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1. It has become almost necessary to depart from the nomenclature
which I have hitherto adopted in my papers on this subject (Pro-
ceedings, Vol. xvir., pp. 172—196 ; Vol. xviir., pp. 142—164; Vol, xix.,

pp. 6—23). The name ternary reciprocant was employed for reasons
of analogy with Professor Sylvester's theory of reciprocants in two
‘variables. As, however, the subject has grown, the advantages of
this designation have become less marked and the danger of confu-
sion in expression has been found to outweigh the convenience of
keeping the analogy in prominence. I propose henceforward to use
the name ¢ _/clwant in place of ternary reciprocant, and, in particular,
pure cyclicant in place of pure ternary wczproctmt The leadlng
idea of the cyclical interchange of three variables s, y, # is thus given
the controlling influence in nomenclature which it probably should
have had originally. :

A pure cyclicant is then a function B (2, x4, y) of the second and
higher partial differential coefficients of ¢ with regard to = and y,
1 druz .

ris! de'dy’
derivatives z,, and 1sobarlc in both first and second suffixes, the two
partial weights being equal (each fw), and which persists in form,
‘but for & first derivative factor, when the variables are cyclically

which, if z,, denote , 18 homogeneoué (of degree 7) in_ the
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interchanged. The identities expressive of this persistence are
(Vol. xvi., pp. 157, 158)

R (z, 2y) = (= 2,)"*' " B (2, y2) = (—)""¥ B (9, 22)orro. (1)

Pure cyclicants have, as was seen in the paper now referred to, four
annihilators—

2,23 { @ +D) a7 | = 15 C—ral =) o (2),

i

8,=3{ (1+1) smes0n 7|

. Eg;’- (E=2108—21) cv00n.(8)s

V,=3 {2 (2122 s1r,nms) azi- } = "é' ;‘E {(Z"zxos-zox’l)‘} v (4),
Vo= 3 {3 @ntnrnrod) 7 f =g {E—snbmmn)'}.5)

of which the first two express that it is a full invariant of the
quantics (the emanants of z with regard to = and y),

(zzm a1y sz (u, v)*

(zaoa %31 %19 5035 (u, v)° T PIIN () B
&e. &e.

For the limits of the summations in Q,, Q,, V,, V;, see Vol. x1x,, p. 6,
and for the symbolical notation in the second expressions for those
annihilators, see Vol. xviir, pp. 150, &c.

The functions
E, = (zeov 2w 709 (— 2oy %10)’”
By = (zsm Zq1y gy 5035 (=2 210)° s (7),
&e. &e.

obtained from the emanants (6) by giving u, v the values —zy, 2,, 1
propose to call the quadratic cubic, &c. cyclico-genitive forms, for
reagons partly indicated in my last paper and to be made more
apparent presently. i

A seminvariant of the cyclico-genitive forms which has the further
property of being annihilated by ¥, I shall designate a semicyclicant,
and the covariant of the cyclico-genitive forms which has for leading
coefficient a semicyclicant I shall call a cocyclicant. The definition
of a semicyclicant may be expressed without direct reference to the
cyclico-genitive forms. It is a homogeneous and doubly isobaric-
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function of the derivatives z,, which is annihilated by @, and by V.
Call its degree ¢. Its two partial weights are different. Call them
wy, w;, and let w,—w, = m.

One cyclical interchange of the variables in a semicyclicant pro-
duces from it, but for a first derivative factor, the result of inter-
changing first and second suffixes in its expression, and a second
cyclical interchange produces the corresponding cocyclicant. If, in
fact, S, be a semicyclicant, and (S, S, ... 8,;)(—zy, %,)" the co-
cyclicant of which it is the leading coefficient, we have

Bl ) = (—1ynBell) = (1) (8, 8, o 8 (=t 5"

veeernrersnnnesnens (8),

ol
the notation (z, y2) denoting that x is taken as dependent and y and
z a8 independent variables in order, and the absence of any explicit
reference to the variables indicating that z is dependent.

The equivalences (8), which include (1) as particular cases, were
proved in my last paper (Vol. 31x., p. 21),* where, however, only the
restricted class of semicyclicants of which ¥, as well as ¥, and Q,, is
an annihilator, were being considered. The proof in question will be
found to have made no use of the supposed annihilation by V,. It
applied then equally to all semicyclicants, and need not be repeated.
(It should be noticed that the same remark does not apply to the
proofs of Props. 1x. and x. on p. 15 of the paper in question. Those
propositions distinctly depend on the annihilation by ¥V, of the
particular class of semicyclicants there studied. I see no reason for
retaining the names reciprocantive covariant. and recipracantive semin-
variant.)

It will be sometimes useful when speaking of cyclicants, semi.-
cyclicants and cocyclicants collectively, or without discrimination be-
tween them, to group them under the common designation cyclic con-
comatants.

2. The method of the last article of my last paper (Vol. xix.,
pp- 22, 23) for the determination of all the linearly independent pure
cyclicants of a given type 4, §w, 3w, is applicable equally for the
determination of all the linearly independent semicyclicants of type
1, Wy, W,

Of the cyclico-genitive forms (7) F, alone is a cocyclicant.

* Thero was thero, however, an error in sign which is herc corrected. The
mistake was first made in the lust line but eight of page 20, where P,,., should be
(- 1)*s P,,_,, and repeated in the seventh line of page 21, where (—1)i*™ should be
(=1
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3. To the important alternant equivalences given and. used in.my
last paper [ Vol. xix., p. 9 (5) to (8)] may be added the following, the
operation being on a homogeneous and doubly isobaric function of
the derivatives z,,.

d d .
IE@; —-d_;; Vl E 2520 (l+wl)+21101 u--u-nn-nﬂ"(g)l
V)Ed; E" = E“ (z+w‘)+2z°gﬂl [ITREIIRETRY .....(10),
¢ _ 2y =004 11)
"—i—w- E— Zm: 3+($+w5)ﬁunnuuuuon-u( ]
Vg~ i Vo= Ok 2 () (12),
Ql d;dw - “i% Ql -=—= 0....--.,...- e sentsreseanisreate .-..--(13),
d
Q,a—”—g-yﬂ,s SO ¢ U}
The remaining alternants of the series, v
d d d d
O'd—y_d-ﬂ and Q,— d—a;Q”

appear to introduce new operators which I have not found time to
study.* All are readily obtained, by means of (2) to (5), and

= a0 +Dnu. ] = S C—nk-sn) ~2at—s
evemnsnesnseienes (18,
L=3naf{GtD: i}s—'(t—z E—t) — b — 22
fzJ rvs €2 r, 3+l dz,, d” 10 01 11 03
ou-nu..u...,..(lG),
1=3,,43 (zr,ﬁ) = {=2gd=2q0 e (17),

=300 (102} = E&% (Lm 2o E= ) +essoereenrrssessesenn (18),

)
d d

wir——- reg €2 (szn d_z,—.) E"(_l;’ (Z—-ZIOE—ZON)) -uAu-uu..n-uu-(lg),

either as in my last paper (Vol. x1x., pp. 9—12), or from the sym-

bolical forms in the manner illustrated by Mr. Leudesdorf (Vol. xvir.,
Pp. 244, &c.).

[Oat 1888.—They are merely - a.nd 2y ]
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For instance, the parts of V, iz— and ii— ¥, which involve symbols

of second differentiation are 1dentlca,l, &nd the other parts are
symbolically

(V‘dw) 2’*'”{(“ Eofin V) r-in) = dz,

and

(£ 1) = Zeves {C+D s 0} 5 2 {(U—sb—2an)’}

=2 {(C—sub=2a) 3+ 0, E0]}
di {(szloE—-zom) [ (E—mnok—ayn)— 2Znoi—zun]}
= Ti'E' =2 ({— 210€ —207) —(2zgu€+ oun) 2 gt &=zt —zan)
= -% — i Qg 0,2, .
Consequently,
V4 Ly = (nL)-(L7) =20 Gtu)+an,

To save space I do not write out the other proofs. The first steps
of all of them are included in

(8 i) = Ern(B (On "E'-I'I') = % _.20205—011'7:

dx

d - - a3
snd (3 2) = Buuey (Oaskn'™) = 5= Ou—20un,
where 0,, is the coefficient of &y* or of d% in 9.

4. From (13) alone, we draw the conclusion that, if @, annihilates
a pure function I, it also annihilates g—: ; In other words, that the
operator d—‘i generates seminvariants of the system of quantics
(Zzo: 21 zv‘m} (u, v)", &c.,

from other seminvariants. This can hardly be new.
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From (9) and (13) together, we derive a theorem of eduction of
semicyclicants from semicyclicants. They tell us that, if a homo-
geneous doubly isobaric function S be annihilated by ¥, and by Q,,
and if ¢4w,, the sum of the degree and first partial weight of 8,

vanishes, then %S is also annihilated both by ¥, and by Q,.
Now, if S, be any pure cyclicant or semicyclicant of type <, wy, w,,

8 . . N .
A 18 such a function S, for #, is another semicyclicant, its type
20

being 1, 2,0. Consequently, if S,is a pure cyclica.nt or semicyclicant,

zg(nw,)ui(_&_)
20 $(itewy) J?
dax \ 30

i.o z,.,‘fl—io-(ww,) 208y vervnrensensesseseneans (20),

is another semicyclicant. Its type is 41, w,+38, w, -

This formula of eduction of semicyclicants from semicyclicants is
the same in form as, and includes, the formula for educing one
Sylvesterian pure reciprocant from another. Analogy might lead us
to speak of 8,28V ag an absolute pure semicyclicant. In the ex-
pression of the fundamental property of such semicyclicants by (8),
the first derivative factors do not appear.

Undoubtedly the same theorem of eduction might have been other-
wise developed by means of (8) and the equivalence of operators,

1 d 1 d d d
= = -y =TI ¢ |
oy dy Yo o @),

in the first, second, and third members of which y and 2, 2z and @, and
« and y, respectively, are regarded as independent variables.

5. The chief object of the present paper is to give an introduction
to the study of the geometrical nsefulness of pure cyclicants and
semicyclicants. With this object in view, it is necessary first to
establish theorems of persistence in form, in case of linear transfor-
mation of the variables #, y, 7, in close analogy to that of Professor
Sylvester's ninth lecture (American Journal, Vol. vii, p. 248) with
regard to pure reciprocants.

The two theorems to be proved are :—

L. A pure cyclicant reproduces itself, but for a factor involving first
derivatives and the constants of transformation only, when the. variables
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z, y, 2 are transformed by any scheme of linear transformation

2=1X +mY +0Z +p
Yy=UX+mY+2Z+p t ciiviviinrininnnn (22).
g = l”X—l-m"Y-I—'n”Z-I—p"
IL. A pure semicyclicant in z as dependent variable, or a cocyclicant in
z dependent, reproduces itself, but for a factor involving first derivatives

and the constants of transformation only, when the variables are subjected
to a restricted transformation, such as

2=1X+mY +nZ +p
Yy =UX4mY+0Z+p" ¢+ crvverreeiirarnennnn (28).
g = n”z+P”

6. To prove the first of these two propositions.

It is readily seen that first derivatives transform by (22) into func-
tions of first-derivatives and the constants of transformation. In fact,
the formule are

Z _ Zy - -1

10 = , = - = rereresne 24
log+lzy =0 meg+mzy—m"  nge+0'z,—n @4,
which at once reverse into
Z10 = Zo1 = =1 ..(25
Zy Zy =1 |l m n I m =n | (25).
UV m 2 Z, Z, -1 ! w o
lll m’l nl’ lll mll n/’ Zlo an — 1

It is important to ascertain at once whether there is any exception
to the fact that the substitution (22) may be replaced by successive
partial substitutions, each changing only one variable at a time,

.such as
e=2
y=y . IR L)
s=No+p"y+v"Z+q" ]

m=)\X+p-y+VZ+q1

y=y TP ¢ 3 N
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X=X
Y= UX4mYH0Z4+0 L ervinrieennnnn (28).
4=12

The complete substitution effected by these successive substitutions is
o= (A +pl) X+pm' Y+ (v+p) Z+q+pp,
y=IX+m'Y+a'Z+y,
g= (NAN+XNpl +p"0) X+ (Npm’ +p"m’) ¥

+ (N YN ) Z4 g7+ N g+ N up’ P
. For this schemo to be identical with (22) eight lincar equations in

Ny v ¢ Ny v, ¢ have to be satisfied, These aro readily solved,
tho results being

Ho_ A _ v _ q _ 1

= 7 ;- 7 - - N

m =l awm —aw'm pw—p'm

x” I.‘" y’l qll 1
U/ =Tw” b —U'm I m =« I m p ' =Tm

’ ’ ’ ’ ’ ’
'm = UV wm p
Z” ')Tb” 2 11” zu 2 ?/’l P”

ceverenseeeennenr(29).

Thus suitable values of the coefficients in the successive substitutions
arc uniquely doterminate unless either

=0 or Im'~lm=0..... .0....(30)

Even in these excepted cases, however, it is still possible that the
substitution (22) may be produced by a succession of thrce partial
substitutions by adopting a different order from that chosen above.
Calling that order zxy, there ave fivo other possible orders—zyz, xyz,
azy, yzx, yvz. Bach of these orders is applicablo to all but classes of
cases for which particular conditions hold analogous to (30). In
fact wo have, if

L, M, N |isthe determinant reciprocal to |1, m, = [,
I M, N U, o, o
Lll, MII’ N‘ll l’l, 1]L”’ ?zll

so that, for instance, N” is In’—¥'m, that of tho six orders of partial
substitutions all can produco the resultant substitutions (22), except
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that the first fails when m'=0 or N’ =0,
» second ” ! =0 or N'=0,
5 third ¢+ n’=0 or L =0,
,» fourth ’ m' =0 or L =0,
» fifth " l =0 or M=0,
» Bixth " " =0 or M =0.
Thus all fail if, and only if, simultancously
either (a) 1=0, W' =0, 2"=0,
or B) L=0, M=0, N'=0,
or (y) w=0, =0, M=0, N'=0,
or () »'=0, | =0, N"=0, L=0,
or (¢) 1 =0, m'=0, L =0, M'=0.

Of these (B) is a state of things with rogard to tho inverse sub-
stitution from X, Y, Z to =, ¥, #, exactly corresponding to (a) with
regard to the divect substitution. Again, (y), (8), (¢) arc one class of
conditions, each being obtained by cyclical interchange of symbols
from the former. In supplement, then, to the general case of a sub-
stitution resulting from threo successivo partial substitutions, as in
(26), (27), (28), tho sets of exceptional condifions (a) and (y) nced
alone be considercd. Of these (a) is tho case of the substitution

= mY+nZ +p
y=l’X +n’z+p' ....u.......u.n.--n.(Bl),
z2=1"X+m"Y +p”
and (vy), 1.e., tho case of
m =0, #'=0, al"—n"l=0, Im'—l'm=0,
i.e., of m =0, n'=0, al” =0, I'm =0,
subdivides into four cases, viz.,
(@) m'=0, #"=0, »=0, I'=0,
b) m'=0, 2"=0, n=0, in=0,
(¢) W=0, »"=0, I"'=0, I'=0,
(d) wm'=0, »'=0, I"=0, m=0,
VoL, Xix.—No. 329. 2¢
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the four classes of substitutions corresponding to which are

2 =1X+mY +p
y = n’z+p' b oo uoucu-n-uunul(sz);
2 =U'X4+m"'Y +p" |
o =1X +p )
y=IX 4wy Lo (33)

g = l”X'*'m”Y +pu

P

z=1X 4mY 4+0Z +p )

y = WEAP §oevreriennnens ceerenn (34).
z = m"Y +p” ]
s =1X +nZ +p )
y=1IX +0'Z+p } RN ¢ 1 R
z = m'Y +p” ]

The number of exceptional classes of éubsbitutions to be considered
may be still further reduced. For the pair (32) and (35) are similar
to one another; and the result of inverting (33) is of the form (84).
Again, (31) may be replaced by a sequence of (34) with a different p,
followed by

IX = mY +nZ— (”1‘1-+"_l) x,
m n
m'Y=U"X+m"Y,
wZ=UX 40’7,
a transformation in which neither of the conditions (30) is satisfied.
Once more, (35) may be replaced by a sequence of (34) followed by

— — 72'_l’ I— ’

IX= ( n’) X' ~mY’,
Y= Y,

wZ=1X +2'Z,

which again is not special.

It will suffice, then, to prove the prerogative of persistence, first, for
the general sequence of transformations (26), (27), (28), and secondly,
for the special excepted transformation (34).
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7. Apply, then, the first substitution (26) of the general sequence
to the first of the three equivalent expressions for a pure cyclicant B
in (1). It becomes

t
V" R(Z, xy).
Thus ’

R - " -d—z i+ w0 - i —.@ i+jto
E=v"R(Zm)=v"( 22) "R @z = ( dy) R (y, Z)

Again, appiy the second substitution (27) to the second of these
three forms of B. It becomes, since by (25)

iz
de: =1
dz = _,\_,42’
aX X
_d—.z ll-){w
vl 4L p(x, 7).
A+ vd—Z J
ax
Hence, by the laws expressed in (1), we have three forms
) _ Q_Z,_ i+dro
” i ___1 e "’lw ’” U d‘X
R= (V \) az R (Z, Xy) = (V \) az R(X, yZ)
Ay — +v 22
dX X
dZ i+}w '
7 i - (7?/—
=("A) .z Ry, ZX) .ovnninnnnn(37).
+v g}—z
Lastly, apply the .third partial substitution (28). By (25) we sce
az az . . .
that X and Iy have to be replaced respectively by
w2 _pis iz
X~ ay . _a¥ .
iy 1 AZ .y 42’
m+n Eia m+n iy
and consequently that the last form of R in (37) becomes
dZ i+ 0
Iyt —ay
(v"\m)’ — -t B (Y, 2X).

A’ +vm ‘ﬁ+()\n'—vl')
2¢c2

ay
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But, as in (1),
a7

("E?) "R (Y, 2X) = R (2, XY).

Thus wo have R, e, B (z, my),
. -i-jo
= (vV"am) { ym = + (A’ — l’) = +)\ } ‘ R(Z, XY);

i.0. by (29), : ‘
=l m n

', m/, o

llf’ ml)’ nl'
X { I —Um— (o’ —m'm) ‘% —(nl—nT) ‘%} YR (2, XY)..(38).

Thus for the general case, when the linear transformation may be
replaced by a sequence of partial substitutions (26), (27), (28), the
prerogative of persistence of a pure cyclicant is proved. Moreover,
the form of the extraneous factor introduced is determined.

As g verification it may be noticed that, since

(" —nzg—n'zg)) { I — U'm— (m’ —m'n) Zyy— (0l —n'l) Zy= |1, m, u.
U, my n

V,m",n"

reesseressnenns s (39),

the same result is obtained by applying the reversed transformation
to It (2, XY).

8. It remains to ascertain that the persistence holds also in case of
the excopted transformation (84). Now, by this transformation, any
pure derivative of @ (r+s & 2)

i becomes —— re X
d1 *dz! n" wm” azday*

Thus, B being doubly isobaric and symmetnca,l in first and second
suffixes,

B (z, y2) = -——y B (X, 2Y)

(n’ ")""

=: ,l,,)wza(x Y2),
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R(ay)_ _1°  R(%,XY)

€+ w0 - RN T f+ o
21 (w'm”) 10

z.e.,

There is, then, no exception to Theorem I. of § 5, as to the per-
sistence in form of a pure cyclicant.

9. The proof of Theorem I of §5 is similar, but less cum-
brous. The transformation (23) may be replaced by the successive
partial substitutions

=2

y=y SRR C:. ) N
5= nllz+p”

r=AX+py+vi+ow

y = y clnt-aun-.ll-no.tl.!c(él),
7 = Z

X=X

y=1X4+m'Y+n'Z+p N C ') B
Z = Z

which together are equivalent to

2= A+pl) X+um'Y+ (v +pn') Z+w+pp,

y= IX+ m'Y+ wZ+p',
z = nl’z+pﬂ’
upon taking
}\"_—lm—,l.m9 P=ﬂ., v=w’ ﬁr:M(éB);
m m m m

the only failing case being when m’ = 0.

If m’ = 0, we may instead proceed with successive partial substitu-
tions in the order z, 4, #, and produce the resultant transformation
(23), except when I = 0. '

We must then consider separately the general case of a sequence of
substitutions and the special one when both ! = 0 and m’' = 0.

10. Take, first, the general case. Applying the first partial substi-
tution (40) to the third of the identical expressions in (8), we obtain
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ni+m
.

the same form maultiplied by =
8, (», y2) aTo

i 410,
'001 '

uum !’L, 'I/Z) __( l)m witm S (H Z’U)

Q’(‘);W‘ yu—w,
= (—1)“"' wt" (8 Sy .t Sm)( = Zgyy Zyo)™... (44),
dz’ Az’ dz’ dy’
Next, apply the second partial substitution (41) to the first mem-
ber of (44). It becomes

Thus three equivalents of

where @y, Y1y Zygy Zy NOW mean

i pi+m S (X, 'l/Z)
A 0 .
" AXnt+v)e’

§ M g
KGR 8, (X, yZ)

7.8, — 2
Ayo—vyn)™™ Xy 7
since Xy _Xu_ =1 ’
=1 Yo
aX d
er Xy Yoo Yo DOW meamng , ‘fii, dé% 3%

And from this form of the original S2(%:¥2) o hove, by identities

\'FW
like (8) in the present variables, the two other forms

(— l)m A‘ ym‘ﬂ”

—_— S, (y, ZX
Arg—vyo)'™™ & )

mitm 410,
=(- 1)(—)\73—)—— (S Sy vor Su)(—Zons Zao)™ .. (45).
10

The last partial substitution (42) may now be applied to the last
but one of these equivalent forms. At once

8. (3,-ZX) becomes m"8, (Y,Z2X),
Yo » m' Y+, A
Yo » w Y+,
and consequently we obtain as the new form required
(Am')y "™
{Am Yig—vm Yoy + A’ —o 1 } 1+

("'1) Sm(Y’ ZX)!
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i.e., by use of (43), '

(I’ =Um)f n**" Yir™ =1y 8. (Y, ZX)
{ (' =V'm) Yo (mn' =m'n) Yoy— (ol —n'h)} Y™
estenernieneenans(46),

The result of the sequence of transformations equivalent to (23) is,
then, to reproduce from the equivalent forms in (8) the same forms
in the new variables multiplied by the factor

(lml_ l’m)‘ nn‘#m Y;’;w,
{ (I’ —Vm) Yy + (mn’ —m'n) Yoy — (al —n'l) }¥+’
or, which is the same thing, by the factor
(Zm'—l'm)‘ ,nlrhm
{Im’ —Vm— (mn’ =m'n) Zy,— (0l —n'l) Z,,}**™

ceeeer e (47).

11. The temporarily excepted case of the transformation
e= mY¥Y+nZ +p
y=UX . +0'Z4p } .ioiiviiviinininnennd(48)
2= n"Z+p"”

is readily seen to be not really exceptional. This transformation
may be replaced by the sequence of

z=mX + nZ+p
y= VY+ nZ+p ¢},
z = n'Z +p”’
and X'=Y
Y= X}'

Of these partial transformations, the first is not special, and
the second produces (—1)=8, (Y, ZX) from §,(X’, Y'Z), and
(1) 8, (Y, ZX) from 8, (X,,Y'Z). In other words, it produces
the second of the equivalent forms in (8) from the first, which is the
same thing as reproducing the first.

Thus Theorem II. of § 5 is also established for all cases.

12. It is proposed now to consider the integration of & number of
cyclicant, semicyclicant, and cocyclicant equations, and the converse
passage from proper equations in #, ¥, # involving arbitrary functions
to cyclicant, semicyclicant, and cocyclicant equations by elimination
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of the arbitrary functions, as also of the variables and first deriva-
tives. In other words, regarding the matter geometrically, it is
proposed to deal with some classes of families of surfaces whose
differential equations are the results of equating to zero pure cy-
clicants or semicyclicants or cocyclicants. A family of sarfaces
whose criterion is a pure cyclicant will have for its functional equa-
tion, if such can be found at all, one that is unaltered in character
by any linear transformation of the variables. A family whose
criterion is a semicyclicant in » as dependent variable, or & cocyclicant
in 2 dependent, will, by the lawfulness of the transformation (23),
have no special respect to any planes except those parallel to 2= 0.
A family of surfaces having properties which a single cyclicant
equation is insufficient to express, but which are independent of any
particular coordinate planes, will often at least have for the full ex-
pression of those properties the vanishing of all the coefficients of a
cocyclicant. Examples of this will be given.

The propositions of § 5 indicate that, in determining pure cyclicant
and semicyclicant equations, much use may, with advantage, be made
of canonical forms of functional equations. Thus, if

F(e,y,2) =0
satisfy an equation, ¢ pﬂre cyclicant” = 0.
The same is also satisfied by
F (le+my+nz+p, Vz+my+nz+p, Va+m"y+a's4+p") =0;
and, if ¢(z,9,2) =0
satisfy an equation, ¢ semicyclica.nt ing"” =0,
or ¢ cocyclicant in #” = 0,
80 also does
¢ (la+my+nz+p, Uz+my+nz+p, n"24p") =0.

13. Of pure cyclic concomitants the lowest is zy, the semicyclicant
which is the leading coefficient of the quadratic cyclico-genitive form
E,. We have, in fact,

3 .
1.6, g—; =0, is at once

a=yf (z) +¢ (z) T TITTPRITRTIION (::*) N

Now the integral of 2z, =0,
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which is quite as general as its apparent transformation by (23),
wtmy+natp = (o+my+nz+p) f (W2 +p")+¢ (0's+p").
This, then, is the equation of the family of surfaces whose differential
equation is either
' 2 =0, or y, =0, or Hy=0.......... ver e (50).

It is the family of surfaces generated by straight lines always parallel
to the plane z = 0.

The differential equation of surfaces cutting planes parallel to any
other plane Az+py+2=0 than z=0 in straight lines is the one
" which would take either of the forms (50) upon putting in it z for

Az +py+2 =0, keeping # and y unaltered. The third form is the
one which gives at once the forms of equation of the family, viz.,

(zso’ Zny 2095 (—2u—p 20+ =0,
or, say, ;GBI Bo—= 0 e (B1).

If all planes whatever are cut by the surfaces in straight lines, this
equation must be satisfied for all values of A and u, and conversely.
Now, this necessitates that separately

=0, 2, =0, 2,=0,
which are the differential equations of planes.

The results of this article, as no doubt also some of those which
follow, are very familiar. They are given, however, as a first and
instructive example of the method under consideration.

14. The later results of the last article exemplify facts which may
at once be stated generally.

) 1f (8o Sy o Snx)(‘%n 2)" =0

be an equation of the form “ cocyclicant =-0,” obtained as the differ-
ential equation of a family of surfaces having an assigned property
with regard to planes in the direction of z = 0, then

& (d/dar) +p (d/dzon) (So’ Sy e S-m)(_zov 7)™ =0 .""““(51)’

or (Soy 8y oo 8)(—20—p, 5o +A)" =0 wrennaenn(8la),

is that of the family having that property with regard to planes
parallel to the plane Az+puy+2=0; and

(ii.) If surfaces have the property with regard to planes in an in-
finity of independent directions, they satisfy simultaneously the
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differential equations
S=0 8=0,..8,=0;
equations which are not to be expected to be all independent.
15. The next simplest cyclic concomitant to 2, is the pure cyclicant
e LT VRPURIPRRNRRUIRTRRRN ) )

which is known to be the criterion of developable surfaces, and need
not be further dwelt upon.

16. V, and @, both annihilate
8240 %11— 2250251 veceranneriirseisnnnencanenns(83),

which is accordingly a semicyclicant. By (8), therefore,
By 8y — g2y — _ 3203211—22921;
b 8

ol Yo
=- (3%0”11 — 22502y, 629209+ 29121 — 4250215, 43y, 803 = Z19 %11 = 6249 205,
2213”03—3208211) ("‘zm, ﬁm)o P00 008 st atoraentY 11'(54)-

Now, the first of these three identical expressions equated to zero
gives

Therefore 2y =2y, f (2),
ve. e =aq F(2)+9(2);
which, integrated by means of the aunxiliary system
o _dy_ &
p( 1 —=F(3)’
gives m-}:j%—((%dz=¢(y+j‘ﬂ%),
2.6, B4u =P (Y+0) e (85),
% and v being arbitrary functions of z, and Y an arbitrary functional

symbol.
Thus either member of (54) equated to zero is the partial
differential equation of the family of surfaces

le+my+f,(z) =9 {l’w+m’y+f, (z)} vevvesnnsrennns (56),
the generalisation of (55) by the transformation (23).
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The property of the family in question is that any given member
of it cuts all planes parallel to the fixed plane z =10 in identical and
similarly situdted curves. In particular, cylindrical surfaces are of
the family, the loci of corresponding points of the sections—in general,
curves of the type lz+my+f, (2) =0, lz+m'y +f, (5) = 0—being in
this case straight lines. Again, any paraboloid whose axis is parallel
to the plane z = 0 is of the family. '

Surfaces which have the property with regard to the plane
Az+py+2z =0 instead of z=0, have their differential equation
written down upon inserting —z, —p, 2,0+ for —z, and z,, in the
third of the identical expressions in (54), and equating to zero.

Apgain, any surface which cuts every system of parallel planes in a
system of identical and similarly situated curves—or which cuts an
infinite number of parallel systems in such a manner—must satisfy
separately the equations

B2y 21— 22997y =0

625020+ 2 20 — By 23 = 0 57)
iy 209 — 2192y — 09 299 = 0 s (30).
2200 219— 8265211 =0

This is the case with cylindrical surfaces.

17. An equation involving one move arbitrary function than (56) is
w(la+my)+u = ¢ {w(@zt+my)+o} ...........(58),

where u, v, w are arbitrary functions of z. 'This is the functional
equation of the family of surfaces of which any one cuts all planes
parallel to 2 =0 in similar and similarly situated curves. All sur-
faces of revolution belong to the family, the plane z =0 being in
their case at right angles to the axis of revolution. Another very
particular included family is that of quadric surfaces, which retain
the property in question whatever be the plane z = 0.

From the canonical form

wetu =Y (WY+v).cociiiniinnns e (58a),

of the equation (58), it is easy to obtain, by actual differentiation and
elimination, the differential equation

2z, @y =0 e (59),
vy Xy @y

doy 2y 24
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of the family, with x for dependent variable. This equation may be
written

a 3:330:31,—2:0,0'»1} _ .
& { _—_-—JLw:o =0 coeeerrreeer e (59a),

so that, by (20) and (53), or from the fact that , and ¥} (in @ de-
pendent) annihilate the left-hand member of (59), that left-hand
member is a semicyclicant (in ).

The converse passage from (59) to the functional equation may be
performed as follows. We may write (59) in the form

d g dY_ o
(w"d_y 2w2°dz) mm—o:

of which, by Lagrange’s method, the first integral is

% _ £ (0,

50
L€, g:—: = }.Tz;t-ji
whence log z,, = F (2,) + ¢ (2),
1.6, @y = ¢, (2) [ (@),
which gives Fy (20) =y ¢, (2) +9, (2),
.6, | 20 =1 {3/‘?1 (2)+¢5 (z)};

and, again integrating,
¢, (2) +9,(2) =y {y‘Pl () +¢, (z)},
which is the canonical form (58a).

The equation in z dependent equivalent to (59) is, by (8),
1 1
(@ 300 55 2B 52 Q) (—o 20" =0 ...(60),

where @, denotes 22y 2y ,

3z 2y 2y
42 2y 224
ﬂ,lld 0252r+142{(3+1)zr—1,nl‘7‘:_}'

If an infinite number of different sets of parallel planes cut a sur-
face in sets of similar and similarly situated curves, the equation of
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that surface satisfies all the differential equations
Q=0, 2Q=0, ©Q=0, .. BG=0.........(61).

18. In accordance with the remark at the end of the first paragraph

of the last article, these last equations (61) must be satisfied by all

. quadric surfaces. But (Proceedings, Vol. X1X., p. 15) we know already

the conditions of lower weight which such surfaces must satisfy, viz.,
the four conditions (two independent)

T Za =0 ceiiirnnniiinieenna  (62).
p I %
Zyg %293 2y
%3 %o
Our attention is then directed to the family of surfaces represented
by the semicyclicant in @,
Ty T | =0 ciinniininiiannnn (63),
Ty Tn @y
Ty By Ty
or, as is the same thing, by the cocyclicant in 2,

=0 siirvnnninnenn(64).

Zg %y zTo
3
%y Zn %y 3202y
Zyy %y % Szmz:,
oy Zo 70
It does not appear that any single equation involving arbitrary
functions can be found which is the complete primitive of (63), so as

to be the functional equation of the entire fa.nnly of surfaces. We
may write (14), however,

a {wma}m ;}a:fl}_o_
F7R Sl B

oh
- 80 that o first integral is .
Zopn—32, = 8 F(2) v (65).

In particular, then, the family includes all developable surfaces, for
(52) is a partioular case of (65).

" In accordance with the known satisfaction of (62) by all quadrics,
we notice that the reason is, that a central quadric cats all planes of
any parallel system, and a paraboloid all of any of a triply infinite
number of parallel systems, in similar and similarly situated
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conics haying their centres collinear. Now, it is readily seen that the
canonical form Y =F(2) cvervinrivienriveesrareannnns (66)

repregents a family of surfaces having that property with regard to
planes parallel to z = 0, and also is included in the more general
family satisfying (63).

19. Enough isolated examples have been taken in the last six
articles to indicate the importance of the study of cyclic concomitants
in connection with the theory of families of surfaces. The remainder
of the present paper will be devoted to the study of a very important
particular class of concomitants, viz., to the class of cocyclicants whose
semicyclicant sources arve of second partial weight zero. The first
of these is the quadratic cyclicogenitive form E, These have the
very closest connection with pure reciprocants. (Having discarded
the term ternary reciprocant, I henceforth use the word reciprocants
to denote always the functions of the derivatives of one variable with
regard to another, studied under that name by Professor Sylvester.)

It is useful to have a notation companion to that of (7) for the
functions obtained by writing in the cyclicogenitive forms E,, E,, ...
—2y —p and z,y+AX for —z, and 2, Let ususe Fy, F, ... to denote
these altered forms, so that, for all values greater than unity of
the number 7,

By = (s Gty 1y oon #0n) (— i —phy g+ A)7 = €t (/den) 41 Glds) .

e (67).
20. Let ¢ (a; b, ¢, ...),

or say, taking @ for dependent variable instead of ¥,

(L85 1ds 1ds
21 dy? 31 dy® 4! ayv ™)’

be any Sylvesterian pure reciprocant. Let its degree be 4 and its
weight w; a, b, ¢, ... being regarded as of weights 2, 3, 4. The same
function of the partial differential coefficients of z with regard to v,
# being now regarded as a function both of y and z, is in our notation

¢ ("j'zm Byey Ty +00 )

and satisfies the definition of a semicyclicant in @ dependent, being
homogeneous (of degree ), doubly isobaric (of weights w, 0), annihi-
lated by 7V, (the same fact as that the reciprocant ¢ is by V)
and also by @, (having no constituent of second suffix different from
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zero). Hence, by (3),
O (o Tyoy Tygy .0.) — =(-1)* 6 (Yoas Yosr Your ++-)

gt Yis”
= (—1)* {that covariant of B, By, E,, ... whose leading term is
¢ (2200 %30y Zay +++) (_ZOI)W}

= (=1)¢ (B By Epy o) covrerveressnveereserissersssinssannees (68).

It is clear, then, that the study of cocyclicants of this class amounts
to little more than a careful adaptation of results obtained by
Sylvester and others with regard to pure reciprocants. They are the

same functions of the cyclicogenitive forms I;,, Fy, ... as pure re-
ciprocants are of the prepared derivatives a, b, .... Thus they are
homogeneous and isobaric functions of F,, I, ... which have the
&nnihi]ator

4,_; iz, 50T L,+6(EE+ 1By —+7(DL'+17;E4)dE

veeee (69),
and one may be educed from any other by operation with the‘genemtor

4 (B,E, E,) +5(E,E —E,E) % +6(8,5,— Evﬁ) +...

dE,

21. The semicyclicants and cocyclicants obtained as in the last
article are of immediately obvious geometrical interest. In fact, any
pure reciprocant ¢ (a, b, ¢,...) is known to be the criterion, i.e.,
¢ (a, b,c,...) =0 to be the differential equation, of a class of plane
curves whose equations are unaltered in form by any linear transfor-
mation of 2 and y; and moreover it is known, conversely, that the
criterion of any such class of curves is a pure reciprocant. Now, the
process of elimination, by aid of differentiation, of any number of
constants from an equation-in 2 and y, is exactly the same as that of
elimination, by aid of partial differentiations treating z as constant, of
the same number of arbitrary functions of z from an equation
involving those functions, just as the first equation involved the
constants which they replace. In other words,

P (@g05 Bion Fuy +++) = 0 eevrvernrennnnnenes (71),
or either of its equivalents, by (68),
¢ (Wow Your Yowr +++) =0 vnneiiiivnininnnn (71a),

or . ¢ (Eﬂ: Ea) En ---) =0 irerinninniiniinn (71b),
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is the diffevential equation of the family of curves which cut all
plancs parallel to z =0 in curves of the type of which ¢ (a, b, ¢, ...)
is the reciprocant criterion.

The same three equations may, in our ordinary notation of semi-
cyclicants and cocyclicants, be written

¢ (2, y2) =0,
¢ (y, 22) = 0,
(P P1s P2s «or Bu0) (—2Za 210)° =0 oiriiininnnn. (71¢).

By § 14, it follows that the family of surfaces of which any cuts all
parallels to any othor given plane Ax+ py +2=0 in curves of the family
of which ¢ (a, U, ¢, ...) is the criterion, has for its differential equation

G0 91 01 e ) (=20t 5 N7 = 0 v (72),
or eMdidz) tr(didza) | ¢ (B, Iy, By, ...) = 0,
or again, in the notation of (67),

6 (P Py Fyy ) =0 oo (720).

22. The first pure rcciprocant a lcads in this manner to the
differential equation of surfaces generated by straight lines parallel
to a fixed plane. It produces the cocyclicant, &c., discussed in § 13.

Tho sccond pure rceiprocant
ac— 8= (A)

is the critorion of pavabolas. Hence either

My(, 42) = =150 = Ovrrrerivrrrrinrirerennns (73),
or M (y, 22) = ymyo,-g-yzg: 0. (78a),
or P=ETE—$E =0 e (78D),

is the differontial cquation of the family of surfaces all sections of
which by planes pavallel to 5 = 0 are parabolas.

The family of which all sections by parallels to Ax+py+v = 0 ave
parabolas, is represented by

V= e)\(d/d:w)+p(d/dzm),1 =0 .....................(74);

i.e., by FiF—3F =0 vveiiieiininr i, (74a).
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Again, if a surface cut all planes in parabolas, it must satisfy all
the equations

)
My=1242,—52, =0, )
== —— — b —
M = 5, My=§ (2120 + 2% — §%0%n) = 0
M:W)B[:i_o , 5.2 109, . E. ) =0
1=EFTRT = oy (22— o + ity 24— D10+ 22200) = 0,
-
1
My=10,M= T a (62325 — 152,200+ 02y 209 — 1525255+ B2y 25) = O,

1

M= (ﬂﬂgﬂfoz—zwzm—%zza =0,

............(755,

whiel last vesults are probably rather matters of curiosity than
value.

23. Again, A = d®d—8Babc+21°
is the criterion of a conic (Monge).

Thus either of the three equivalent difficrential cquations

Ay () = ity — 3a Ty @y 4+ 2030 = 0 vvvverrennennd (76),
or 4,(y) = ?/zz?/os_ 3YwYusYos QJgs =0 (764),
or a= B B,—3E,0,B,+21, =0 ............... (76b),

ig the differential equation of thie family of surfaces denoted by
w8 + vyt 1w, + 2,y + 2oy + 2wy = 0,
where wuy, v, w,, Uy, v,, w, are arbitrary functions of z.
Again, Vo= T —8F, I 4+2F = 0 .vevvennen, (77)

represents the family of surfaces which cut parallels to A+ py +2=0
in conics; and, if a surface cut all planes in conics, it satisfies all the

equations Ay =0, ,4,=0,...94,=0..00urrunn... (78).
24. Professor Sylvester (American Journal, 1%, p. 16) has proved
that 16 A+ 1) M 426 A=2)(2A=1) 4* =0
is the differential equation of curves of the class
av+by+c=(a2+0Y+c) i i, (79),

a, b, ¢, @, V', ¢ being arbitrary constants.
VOL. X1X.—No. 330. 2p
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It follows that, in the notation of the last two articles,
16 A +1)* 3425 A—2)(2A=1) a* =0 ..........0....(80)

and 16 (A4+1)? (VAP +25 A=2)(CA—1)(Va)’ =0 ... ......(81)

represent respectively the families of surfaces cutting planes parallel
to 2 = 0 and Az +uy+2 = 0 in curves of the same typo.

Tho results of the last two articles are included, as also are that
4 (VE) +5° (Va)? = Ouveeevre e (82),
given by A = 3 or }, and
d(Vp)P—a? =0 i (83),

given by A =2 or 3, represent surfaces cutting parallels to
Ax+uy+2=0in cubical and semicubical parabolas respectively.

25. The interpretation of Sylvester’'s B, C, D, ... (dmerican Jowrnal,
IX,, p. 318) leads in like manner to those of the cocyclicants

B=EE B, —2L I —1E BB+ L BBy B~ 4By .ooeeveeeverinenn (84),
y = E\E,—5E, B, B, —4I,E, E,+ 13E, B, I}
+ LB B B 293 B, L B 4 22 ... (85),
8 = BB~ 3B B — OB, B, By+ TESE + By {0} v e n (86),
&e., &e.,
and more generally to the interpretations of Vf3, Vy, V4, ..., the
results of replacing every E in S, y, 8 by the corresponding F.
Halphen’s 8 (“ Thoso sur les Invariants differentiels,” pp. 12, &e.),
or Sylvester’s AC—DB* (American Jowrnal, 1X., pp. 332, &e.), is the
criterion of
log (ax +by+c) +wlog (s +by+c)+w’log ("2 +b"y+c") = F,

where w i1s an imaginary cube root of unity, and a,d,c¢, o', ¥, ¢,
.a”, b, ¢”, k are arbitrary constants. The difforential equation of which
the completo integral is

log (w,x+v,y+w,) +wlog (w2 + v,y +wy) + 0 log (uya+ vy +w;)) = T
veesrinnnnnnnd (87),

‘in which w,, v, W), tw,, v,, Wy, 4, vy, wy, U arc avbitrary functions of Z,

is then ) »
Ao (¥ y2) Oy (@, y2)— { Ly (w, y2) 1 =0 ... v (88)
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or 4, (y, 2) Cy; (y, 22)— {Byy (3, 22) }* =0 .00 0. (880),
or, agaﬁn,
ay—3 = I, I, I, I, , =0
E, B, BE, I, I,
-E 0 L 9L,E, 2I,E+E;
0 F, 2B,B, 2L,B+E, 2E,I;+2L,FE,
0 0 I 3E,E, 3L.+2L,E,
SR (880)

A result including this, and also the « = 0 of § 23, obtained in liko
manner from a rcsult of Sylvester’s (American Journal, 1x., pp. 337
338), is that, if A be any constant,

27 AN+1)P(A=2) @A —1) (ay—P31) = 3*. 5' (N =N +1)% ... (89)
is the differential cquation of surfaces whose equations are of tho type
(ma+vy+w,) (x40, +w,)  (wyz+vyy +wg) = W, (90)

with certain special cases corresponding to the values 0,0, and 1 of A.
TFor these the differential equation is

. P (ay—=F)P =85 i (91),

and alternative completeo integrals are
e+ oy+w, =log (@ + vy +w) viviinnnn (92)
and wmat oy +w, = (ra+ovy+w,) log (e +uvgy +10;) ooee. 93).

In all these results «,, v, w,, o, ..., g ..., IV denotec arbitrary func-
tions of z. A particular result of (89) is that

B lay—P) =3 i (94)

represents surfaces where sections by parallels to z =0 are cuspidal
cubics. '

The generalisations of these results, obtained by inserting Va, Vf3,
vy for «, 3, v, i.e. F, &c., for I, &c., need not be stated at length.

26. A few more results may be stated without development.
The result of replacing A in (90) by an arbitrary function of z
2Dp2



404 Mr. E. B. Elliott on Cyclicants, or [May 10,

leads to a cocyclicaut derived from Halphen's T' (Thése, p. 42), or
Sylvester's A’D—34DBC+28% The comprehensive conclusion de-
rived from this is that

24F;* {(Va)* (V&) =8 (Va)(VB) (YY) +2 (VB)*} ... (95),
ie, [8F, 0 F, 0 0 0
AF, T, F, I, 2I" 0
5F, oF, I, 2V, S5F,F, r
6r, 3Iy I, 3F, 6F,F,+3T; 3F,T,
"I, AR, T, 4I%, 7F,F,+7F,F, AT, T, +2F,
8F, 5F, F, 5T, 8F,F,+8F,F,+4F; 5F,F,+5F,F,
..... vernenennn(990),

is the criterion of surfaces cutting planes parallel to Az+py+2=20
in curves whose equations referred to axes in ‘their own plane are
of the form

(a+by+0)" (¢a+by+0) (@"a+by+0" ) = k......(96),

where A as well as the other constants is arbitrary.

Again, Roberts’s reciprocant cxpression for the criterion of a
gencral cubic curve (Bducational Times Reprint, X., p. 47) leads us
to the conclusion that

o

I, F, T 0 0

F, F, 2I\T, I 0

I, ¥, °2IF,+I% or, T, boN

I, I, 2I'T,+2F,F, oI, F,+ T, 3K, T,

F, F, °I,F,+2F,F,+F,  oF,F,+2F,T, 3F,F,+3F,T;

F, Fy 21, F,+2FFy+2F Ty 2F,F+2F,F;+F; 8T,F,+6F,F,F,+TF:

RN (14

ig the criterion of surfaces whose sections by parallels to Av+ py +2=0
arc cubic curves.

And lastly, from Sylvester’s criterion (American Journal, 1%., p. 349)
of carves of the #' order, we dedunce the criterion of surfaces cutting
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planes parallel to Az +py+2 = 0 in curves of that order, viz,,

1) (3.1) (4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) ...
1) (4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) ...

2) (4.2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) ...
1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) ...
2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) ...
3) (5.3) (6.3) (7.3) (8.3) (9.3) (10.3) (11.3) (12.3) (13.3) ...

1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) (14.1) ...
2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) (14.2) ...
.3) (6.3) (7.3) (8.3) (9.8) (10.3) (11.3) (12.3) (13.3) (14.3) ...
4) (6.4) (7.4) (8.4) (9.4) (10.4) (11.4) (12.4) (13.4) (14.4) ...

to in (n+1) rows and columns, where (m.p) denotes the multiplior
of k™ in the expansion of

(P4 1P+ T R4 L)

On the Figures formed by the Inlercepts of a System of Straight
Lines in a Plane, and on analogous velations in Space of Three
Dimensions. DBy SamusL Roperts.

[Read May 10¢h, 1888.]

I. Plune Space.

1. In studying some qnestions rvelating to the closed branches of
curves, I was led to consider the clear spaces enclosed by the finite
segments determined by the interscetions of straight lines in a planc.
By ¢ clear spaces ”’ I mean those not cut by any of the lines, and it
will be convenient to call them simply “spaces.” 1 have since found
that, long ago, Steiner treated of the subject, in conseqnence of his




