82l 2
41 1 J144| 1 §298] 2 1468 | 2 |648( 1 |89 2
51 2 |145] 4 J305( 4 j477| 2 |650| 6 832 2
81 1 J146| 2 1306 2 J481 ] 4 653 | 2 §833| &
9] 1 148 2 313 2 482 2 J656] 2 |84} 3
10 2 J149| 2 }§314| 2 1484 | 1 657 | 2 J842| 2
13| 2 | 153 2 317 2 |485| 4 J661| 2 |845| 6
161 1 f157| 2 |320] 2 f488| 2 666 | 2 848 2
171 2 J160| 2 }324 (1 1 490 2 J673| 2 |85 6
18 1 J162| 1 |325| 6 |493| 4 674 2 83| 2

20( 2 Jlo4| 2 328} 2 500 4 p676 | 3 87| 2

251 8 |169( 8 1333 2 |505] 4 J677| 2 |85 4

26| 2 170 | 4 337 2 509 2 J680 | 4 86| 2

291 2 |173| 2 338 3 |512] 1 J6851 4 |82 2

321 1 1781 2 §340| 4 §514 2 689 | 4 {873 2

34| 2 1180 2 U461 2 |520| 4 [692| 2 §877| 2

36| 1 |181 | 2 J349| 2 o521 2 §697 | 4 |81 2

37| 2 {1851 4 353 2 [522| 2 f698( 2 |82 1

401 2 J193| 2 1356 | 2 529 1 J701| 2 884 4

41 2 |194; 2 f360| 2 530 4 J706 | 2 |89 4

451 2 {196 1 361 1 |533) 4 f709| 2 |898( 2

49| 1 [197 ] 2 362 | 2 588 2 f712] 2 J900| 3

50| 3 J200 | 3 |365] 4 J541( 2 1720 2 J9o1{ 4

52 2 1202 2 §369| 2 |544| 2 §722| 1 J904| 2

53| 2 205 4 |370( 4 545 4 J724) 2 905 4

581 2 208 2 {373 2 [S548( 2 p725f 6 Q909 | 2

61| 2 J212| 2 |377| 4 549 2 1729 1 J914] 2

64| 1 218! 2 |38 | 2 [554| 2 |730| 4 |96 2
65 4 221 4 388 2 557 2 733 2 925 6

68| 2 225 3 389 2 |o562| 2 |738) 2 928 2
721 1 §226) 2 392 1 J565) 4 J740] 4 J929] 2
731 2 J229( 2 394 2 569 2 f45| 4 J932| 2
74 2 1232 2 [397| 2 576 1 J746] 2 1936 2

80| 2 J233| 2 J400| 3 [o577| 2 | 754 4 J937| 2

81| 1 234 2 §401 | 2 |578| 3 757 | 2 J941| 2

82| 2 241 | 2 J404 | 2 580 4 j761] 2 J949( 4

85| 4 |242 ] 1 J405| 2 |584| 2 J765| 4 J9s3| 2

89| 2 244 | 2 J409| 2 585 4 1769 2 1954 2

90| 2 J245] 2 |410| 4 |586| 2 J772| 2 J961} 1

97| 2 1250 4 §416| 2 §592| 2 773 2 962 | 4

981 1 1256 ] 1 |421 ) 2 |593| 2 J776 | 2 |964]| 2

100 3 {257 2 |424( 2 [596| 2 | 778 2 965 | 4

101 2 |260 ] 4 |425| 6 601 | 2 {784 1 J968} 1

104 | 2 |261f 2 1433] 2 J605[ 2 |78 4 970 | 4

106 2 1265 4 {436 2 |610| 4 J 788 2 1976 | 2

109 2 269 | 2 441 | 1 J612| 2 f793| 4 J977| 2

113 | 2 J272| 2 | 442 | 4 }613] 2 }794) 2 980 2

116 | 2 | 274 2 |445| 4 |617) 2 |797 | 2 |981( 2

117 | 2 J277 ) 2 J 449 2 Je625| 5 J800| 3 ]985] 4

121 | 1 1281 2 1450( 3 J626| 2 |801| 2 J986} 4

1221 2 |288) 1 452 | 2 p6281 2 f808| 2 997} 2

125 4 [280( 8 | 467 2 |629( 4 [809] 2

1281 1 | 200 4 |458| 2 J634| 2 |810| 2

130 [ 4 2921 2 J461 ] 2 J637| 2 |818] 2
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The number of arguments for which H (=) is not zero, and the sum
of the values of E () for each hundred numbers, are as follows :—

Number of arguments. Sum of values.

0—99 42 76
100-199 36 79
200—299 35 82
300-—-399 31 74
400499 32 80
500—599 . 32 e 80
600—699 o 31 81
700—799 w30 we 75
800 - 899 28 e 73
900-999 30 79
Total 0—999 w327 we 779

5. The following two formulse serve to express E (n) linearly in
terms of the E’s of numbers less than n.

I
If % be any uneven number, then
E(n)-2E (n—4)+2E (n—16) ~ 2B (n—36) + &c.
=0 or (=1)\Vr-Vx /n,
according as n is not, or is, a square number.

Every term in this formula is zero if » is of the form 4m + 3, so that
no generality is.lost by restricting n to the form 4m + 1.

IL
If n be any number,

E(n)—E (n—1)—E (n—3)+E(@—6)+FE (n—10) — &e.
=0 or (—1)"x}{(=1)~E -0y /(8 41)—1},
according as % is not, or is, a triangular number.

The numbers 1, 8, 6, 10, ..., which occur in the second formula, are
the triangular numbers, given by the formula 47 (r+1), and, if n be
itself a triangular number, the last term is B (n—=) = 0. The signs
of the terms after the first are negative and positive in pairs, the
terms involving even triangular numbers in the argument having the
positive sign, and those involving uneven triangular numbers having
the negative sign. ’

Both formuls are to be continued up to the term preceding the
first term in which the argument becomes negative, t.e., a term with
negative argument is to be treated as zero. 1t may be noticed that,
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if wo define E (n—n) to denote
(=)' x § {(—1pVEnn-tx /(8ut+1)—1},
then it follows, from II., that the expression
E(n)—E (n—1)—E (n—3)+ E(n—6) + I (n—10) —&e.
is equal to zero for all values of » ; and this is perhaps the most con-
venient form in which to enunciate the theorem.
The following are examples of the formule. Putting # = 77 and
81, the formula I. gives
E (77)—2E (73)+2E (61)—2E (41)+2F (13) =0,
and E (81)—-—2E (77)+2E (65) —2E (45) +2H (17) = (=-1)i0-Nix9;
that is, 0-2x24+2x2—-2x2+2x2=0,
1— 0 +2x4—-2x2+2x2=19,
Putting n = 20 and 21, the formula II. gives
ER0)—EQ19)—E(17)+E (14)+E (10)-E(5) =0,
and ER1)—E (20)—-E(18)+E(15)+E(11)—E (6)
= (=1)"x}{(=1)x13-1},
that is, 2—0—-2+0+2—-2=0,
and 0-2-14+04+0—0=-3.
6. The formule in the last section are of the same kind as Euler's
celebrated formula
Y @)=Y (n-1)—¢ (n—=2)+y(n-5)+y (n—7)—... =0,
where { (n) denotes the sum of the divisors of n; the numbers
1,2, 5, 7, ..., which occur in the arguments, are the pentagonal num-
bers given by the formula 4r(3r+1); and ¢ (n—n) is defined to
denote n. Euler regarded this formula as very remarkable, sinco it
affords a means of calculating the sum of the divisors of = by a pro-
cess in which none of the operations have any reference to the divisors,
which remain unknown.*
7. The equations I. and IL. were obtained by Elliptic Functions ay
follows : —
Denoting 2K by p, we have the following formulss :
m™
IApt = 2qt +29% + 2¢% +2¢% + &o.,
Fipt = 1—29+2¢*—2¢°+ 29— &c,,
Ikl = 201 —6gt + 10g% — 149%¢ + &e.,
* «]loc autom morito eo mirabilius videtur, cum nulla operatio sit instituta,
que ad rutionem divisorum ullo modo roferri queat ; quin otium divisores, quorum

swimna per hane regulam reperitur, ipsi manent incogniti, elinmsi sieps ex conside-
rationc ipsius summae concludi possint.”? — Opera Arithmetica Collieta, Vol. i, p. 150,




1884.] Mr.J. W. L. Glaisher on the Function I (n). 109

244 24 24t 2qt
o=
and also P 1+q‘+1+q§+1+qi+l+qi

=2{E (1) ¢+ B (5) ¢+ F (9) ¢+ E (13) g% + &c.},

. 4q3 4q10 4 14
I =1— A .
o 1+¢ 1+q T TIrge &

=1—-4E (1) ¢ +4E (2) ¢*—4E (8) ¢*+4E (4) ¢F—&e.;

whence we deduce the identical equations

- 10g% —144%
2 {B(1) g+ B (5) gt 4B (9) g+ o} = 22 23?5;4 e

28 —6g% +10¢%¥ —14¢¥ + &o.
1-4E(1 E(2)g*— =L T
(1) ¢ +4E(2)g"—4E(3)¢" + &e. 2t + 21+ 2% + 2¢% + &o.
Dividing by ¢! in the first equation, and writing ¢t for ¢ in the
second, we ha,vq

1-3¢+5¢°— 79" +9¢®~&e. .
E E 5 2 = cor .
5 (1)+E(5)9+E () ¢+ &e 1—2q+2¢"— 2¢°+ 29" — &e. @,

) ' 1—8¢+5¢"—7¢%+9¢"°— &o.
1-4E (1) g+ 4E S_4F (3) ¢*+ &e. = g q q q
Mq (2)q X} C T+g+q q 7+ &e.

............ (ii.)
Thus 35 B (4n+1) @' X320 (=1)"¢" = 2 (= 1)" @0+1) g,
{1+4’El (_l)nE (,n) qn} X 20 q!n(vnl) o 2:’ (_l)n (2n+1) q"'("'l),

The formule I. and II. may be deduced from these results by equating
the coefficients of ¢”.

8. The following investigation is given here ‘on account of the
similarity of the resulting formula (which involves the difference be-
tween the sums of the even and uneven divisors of a number) to
formula II. of § 5. We have

(1-¢"Q—=g1—¢)... S 4004 o+ &o. -
(—-P(—g)... | HIrerereTde;

whence, taking the logarithm and differentiating,
9 43¢ 4 8¢ _ 2 _ 4 _ 6 _
1—g + g + i—¢ + &e. g I-¢ L‘"Iﬂ &e.
q+3q +6¢°+10¢"+15¢" + &e.
14+9+¢"+¢"+9°+ ¢+ &e.

Now, if we denote by ¢ (n) the excess of the sum of the nneven
divisors of & over the sum of the even divisors [so that { (n) =¥ (n)
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when % is uneven, and { (n) is negative when » is even], then it is evi-
dent that the left-hand member of this equation

={(1)g+{(@) ¢#*+{(3) ¢ +1(4) ¢*+ &e,,
and we therefore find

1 ) ' +-2(3) P +Z (4) ot = 9+3¢°+6¢°+109" + &e.
L) G+ R §H®) O+ () o'+ do. = IO b

Writing this equation in the foorm ~ eeeeneeen (iii.).
27 ¢ (n) " X ] gheD = 37 u (n+ 1) g,
and equating the coefficients of ¢", we find that
{(m)+{ (n—1)+{(n—-3) +{(n—6)+{ (n—10) + &e.

=0 or n,

according as = is not, or is, a triangular number.
If, thevefore, we define { (n—n) to denote —m, we have
{()+{(m—1)+¢{(n—3) +((n—§) +¢{(n—10)+&c. =0
for all values of n.

As examples of the formula, putting » = 20 and 21, as in Formula
11, § 5, we find

£(20)+2 (19)+ (17) +£ (14) +L (A0) +£ (5) =0,
2(21)+£(20) +¢ (18) +£ (15) +£ (11) +2 (6) = 21;
that is —30+20+18—8—-6+6=0,
32—30—13+24+12—4 = 21
9. The formula (ii.) may be expressed in a form corresponding to
(iil.) ; viz., we have

E(l) g—E (2) ¢ +E (3) ¢'—E (4) ¢*+ &o. = =L +20° 2"+ &e.

14+9+¢ +¢°+ ¢+ &e.

RN (A A 8

1 9) o? 4) ot = q+3¢°+6¢°+10¢" + &e.
g+ L) P+ O+ (W) g+ o = IO
the numerator in the first equation being =~ ceaeceeeeen (iti.),

q_qs+2qu_2qlo+3gw_3qﬂ+4qzs_4qso+&c‘

This expression is evidently divisible by 1-—¢% and, when divided

by this factor, the quotient is
q+29°+2¢°+ 3¢" + 39" + 3¢" + 4™ + 4% + 4% + 4™ + 5¢° + &c,,
where the law of the terms is that, if ¢, &, &, ... denote the tri-
angular numbers 1, 3, 6, 10, ..., then the only exponents that occur
are the numbers ,
oty lwa+2, b +4, .. bty +2r—2
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(<.e., the r even numbers intermediate to ¢,,.,—2 and &, if #,_, and &,
are even, and the » uneven numbers mtermedmte to these limits when
t,, 1 and &, are nneven), and the coefficient of each of these terms is 7.

10. Replacing —— 1 by 1+¢ +¢*+ ¢+ &e., we thus find

{E1)¢—E(2)¢ +E(3)Q‘ E(4)¢* +&c.} x {1+¢ +¢' +¢"+¢* + &e.}
_q+2¢ +2¢° +3q‘“+3q‘7+3q‘°+&c
l4+g+¢+¢"+9°+¢" + &e.

Now, let S (2n—1)=E (1)+E 8)+E(5) ...+ E (2n—1),
8 (2n) = E(2)+E (4)+E (6) ...+ E (2n) ;
then the left-hand member of this equation is
8(1)¢=8 (D) ¢+8(3) ¢~ 8 (4) ¢' +&e,

and therefore

—8(2) o 3_8 (4) ot _Q+2’l +2¢°+39" + &e.
SO z=S @ +8®) ¢—8 (4 g+ e =L UL

Equating the coefficients of ¢” in the equation
2;‘ (__1)1:-! S (n) qn X 2: qlu(lul) - q+2qﬂ+2q8+3q15+&c"
we find that
Sn)—S(n-1)—8(n—3)+8S (n—6)+8 (n—10)—&c.
=0 or (-1)*'r,
according as % is not, or is, one of the numbers
tir-h t?r-l+2; LEERY tzr_|+2')'—2.
This theorem majy also be enunciated in the following singular form :
. Counting S(0), when it occurs, as a term, though assigning to it
the value zero, then
S(n)—-8(n—1)—8 (n—38)+8 (n—6)+8S (n—10) - &c.
is zero, (i.) if the number of terms is uneven, or (ii.) if the argument
of the last term is uneven; but (iii.), if the number of terms is even
and the argument of the last term is also even (0 being regarded as
an even argument), then it is equal to
(—=1)"-' x 1 number of terms.
As examples of the three cases, let » = 90, 98, and 99. The theorem
gives G.)
S (90)—S (89)—8 (87) + 8 (84) + 8 (80)— S (75)— S (69)
+S(62)+ S () -S@MN =S BN+S @ +8(12) =0

3
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(ii.)
8 (98)—8(97)—8 (95) + 8 (92) + S (88) —S (83)—S (77)
+8(70) + 8 (62)—S (53) - S (43) +S(32) + S (20)—8(7) =0,
(iii.)
S(99)—-8(98)—S (96)+S(93)+ S (89)—S (84) -8 (78)
+8(71)+8 (63)—S (54)—S (44)+S (33)+S (21)—8 (8) =7.
In (i) the positive terms are 36+34+32+244+22+ 9 +5 = 162,
and the negative terms are 37+35+30+28+19+13 =162.
In (ii.) the positive terms are 37 + 86+ 34 +27+24+1249 = 179,
and the negative terms are 39+37+31+30+22+17+43 = 179.

In (iii.) the positive terms are 39 +37 +37+28+24+13+8 = 186,
and the negative terms are 37+36+34+30+22+17+43 = 179;
the difference being 7, as it should be.

The formula affords a complete verification of the accuracy of the
values of a table of E (n),for it involves all the arguments less than any
given number %, and in such a manner that all the even-argument
terms have one and the same sign, and all the uneven-argument
terms have one and the same sign. Whenever, therefore, a term
E (r) enters, it occars with the same sign, and an error in it would
produce an increased effect (and could not be neutralised) by its
repeated occurrence in the S-terms.

This will appear also from the developed form of the S-expression
given in the next section.

11. The expression

=D {S ()-8 (n=1)—8 (n—3)+8S (n—6)+8 (n—10)—...}
is identically equal to the coefficient of ¢* in the product '

{EQ1)9—E (2)¢'+E (3) ¢*—&e.}
x{1+¢'+q'+¢’+¢" +¢°+¢"+&e.}
x{l4+q +¢'+¢'+¢"+4" +¢4" + &c.}.
Now we find by maultiplication
(I+¢'+g'+0°+ P+ &) x (1+g+¢* +¢°+4°+ &e)

1 .
+q+¢*
+2¢88+¢*+2¢°
+2¢°+2¢" +24°+ 24
+3q‘°+29“+3q"+2q“+3!]"
+3% 4+
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where the coefficients are
1

1,1
2,1, 2
2,222
'3,2,3 2 3
3,8333,38
4,8, 4,8, 4, 8,4
4,4, 4, 4, 4, 4 4, 4

The successive groups of terms contain one, two, three, four, &c.
members. The groups containing an even number of members con-
_sist of repetitions ; e.g., the group of four consists of 4 twos, the group
of six of 6 threes, &c. ; the groups containing an uneven number of
members consist of alternations, e.g., the group of three is 2, 1, 2; the
group of five is 3, 2, 3, 2, 3; and, in general, in & group containing 27
members, each coefficient is equal to r, and in a group containing
2r+1 members, the coefficients are

r+1, r; r+1, ... 7, r+1;
‘t.e,, they are r+1 and r alternately, the first and last being »+1.
It follows, therefore, that .
S®)-S8S(n-1)—8S(n-8)+8 (n—6)+8S (n—-10)—...
is identically equal to
E (n)
—E (n—=1)+E (n-2)
—2E (n—3)+E (n—4)—2E (n—5)
+2E (n—6)—2E (n—7)+2E (n—8)—2E (n—9)
+3E (n—10)—

(X1} soe oo ceee

- e £rE (1),

We notice that no term in this expression has a zero coefficient,
which is in accordance with the remark made at the end of the last
section.

12. Since the triple product considered in the preceding section is
equal to q+2¢°+2¢"+3¢"+3¢"+3¢" + &o,
we find, by equating coefficients, the valuc of the E-expression for
any given value of #, and we thus obtain & theorem which may bu

enunciated in the following curious form :
VOL, Xv.—No. 222, I
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If » be any number, then
B (n)
—E (n—-1)+E (n—2)
—2F (n—3)+FE (n—4)—2F (n—5)
+2E (n—6)—2F (n—7)+2E (n—8)—2E (n—9)

£ sF (0)
is equal to zero, if we assign to E (0) the value 0 or 1 in accordance
with the following rale: (i) if sE (0) is a term of an alternation, or
(ii.) if sE (0) is a term of a sequence and » and s are one even and
the other uneven, then E (0) =0; (iii.) if sE (0) is & term of a
sequence and n and s are both even or both uneven, then F (0) =1.

For example, putting » = 5, 6, 7, we have

(a)
E ()
—~E4)+E(3)
—2F (2)+E (1)—2E (0) =0,
®)
E®) .
—E (5)+E (4)

—2F (3)+E (2)~2E (1)
+2F (0) =0,
()

E(7)

—E (6)+E (5)

—2F (4)+E (3)—2E (2)
+2E (1) +2E (0) =0.

In («), E (0) falls in an alternation, so that, by (i.), we put
E(0)=0; in (B), E (0) falls in & sequence and 6 and 2 are both
even, therefore, by (iii.), we put E (0) =1; in (y), E (0) falls in a
sequence, but 7 and 2 are one even and the other uneyen, whence, by
(ii.), we put E (0) =0.

Substituting for the E’s their values, the equations (a), (8), (7)
become (a) ...... 2—140-2+1-—0 =0,

@B ... 0-2+1-0+1-2+2 =0,
() ...... 0—0+2—-24+0-242+0=0.

The theorem contained in this section affords a complete verifica-
tion of a table of I (n), and it also serves to express F () in terms
of the 2’s of «ll the numbers inferior to «.

Other formule of the same class, but in which the coefficients are
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regulated by a more simple law, will be investigated in the next two
sections.

13. It was shown in § 7 that
EQ)+E5)q+E )¢+ E (13)g* + &e.
— 1-8¢°+5¢° —7g"+9g2°—119w+ 134" — &e.
1—2q+2¢' — 2¢° + 241°—2¢® + 2¢* — &e.
If we divide the numerator of this éxpression by 1—g, we obtain as
quotient the expression

A3 1 +q
_2qz_2qu‘_2ql_2qb
+38¢°+8¢"+3¢°+3¢°+ 3¢+ 3"
_4qw_4qu 4qu 4q15 4q16 4q17_4qm 4210
+ 5q’° + ' . . .
thre the successive groups of two, four, 8ix, ... terms ha.vc opposite

signs, and each term in a group of 2r terms has the coefficient 7.
If we divide the denominator by 1—g¢, wo obtain as quotient the

expression 1
~9—9'—7
+q4+q5+q6+97+q8
—q"—q"— qu_qu — qls_qu_ 7>

+¢"°+

where the successive groups of one, three, five, ... terms have opposite
signs, and all the terms have the coefficient unity.
We thus find
EQ)+E(5)g+E ) F+E(13)¢*+ &e. -
— 1492 (+¢"+¢*+¢") +3 (¢ +7++¢°+q°+q") —&e.
l_q_qn_qa+q4+q5+qo+ q7+qs_qn_qlo_qn_qls_qls_ &e.,
and, by equating coefficients, we may deduce the following theorem :
If p denote any number of the form 4m+1, then
E(p)
—I (p—4)—E (p—8)—E (p—12)
+E(p—16)+E(p—-20)+ E(p—24)+E(p—28)+E(p—-32)
—FE(p-36)—... - .

- we £ L(1)
= (=1)}-Dx} (r+1),
where »* is the greatest uneven squarc which docs not excced p.

Thus, if p is itself a square, » = v/p.
12
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For example, let p = 29; the theorem gives
E (29)
—E (25)-E (21)~E (17)
+E(13)+E (9)+E(3)+E (1)
= (=% 3 (5+1),
that is, 2—-8-0-2+2+1+2+1=3.

The table in § 4 was verified by means of this formula, the values of
the‘positive and negative terms in

BE@©997)
—-E(993) E(989) E(985)

_F G- 5 a

being found to be 188 and 204 respectively, so that the value of this
expression is —16. The greatest uneven square not exceeding 997
is 31* and (—1)1®-Vx} (31+1) = -—16.

The preceding formula affords a simple and complete verification
of a takle of B (n) ; for the terms are combined by mere addition and
subtraction, and all the arguments are of the form 4m+1. As E (n)
vanishes when » is of the form 4m +3, the formula is thus free from
the presence of & number of terms which must necessarily be zero.
Also, the absence of the even-argnment terms is not a disadvantage,
for we may regard the definition of E (n) as applying primarily to
the case of » uneven, the extension to n even being made by means of
the formula E (2"p) = E (p). Inactually verifying a table of E (n),
the accuracy of the even-argument terms is completely proved by
merely verifying that, for every even argnment 2m, E (2m) = E (m).

14. From (iv.) of § 9 we have

1—¢%)+2¢°(1 — g%+ 39"(1 — ¢®) + &c
EQ _.p 9 E(3 _&c ﬂ__ﬂ___ﬂ__g__ﬂl__ﬂ_
and, dundmg both numerator and denominator by 1—g, we find
doo, = LT € +20°+20" +2¢° +2¢°+ 8¢° + &e.
" 1429+2¢"+3¢"+ 3¢* +39°+4d°+&c
the numerator being q+q .

+2q0+2q7+2q8+2q9 .
+3q15+ 3910+3q17+3q13+3910+3q!0
i

ove ore (XX ove XYy cee 3 oo ese

E(1)q—E(2)¢+E3)g—&ec
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and the denominator being 1
+2¢9+2¢
+3¢*+3¢*+3¢*
+4q°+4q’+4!q’+ 4q
+ 59‘0""' et .o
‘We may thus, by equa.tmg coeﬂiclents obta.m the theorem :
If n be any number, then
: E (n)
—2F (n—1)+2E (n—2)
—3E (n—38) +3E (n—4)—3E (n—5).
+4F (n—6)—4E (n—7)+4E (n—8)—4FE (n—9)
+5E (n—10)— ... e e

+(=1)y""17E (1)
= (—=1)""'x4$s or 0,
according as s is even or uneven, where s is what the coefficient of
E (0) would be, if the formula were continued one term further.
Thus s = 7, unless #E (1) is the last term in a group, in which case
s=r+1.
Taking as examples n = 5 and 6, the formula gives
E (5)
—2E (4)+2E (3)
—3E(2)+3E (1) =0,
and E(6)
—2E (5)+2F (4)
| —3E (3)+8E (2)—3E (1) = (~1)*x2,
since the coefficient of FE (0), if the formula were continued one term
further, would be 4.
Substituting for the E’s their values, these equations become
2—-2+0-3+3 =0,
0-4+4+2—-043-8 = -2,
15. If we divide by 1--¢ (i.e., multiply by 14+g+4¢*+¢*+&c.) the"
numerator and denominator of the fraction in equation (iii.) of § 9,
g+3°+60°+10¢°+15¢" + &e.

Vit 1+9+¢+¢*+¢°+¢%+¢" + &c.

we find
142(3)q? _g+¢* +4¢°+ 49* + 4¢°+ 10¢°+ 104" + &e.
(1) g+ +2(8)* +&o. = T s o S g e

and, by equating coefficients as before, we obtain the theorem :
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If » be any number, then
4(n)
+2 (n=1)+2¢ (n—2)
+3{(n—3)+38¢ (n—4)+3{ (n—>5)
+4{(m—6)+.. .. ..

.+ (1)
= % (83-8),
where s is the coefficient of ¢ (0) if the series be continued one term

further. As before, s = » unless #{ (1) is the last term of a group, in
which case s = r+1. The right-hand member of the equation

= (s+1) s (s—1),
and is therefore clearly in,fegmi, since s—1, s, and s+1 are consecn-
tive numbers.
Putting, as before, n = 5 and 6, the formula gives
$(5)
+2¢ (4)+2¢ (3)
+3£(2)+3Z (1) =3 (3-3),
and £ (6)
+2¢ (5)+27 (4)
+30(8)+30(2)+3L(1) =} (4*—4);
that is, 64+2x—-5+2x4+8x—-1+3=4,
—4 +2%x6+2%x —5+3x4+3x—-1+3x1=10.

16. It may be mentioned that & formula,* similar to the E-formula .
and the {-formula which have just been given, exists also in the case
of the function ¥, where  (n) denotes the sum of the divisors of = ;
viz., we have, if #» be any number,

v
—2¢ (n—1)—2¢ (n—2)
+3¢ (n—3)+3¢ (n—4)+3¢y (n—5)
~ 4y (n-6)~- .
+(=1)yt (1)
= (=1)'%x}(s=s),

where s has the same meaning as in the two preceding sections.

* This formula was communicated to the Cambridge Philosophical Society in
February, 1884. The paper in which it occurs is in course of publication in the
Socicty’s Transactions.
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Putting n = 5 and 6, the formula gives
¥ ()
~ ()~ (3)
+3¢ (2)+3¢ (1) =—3(3-3),
and Y (6)
—2¢(5)—2¢ (4)
+30 (3)+3¢ (2)+3¢ (1) =} (4—9),
that is, 6—2X7—2x4+4+3x8+4+ 3 =-—4,
12-2x6-2x7+3x4+838x3+3=10.

17. The formule contained in the three preceding sections may be
enunciated in the following convenient form by including the term
involving E (0).

If » be any number, then 1.

E (n)
—2FE (n—1)+2E (n—2)
—38E (n— 3) +3E (n—4)—3E (n—5)

+4E’ (n 6)— .
H(-1reEQ) =0,
where E (0) denotes } or O according as g is even or uneven.
: II.
¢(n)

+2¢ (n—=1)+2¢ (n—2)
+3{ (n—3)+3¢ (n—4) +3¢ (n—5)

+4{ (n—6)+
' i . -'}:s[(O) , =0,
where {(0) denotes —3} (s*—1).
III.
¥ (n)

—2§ (n—1)—2¢ (n—2)
+3¢ (n—38)+ 3y (n—4) +3¢ (1—5)
—4 (n—-6)—

. + (=1)""sy (0) 0,
where 4: (0) denotes 3 (¢-1).
Ezpressions for E (n), &c., as determinants.

_ o bwtbat+ bt b+ &o.
18, If wa Psa? +Pa<v &e. = 1+a,a:+a,z’+ag-'°°+a4w‘+&c.'
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then it can be shown that
Py= b, by, by b b, ... | (n rows),
1, ay, ay, ay, a, ...
y 1, ay, ag a, ...

, 1, a;, ag, ...

0
0,0 1 aq, ..

tooo

where the elements of the third .row are the same as those of the

second, but shifted one place to the right, the first element being a
cipher ; the elements of the fourth row are the same as those of the
third, but shifted one place to the right, with two ciphers prefixed ;
and so on. Excepting only the first row, all the elements in any
diagonal parallel to the principal diagonal are the same. In writing
determinants of this form, it is sufficient therefore to give the first

two rows.

By means of this theorem we may deduce at once from the formule

given in this paper the following expressions for E (n), &c., in which,
for brevity, only the first two rows of the determinants are written:

@)

100002020000 ,0,8,0,8
111212222232323,3,3

each determinant containing » rows.

(ii.)
B (4n+1)
ll,O, 3,0,0,0,5,0,0,0,0,0,~70,0,0,0,0,0,0,9, 0,0,
1,2, 0,0,20,0,0,0200 000,0,20,0,00,0,0
=

(-)r | 1 1,-2,-2,-2,-2,8,8,8, 3, 8, 3 —4, —4, ..
,~-1,-1,-1, 1, ,1,1,1,-1,-1,-1,-1, -1, ..
each determinant cbnta.ining n+41 rows.

|
.
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(iii.)

8 (n)
memq&mzmqqmqq&m&m&mqqqq,nl
1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0, 0,

the determinant containing n rows.

-
-

(iv.)
(—)""f(n)
ll, 0,8,0,0,6,0,0,0,10,0,0,0, 0, 15. 0,0,0,0,0,21,0,0,0, ... |
1,1,0,1,0,0, , ,o, 0,1,0,0,0, 0,1,0,0,0,0, 0,1,0,0, ...

= -

1, 1, 4, 4, 4,10, 10, 10, 10, 20, 20, 20, 20, 20, 85, 35, 35, 35, 35, l
1,2,2,8,3, 3, 4 4 4, 4, 5 5 5 5 5 6 6 6 6,..|
each determinant containing n rows.
It may be added that

(=)'¢ (w)

1, 1,-—4,—4,-4,10, 10, 10, 10, —20, —20, —20, —20, ... l
1,~-2,—2, 3, 8, 8,—4—4,—-4, —4, 5 5 5.1
the determinant containing n rows.

These determinant-values are, of course, quite inappropriate for
purposes of calculation, being at best but inconvenient forms of ex-
pressing the results given by the formuleI. and II of § 5, and the
similar.formule in. §§ 8—16. They seem, however, worth notice, as
affording, though in an impracticable form, definite nnmerical ex-
pressions for E (n), &c

The functions E (n), x (n), X (n).

19.* If n be uneven, the number of primary complex numbers
having n as their norm is equal to E (n). In the Quarterly Journal
of Matheniatics for June, 1884, Vol. xx., pp. 97—167, I have con-
gidered the function (), which denotes the sum of the primary com-
plex numbers having n as norm, and also X (n) the sum of their squares.
These functions are connected with one another and with ¥ (n) and .
¢ (n) by a number of relations in which the terms follow laws similar
to those which occur in this paper. The following two formuls are
perhaps the most curious of these relations; they would afford com-
plete verifications of a table giving the values of E (») and x (n).

* This section has been added since the paper was read.
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If p be any number of the form 4m +1, then

@)
E(
—2F (p—4)—2E (p—8)
+3E (p—12) +3E (p—-16) +3E (p —20)
—4FE (p—-24)—

x(p)
+2x (p—4)+2x (p—8)
+3x (p—12) +3x (p—16) +3x (p—20)
+4x(p—24s)- v .

i)
E (p)
—2F (p—8)—2E (p—16)
+3E (p—24)+3E (p—32) +3E (p—40)
—4F (p—48)—.... C e

=) {x (p)
+2x (p—8) +2x (p—16)
+3x (p—24) +3x (p—32) +3x (p—40)
+4x (p 28)-!- . - )

the series bemg continued so long as the arguments remain positive.

The Relations of the Intersections of u Circle with a Triangle.
By Mr. H. M. Tavuor.

[Read Feb. 14th, 1884.]

If, in a given triangle ABO, a triangle aBy be inscribed, and the
ccircumscribed circle of the triangle afy cut the sides B0, 04, AB
again respectively in o, (), ¥/, then, as will be proved, if the triangle
af}y remains constant in shape (see Fig. 1)—

(1) The angles of the triangle a’3’y” are determinate.



