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1. It has become almost necessary to depart from the nomenclature
which I have hitherto adopted in my papers on this subject (Pro-
ceedings, Vol. XVII., pp. 172—196 ; Vol. xvin., pp. 142—164 ; Vol.xix.,
pp. 6—23). The name ternary reciprocant was employed for reasons
of analogy with Professor Sylvester's theory of reciprocants in two
variables. As, however, the subject has grown, the advantages of
this designation have become less marked and the danger of confu-
sion in expression has been found to outweigh the convenience of
keeping the analogy in prominence. I propose henceforward to use
the name cyclicant in place of ternary reciprocant, and, in particular,
pure cyclicant in place of pure ternary reciprocant. The leading
idea of the cyclical interchange of three variables o>, y, z is thus given
the controlling influence in nomenclature which it probably should
have had originally.

A pure cyclicant is then a function B (z, x, y) of the second and
higher partial differential coefficients of z with regard to x and y,

which, if zr, denote ——: - — ~ , is homogeneous (of degree i) in the
r! si dxrdy'

derivatives zr, and isobaric in both first and second suffixes, the two
partial weights being equal (each \w), and which persists in form,
"but. for a first derivative factor, when the variables' are cyclically
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interchanged. The identities expressive of this persistence are
(Vol. XVIII., pp. 157,158)

B (i, xy) = ( -2 l o r» w 22 (a, yz) = ( -%) ' + ' w B (y, zx) (1).

Pure cyclicants have, as was seen in the paper now referred to, four
annihilators—

(2),

-a-w) (3),

J I ==2_| {((-zj-z^y) ...(5),

of which the first two express that it is a full invariant of the
quantics (the emanants of z with regard to as and y),

(2so. «m »m

&c.

.(6).

For the limits of the summations in O,, O2, Flf Fs, see Vol. xix., p. 6,
and for the symbolical notation in the second expressions for those
annihilators, see Vol. XVIII., pp. 150, &c.

The functions

.(7),

&C. &C.

obtained from the emanants (6) by giving u, v the values — zou z10, I
propose to call the quadratic cubic, &c. cyclico-genitive forms, for
reasons partly indicated in my last paper and to be made more
apparent presently.

A seminvariant of the cyclico-genitive forms which has the further
property of being annihilated by Vx I shall designate a semicyclicant,
and the covariant of the cyclico-genitive forms which has for leading
coefficient a semicyclicant I Bhall call a cocyclicant. The definition
of a semicyclicant may be expressed without direct reference to the
cyclico-genitive forms. It is a homogeneous and doubly isobaric-
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function of the derivatives zrt which is annihilated by Clx and by Vx.
Call its degree i. Its two partial weights are different. Call them
wu w2, and let w1 — wi= m.

One cyclical interchange of the variables in a semicyclicant pro-
duces from it, but for a first derivative factor, the result of inter-
changing first and second suffixes in its expression, and a second
cyclical interchange produces the corresponding cocyclicant. If, in
fact, So be a semicyclicant, and (£0, 8X,... 8m)(—zov zlQ)m the co-
cyclicant of which it is the leading coefficient, we have

8n (x> Vz) — r i y » 8 m (?/» ga0 — / iy+* a (Q a a V — a z V"

(8),

the notation (a?, yz) denoting that x is taken as dependent and y and
z as independent variables in order, and the absence of any explicit
reference to the variables indicating that z is dependent.

The equivalences (8), which include (1) as particular cases, were
proved in my last paper (Vol. xix., p. 21),* where, however, only the
restricted class of semicyclicants of which F2, as well as Vx and O1} is
an annihilator, were being considered. The proof in question will be
found to have made no use of the supposed annihilation by F3. It
applied then equally to all semicyclicants, and need not be repeated.
(It should be noticed that the same remark does not apply to the
proofs of Props, ix. and x. on p. 15 of the paper in question. Those
propositions distinctly depend on the annihilation by V% of the
particular class of semicyclicants there studied. I see no reason for
retaining the names recvprocantive covariant and reciprocantive semin-
variant.)

It will be sometimes useful when speaking of cyclicants, semi-
cyclicauts and cocyclicants collectively, or without discrimination be-
tween them, to group them under the common designation cyclic con~
comitants.

2. The method of the last article of my last paper (Vol. xix.,
pp. 22, 23) for the determination of all the linearly independent pure
cyclicants of a given type i, \iv, \w, is applicable equally for the
determination of all the linearly independent semicyclicants of type
i, wx, w.r

Of the cyclico-genitive forms (7) Et alone is a cocyclicant.

* Thero was thero, however, an error in sign which is hero corrected. The
mistake was first made in the last line but eight of page 20, where P,».r should be
( - 1)"'» P,,,_r, and repeated in the seventh lino of page 21, where (—l) l+m should be
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3. To the important alternant equivalences given and. used in. my
last paper [Vol. xix., p. 9 (5) to (8)] may be added the following, the
operation being on a homogeneous and doubly isobario function of
the derivatives erl.

££ l (9),
.i-i-F.E^^J+V, (10),

££ .....(11),
F 9 ^ - 1 ^ = ^ + 2

0 , 1 - £ o x sO (13),
ax ax

fi.f-.f fi, = 0 (14).
dy dy

The remaining alternants of the series,

O1f-|-O1 and O8|--~«„
dy dy dx dx

appear to introduce new operators which I have not found time to
study.* All are readily obtained, by means of (2) to (5), and

— = 2,+,<a { (r+1) zr.it. £-} = 1 (f-%4-%')) -2zi0Z-znT,
(15),

5 [ ( + 1 K . , * I •£-} = j - (f-2ioi-»oi';)-%^-2«oa>l
...(16),

(18),

(£zZ(£zwZz0lv) (19),

either as in my last paper (Vol. xix., pp. 9—12), or from the sym-
bolical forms in the manner illustrated by Mr. Leudesdorf (Vol. XVIII.,
pp. 244, &c).

* [Oct. 1888.—They are merely — and —."1
L J dx dy J
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For instance, the parts of Vx — and — Fx which involve symbols
ax ax

of second differentiation are identical; and the other parts are
symbolically

' l ) s"--« ft00-w in l f
and

Consequently,

To save space I do not write out the other proofs. The first steps
of all of them are included in

and
\ ay i "

where Or. is the coefficient of f »* or of -— in &.
dzr,

4. From (13) alone, we draw the conclusion that, if Ox annihilates

a pure function I, it also annihilates — ; in other words, that the

operator — generates seminvariants of the system of quantics
- dx

from other seminvariants. This can hardly be new.
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From (9) and (13) together, we derive a theorem of eduction of
semicyclicants from semicyclicants. They tell us that, if a homo-
geneous doubly isobaric function 8 be annihilated by Vt and by fi^
and if i+wv the sum of the degree and first partial weight of 8,

vanishes, then —- is also annihilated both by Vt and by dx.dx

Now, if So be any pure cyclicant or semicyclicant of type i, wu wi}

'i{i^Wi) is such a function 8, for zao is another semicyclicant, its type

being 1, 2,0. Consequently, if So is a pure cyclicant or semicyclicant,

JO

oSo (20)»

is another semicyclicant. Its type is i + 1 , Wj+3, w3.

This formula of eduction of seraicyclicants from semicyclicants ia
the same in form as, and includes, the formula for educing one
Sylvesterian pure reciprocant from another. Analogy might lead us
to speak of S0-^0

(l+U)l) as an absolute pure semicyclicant. In the ex-
pression of the fundamental property of such semicyclicants by (8),
the first derivative factors do not appear.

Undoubtedly the same theorem of eduction might have been other-
wise developed by means of (8) and the equivalence of operators,

»01 dy yl0 dx dx dy

in the first, second, and third members of which y and z, z and z, and
x and y, respectively, are regarded as independent variables.

5. The chief object of the present paper is to give an introduction
to the study of the geometrical usefulness of pure cyclicants and
semicyclicants. With this object in view, it is necessary first to
establish theorems of persistence in form, in case of linear transfor-
mation of the variables x, y, z, in close analogy to that of Professor
Sylvester's ninth lecture {American Journal, Vol. VIII., p. 248) with
regard to pure reciprocants.

The two theorems to be proved are:—

I. A pure cyclicant reproduces itself\ but for a factor involving firsl
derivatives and the constants of transformation only, when the. variables
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x, y, z are transformed by any scheme of linear transformation

x = lX +mY +nZ +p ^

y = l'X+m'Y+riZ+p [ (22).
z = l"X+m"Y+n"Z+p")

II. A pure semicyclicant in x as dependent variable, or a cocyclicant in
z dependent, reproduces itself, but for a factor involving first derivatives
and the constants of transformation only, when the variables are subjected
to a restricted transformation, such as

.(23).

x = IX +mY +nZ +p

y = I'X+m'Y+riZ+p
z = n"Z-\-p"

6. To prove the first of these two propositions.
It is readily seen that first derivatives transform by (22) into func-

tions of first derivatives and the constants of transformation. In fact,
the formulae are

•MO - 1
lz10 + Z'% - I" ™>z10+m'% — m" nzl0+nz0l - n"

•(24),

which at once reverse into

zl0
V
I"

z0l
m'
m"

- 1
n
n"

I

I"

m

m"

n

n

I
V

zl0

- 1
m
m'

ZQI

n
n

- 1

•(25).

It is important to ascertain at once whether there is any exception
to the fact that the substitution (22) may be replaced by successive
partial substitutions, each changing only one variable at a time,
such as

35 = 35

.(26),

y = y (27),



884 Mr. E. B. Elliott on Oyclicants, or [May 10,

.(28).y = I'X+m'Y+riZ+p

Z= Z

The complete substitution effected by these successive substitutions is

x = ( \+/ iO X+nm'Y+(v+nn) Z+q+ftp,

y = I'X+m'Y+n'Z+p,

z := (X'X + X fil -\-[/'I') X + (\"fiiri+/*"m') Y

For this schcino to be identical with (22) eight linear equations in
X", /i", v", q", X, ftt v, q have to be satisfied. These are readily solved,
tho results being

MI hri—I'm

X"

— n in

Ini" — 2" I

V
I"

m 11

m' ri
in" 11"

I

X
I"

VI

in

m"

P
P
P"

hri — I'm

•(20).

Thus suitable values of the coefficients ia the successive substitutions
aro uniquely determinate unless either

i =. 0 or hri — Vtn = 0 .(30).

Even in these cxcepted cases, however, it is still possiblo that tho
substitution (22) may be produced by a successiou of throe partial
substitutions by adopting a different order from that chosen above.
Calling that order zxy, there are fivo other possiblo orders—syx, xyz,
xzy, yzx, yxz. Each of these orders is applicable to all but classes of
cases for which particular conditions hold analogous to (30). In
fact we liave, if

L, M} N

L\ M', N'

L'\ M'\ N"

is the determinant reciprocal to I, m, n

I', iri, n

V, m", n"

so that, for instance, N" is hri—I'm, that of tho six orders of partial
substitutions all can produco the resultant substitutions (22), except
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that the first fails when m! = 0 or N" = 0,

„ second „ I = 0 or N" = 0,

„ third „ n" = 0 or L = 0,

„ fourth „ on' = 0 or L = 0,

„ fifth „ I = 0 or .flf = 0,

„ sixth „ w" = 0 or M' - 0.

Thus all fail if, and only if, simultaneously

either (a) I — 0, TO' = 0, w"= 0,

or (/3) £ = 0, J f = 0, tf"=0,

or (y) m ' = 0 , ?i" = 0, M' = 0, 2T= 0,

or (5) w" = 0 , I = 0, 2T = 0, L = 0,

or (e) 2 = 0 , TO' = 0, L = 0, AT= 0.

Of these (/9) is a state of things with regard to tho invorse sub-
stitution from X, Y, Z to x, y, a, exactly corresponding to (a) with
regard to the direct substitution. Again, (y), (5), (e) arc one class of
conditions, each being obtained by cyclical interchange of symbols
from the former. In supplement, then, to tho general case of a sub-
stitution resulting from three successive partial substitutions, as in
(26), (27), (28), the sets of exceptional conditions (a) and (y) need
alone bo considered. Of these (a) is tho caso of the substitution

x = mY+nZ +p

y=*l'X +riZ+p

and (y), i.e., tho caso of

TO' = 0, n"= 0, nl"~ri'l - 0, hri-l'm = 0,

i.e., of TO' = 0, n'— 0, nl" = 0, I'm = 0,

subdivides into four cases, viz.,

(a) TO'=0, »"=0 , » = 0, l' = 0,

(b) m'= 0, n"= 0, n — 0, in = 0,

(c) TO'=O, n"=o, r=o, r = o,

(d) m = 0, ?»"= 0, r = 0, w = 0,
VOL. xix.—NO. 329. 2 o
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the four classes of substitutions corresponding to which are

a; = IX+mY +p

y= n'Z+p • (32)»

y = I'X + n'Z+p

z = l"X+m"Y +p

x = IX +m7 -f wZ +|)

y = n'Z+p

z = m"F +p'

x = lX +nZ+p

(33)

.(34).

.(35).

The number of exceptional classes of substitutions to be considered
may be still further reduced. For the pair (32) and (35) are similar
to one another; and the result of inverting (33) is of the form (34).
Again, (31) may be replaced by a sequence of (34) with a different p,
followed by

IX = mT +nZ'~ ?£) X',
n I

m"Y = '+m"T,

n'Z = VT +n'Z',

a transformation in which neither of the conditions (30) is satisfied.
Once more, (35) may be replaced by a sequence of (34) followed by

Y- r,
n'Z = VX' +n'Z\

which again is not special.

I t will suffice, then, to prove the prei'ogative of persistence, first, for
the general sequence of transformations (26), (27), (28), and secondly,
for the special excepted transformation (34).
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7. Apply, then, the first substitution (26) of the general sequence
to the first of the three equivalent expressions for a pure cyclicant JB
in (1). It becomes

Thus
v"lR(Z,xy).

22 = S*R(Z,xy) = v"{(-g)'+1 E (*, yZ) = v ' " ( - 0 + " E ( y , Zx)

(36).
Again, apply the second substitution (27) to the second of these

three forms of R. I t becomes, since by (25)

dZ
dx> - 1

dX

S'k*

Hence, by the laws expressed in (1), we have three forms

22 E= (v" 'W'ni>>-v'v'lA
Jto

• B(XtyZ)

dZ
dy

(37).

Lastly,.apply the third partial substitution (28). By (25) we see

that — and — have to be replaced respectively by

, dZ ,, dZ
l

and

dZ_
dY

,dZ

and consequently that the last form of R in (37) becomes

dY R (7, ZX).

2c2
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But, as in (1),

Thus wo have B, i.e., B (z, ay),

= (v"\m'y [ vrn ~ + (\ri-vV) ^ + \ m * ) '^ B {Z, XY) ;

i.e., by (29),

=r I, W, tl

I, Wt, 11

, m , n

X (lm'-Vm-(mn'-m'n) % -{nl'-ril) E (^, Zr)...(38).

Thus for the general case, when the linear transformation may be
replaced by a sequence of partial substitutions (26), (27), (28), the
prerogative of persistence of a pure cyclicant is proved. Moreover,
the form of the extraneous factor introduced is determined.

As a verification it may be noticed that, since

(»"—fiz10—rizm){hri—I'm—(mri—m'n)Zl0— (nV—n7)Z01= I, m, n.

V, m, ri

V, m , ft'

(39),

the same result is obtained by applying the reversed transformation
to B (Z, XY).

8. It remains to ascertain that the persistence holds also in case of
the excopted transformation (34). Now, by this transformation, any
pure derivative of aj ( r+s «£ z)

b e c o m e 8
b e C ° m e S nV dZ'dY*

Thus, B being doubly isobaric and symmetrical in first and second
suffixes,
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V B (Z, XY)

389

There is, then, no exception to Theorem I. of § 5, as to the per-
sistence in form of a pure cyclicant.

9. The proof of Theorem II. of § 5 is similar, but less cum-
brous. The transformation (23) may be replaced by the successive
partial substitutions

x = x
.(40),

z = ri'Z+p"

x = XX+py+vZ+vt

y= y

z
.(41),

X= X

y = VX+m'Y+riZ +p

Z- Z

which together are equivalent to

x = (X+/xO X+nm'Y+(v

.(42),

upon taking

Im'—l'm
m

VX+

m
m'f

m'Y+

urn!

n'Z+p't
n"Z+p",

—rim
m

ptri —p'm
m

...(43);

the only failing case being when m = 0.

If m' = 0, we may instead proceed with successive partial substitu-
tions in the order z, y, x, and produce the resultant transformation
(23), except when 1 = 0.

We must then consider separately the general case of a sequence of
substitutions and the special one when both I = 0 and m = 0.

10. Take, first, the general case. Applying the first partial substi-
tution (40) to the third of the identical expressions in (8), we obtain
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the same form multiplied by w"l+m. Thus three equivalents of

a r e

i rw rw dx dv dZ dZ
where xov yw Zl0, Zn now mean —, - £ , - - , — .

dZ dZ dx dy
Next, apply the second partial substitution (41) to the first mem-

ber of (44). It becomes
„.>+„, 80(X,yZ)

i.e.,

since

•o- -»r • dX. dX. dv dv
Xw XQU ym ya now meaning - , - , JL, £ .

And from this form of the original • ° ?+„ we have, by identities

like (8) in the present variables, the two other forms

The last partial substitution (42) may now be applied to the last
but one of these equivalent forms. At once

Sm (y,-ZX) becomes m'l8m (T, ZX),

and consequently we obtain as the new form required

( -1 ) T ^ ^ —Sm{Y,ZX),
{\m'Y-vmY + \n'-vl'y+">
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i.e., by use of (43),

[{hi-I'm) 710+(mw' -ro'w) Yn-(nl'-'-rit)y>w

391

ZX)

(46).

The result of the sequence of transformations equivalent to (23) is,
then, to reproduce from the equivalent forms in (8) the same forms
in the new variables multiplied by the factor

{(Im'-l'm) Y^+(mn'

or, which is the same thing, by the faotor

{ bn — I'm — (mri—m'n) Z10— {nV—n'l) Zm } ' f "l

11. The temporarily excepted case of the transformation

x = mY+nZ +p

4 7

y = VX +n'Z .(48)

is readily seen to be not really exceptional. This transformation
may be replaced by the sequence of

x = mX' + nZ+p

y = VY'+ nZ+p'

z= n"Z+p'\

and X' = F

Of these partial transformations, the first is not special, and
the second produces (-l)"»flL(r, ZX) from S0(X\ Y'Z), and
(-1)"' 80 (Y, ZX) from Sm (X', Y'Z). In other words, it produces
the second of the equivalent forms in (8) from the first, which is the
same thing as reproducing the first.

Thus Theorem II. of § 5 is also established for all cases.

12. It is proposed now to consider the integration of a number of
cyclicant, semicyclicant, and cocyclicant equations, and the converse
passage from proper equations in as, y, z involving arbitrary functions
to cyclicant, semicyclicant, and cocyclicant equations by elimination
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of the arbitrary functions, as also of the variables and first deriva-
tives. In other words, regarding the matter geometrically, it is
proposed to deal with some classes of families • of surfaces whose
differential equations are the results of equating to zero pure cy-
clicants or semicyclicants or cocyclicants. A family of surfaces
whose criterion is a pure cyclicant will have for its functional equa-
tion, if such can be found at all, one that is unaltered in character
by any linear transformation of the variables. A family whose
criterion is a semicyclicant in x as dependent variable, or a cocyclicant
in z dependent, will, by the lawfulness of the transformation (23),
have no special respect to any planes except those parallel to z = 0.
A family of surfaces having properties which a single cyclicant
equation is insufficient to express, but which are independent of any
particular coordinate planes, will often at least have for the full ex-
pression of those properties the vanishing of all the coefficients of a
cocyclicant. Examples of this will be given.

The propositions of § 5 indicate that, in determining pure oyclicant
and semicyclicant equations, much use may, with advantage, be made
of canonical forms of functional equations. Thus, it

F(x,'y,z)=Q

satisfy an equation, " pure cyclicant" = 0.

The same is also satisfied by

F (Ix + my+nz +p, Vx + my+nz + / , l"x+m"y + ri'z +$") = 0 ;

and, if <j> (jx, y , z) = 0

satisfy an equation, " semicyclicant in x " = 0,

or " cocyclicant in z " = 0,

so also does

0 (Ix+my+nz+p, Vx-\-m'y-\-nz-\-p\ ri'z+p") t= 0.

13. Of pure cyclic concomitants the lowest is z^ the semioyclicant
which is the leading coefficient of the quadratic cyclico-genitive form
J3r We have, in faot,

Now the integral of OJW = 0, i.e., —. = 0, is at once
dy

(49),
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which is quite as general as its apparent transformation by (23),

This, then, is the equation of the family of surfaces whose differential
equation is either

ff20 = 0, or 2/02 = 0, or E2 = 0 (50).

It is the family of surfaces generated by straight lines always parallel
to the plane z = 0.

The differential equation of surfaces cutting planes parallel to any
other plane Xx+py + z = 0 than z — 0 in straight lines is the one
which would take either of the forms (50) upon putting in it z for
\x+(xy + z = 0, keeping x and y unaltered. The third form is the
one which gives at once the forms of equation of the family, viz.,

or, say, eM<*Afeio)+M<*fcoi) S% = 0 (51).

If all planes whatever are cut by the surfaces in straight lines, this
equation must be satisfied for all values of X and ft, and conversely.
Now, this necessitates tha t separately

ziQ = 0, zn = 0 , zOi = 0,

which are the differential equations of planes.

The results of this article, as no doubt also some of those which
follow, are very familiar. They are given, however, as a first and
instructive example of the method under consideration.

14. The later results of the last article exemplify facts which may
at once be stated generally.

(i.) If (flfw 8U ... Stll)(-z0Uzwr = 0

be an equation of the form " cocyclicant =-0," obtained as the differ-
ential equation of a family of surfaces having an assigned property
with regard to planes in the direction of z = 0, then

£o> 8u (i 8m)(-zou zlor=O (51),

or (So, 8U ... 8m)(-z0l-fx, zl0+\)m = 0 (51a),

is that of the family having that property with regUrd to planes
parallel to the plane \x+py+z = 0 ; and

(ii.) If surfaces have the property with regard to planes in an in-
finity of independent directions, they satisfy simultaneously the
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differential equations

S0=0, St = 0, ... Sm = 0;

equations which are not to be expected to be all independent.

15. The next simplest cyclic concomitant to zK is the pure cyclicant

which is known to be the criterion of developable surfaces, and need
not be further dwelt upon.

16. Ft and ftt both annihilate

which is accordingly a semicyclicant. By (8), therefore,

3%a>ll-2a?80a;i,1 =

Boi 2/Io

= — (Szsozn —2z30ziU 628O8O9+%011—42f,0«i9, 4>znzoi—«n«n—

2«ll*M-8«fo«n) ( - % , »10)
8 (54).

Now, the first of these three identical expressions equated to zero
gives

, i.e., — — SCJO y- *n •

Therefore a5w = xn f (js),

i.e., aio = % ^ ( z ) + ^ («) ;

which, integrated by means of the auxiliary system

dx _ dn[ _ dz

i.e., a-\-u = '/'(y + v) ....(55),

u and v being arbitrary functions of z, and ^ an arbitrary functional
symbol.

Thus either member of (54) equated to zero is the partial
differential equation of the family of surfaces

to+roy+/1(s) = ^{r»+«»V+/«(*)} (56),
the generalisation of (55) by the transformation (23),
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The property of the family in question is that any given member
of it cuts all planes parallel to the fixed plane z = 0 in identical and
similarly situated cui*ves. In particular, cylindrical surfaces are of
the family, the loci of corresponding points of the sections—in general,
curves of the type Ix+my+fx (z) = 0, I'x+m'y +/a (z) = 0—being in
this case straight lines. Again, any paraboloid whose axis is parallel
to the plane z = 0 is of the family.

Surfaces which have the property with regard to the plane
Xx+fty+z = 0 instead of « = 0, have their differential equation
written down upon inserting — z01 — /i, zio + ^ for —% a n ^ z10 in the
third of the identical expressions in (54), and equating to zero.

Again, any surface which cuts every system of parallel planes in a
system of identical and similarly situated curves—or which cuts an
infinite number of pax-allel systems in such a manner—must satisfy
separately the equations

+ «21 Sll -

= 0

= 0
.(57).

This is the case with cylindrical surfaces.

17. An equation involving one more arbitrary function than (56) is

w (fas + my) + u = \p {w(l'x+m'y)+v} (58),

where u, v, w are arbitrary functions of z. This is the functional
equation of the family of surfaces of which any one cuts all planes
parallel to z = 0 in similar and similarly situated curves. All sur-
faces of revolution belong to the family, the plane z = 0 being in
their case at right angles to the axis of revolution. Another very
particular included family is that of quadric surfaces, which retain
the property in question whatever be the plane 2 = 0 . .

From the canonical form

wx+u = \{/ (toy + v) (58a),

of the equation (58), it is easy to obtain, by actual differentiation and
elimination, the differential equation

2xi0 xn = 0 (59),

Sx.a a;.,, a
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of the family, with x for dependent variable. This equation may be
written

so that, by (20) and (53), or from the fact that Oj and F, (in ® de-
pendent) annihilate the left-hand member of (59), that left-hand
member is a semicyclicant (in x).

The converse passage from (59) to the functional equation may be
performed as follows. We may write (59) in the form

of which, by Lagrange's method, the first integral is

I.e., -22 :

®sio / 0 * W

whence log xiQ = J7 (a;J0) + <p (z),

which gives Fx (a10) = y tf>, (2) +^2 («)

i.e., 2I0 = ^ I

and, again integrating,

which is the canonical form (58a).

The equation in z dependent equivalent to (59) is, by (8),

/ I 1 2 ^ 1 e \

<Zzi0 «n

3^30 ^31 ^20

4% % 2%

where Qo denotes

and «2 = 2r +.

If an infinite number of different sets of parallel planes cut a sur-
face in sets of similar and similarly situated curves, the equation of
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that surface satisfies all the differential equations

397

.(61).

18. In accordance with the remai-k at the end of the first paragraph
of the last artiole, these last equations (61) must be satisfied by all
quadrio surfaces. But (Proceedings, Vol. xix., p. 15) we know already
the conditions of lower weight which such surfaces must satisfy, viz.,
the four conditions (two independent)

= 0 (62).

Oar attention is then directed to the family of surfaces represented
by the semioyclicaut in a,

= 0 (63),

or, as is the same thing, by the cocyclicant in z,

= 03
«1O .(64).

zn

It does not appear that any single equation involving arbitrary
functions can be found which is the complete primitive of (63), so as
to be the functional equation of the entire family of surfaces. We
may write (14), however,

d

so that a first integral is

(65).

In particular, then, the family includes all developable surfaces, for
(52) is a particular case of (65).

In accordance with the known satisfaction of (62) by all quadrics,
we notice that the reason is, that a central quadric cuts all planes of
any parallel system, and a paraboloid all of any of a triply infinite
number of parallel systems, in similar and similarly situated
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conies haying their centres collinear. Now, it is readily seen that the

canonical form xy—f(z) • (66)

represents a family of surfaces having that property with regard to
planes parallel to z = 0, and also is included in the more general
family satisfying (63).

19. Enough isolated examples have been taken in the last six
articles to indicate the importance of the study of cyclic concomitants
in connection with the theory of families of surfaces. The remainder
of the present paper will be devoted to the study of a very important
particular class of concomitants, viz., to the class of cocyclicants whose
semicyclicant sources ai'e of second partial weight zero. The first
of these is the quadratic cyclicogenitive form 2<7a. These have the
very closest connection with pure reciprocants. (Having discarded
the term ternary reciprocant, I henceforth use the word reciprocants
to denote always the functions of the derivatives of one variable with
regard to another, studied under that name by Professor Sylvester.)

It is useful to have a notation companion to that of (7) for the
functions obtained by writing in the cyclicogenitive forms 2?2, Eit ...
—zQ1 —p and zlo+\ for — % and a10. Let us use Fit Fit ... to denote
these altered forms, so that, for all values greater than unity of
the number r,

F = (z z ... « J (—z —w i

(67).
20. Let <p(a, b, c, . . . ) ,

or say, taking x for dependent variable instead of y,

! dy1 3 ! dy* 4!

be any Sylvesterian pure reciprocant. Let its degree be i and its
weight w\ a, b, c, ... being regarded as of weights 2, 3, 4 The same
function of the partial differential coefficients of * with regard to y,
x being now regarded as a function both of y and z, is in our notation

and satisfies the definition of a semicyclicant in x dependent, being
homogeneous (of degree i), doubly isobaric (of weights w, 0), annihi-
lated by Vx (the same fact as that the reciprocant <p ia by V)
and also by ^ (having no constituent of second suffix different from
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zero). Hence, by (3),

0 fao» % » a«n •••) = / _ i \w fl(y<m ?/«» Vot* •••)
^oi yio

= (—1)' {that covariant of Ei} Eit Eit ... whose leading term is

0 (Z20l Z30> *«> " • ) ( — % ) " }

= (-l)>(^^s,^, ...) (68).

It is clear, then, that the study of cocyclicants of this class amounts
to little more than a careful adaptation of results obtained by
Sylvester and others with regard to pure reciprocants. They are the
same functions of the cyclicogenitive forms J573, Eit ... as pui'e re-
ciprocants are of the prepared derivatives a, 6, .... Thus they are
homogeneous and isobaric functions of 2J72, Es, ... which have the
annihilator

••••• (69),
and one may be educed from any other by operation with the generator

4 CMV--E2,) -^-+5(E2E5-E3Ei) A + 6 ( ^ ^ a - ^ , i B ) A. + ...
aM/s dMi aJh6

(70).

21. The semicyclicants and cocyclicants obtained as in the last
article are of immediately obvious geometrical interest. In fact, any
pure reciprocant <j> (a, 6, c, ...) is known to be the criterion, i.e.,
(p(a,b,c,...) = 0 to be the differential equation, of a class of plane
curves whose equations are unaltered in form by any linear transfor-
mation of x and y; and moreover it is known, conversely, that the
criterion of any such class of curves is a pure reciprocant. Now, the
process of elimination, by aid of differentiation, of any number of
constants from an equation in x and y, is exactly the same as that of
elimination, by aid of partial differentiations treating z as constant, of
the same number of arbitrary functions of z from an equation
involving those functions, just as the first equation involved the
constants which they replace. In other words,

0(»a»*3o»*«> • ••) = <> (71),

or either of its equivalents, by (68),

<P (y<>2i 2/oi> ?M> •••) = 0 (71a)f

or . t{EuEnEt,...) = 0 ( 7 1 6 ) ,
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is the differential equation of the family of curves which cut all
planes parallel to s = 0 in curves of the type of which <j>(a,b, c, ...)
is the reciprocaut criterion.

The same three equations may, in our ordinary notation of semi-
cyclicants and cocyclicants, be written

h (a, yz) = 0,

0» (y, ex) = 0,

(0o» 0i» 02. - 0»)(-*oi» Zw)w = Q (71c).

By § 14, it follows that the family of surfaces of which any cuts all
parallels to any other given plane Xx + fxy + z=0 in curves of the family
of which <j> (a, h, c, ...) is the criterion, has for its differential equation

(0o> 0i, 0a, - 0w)(-zoi-/', **+*•)" = ° (72),

or eK W^w)+* (̂ «-oi) , (j> (E2> Eit J3it ...) = 0,

or again, in the notation of (67),

0 (*•» F» F« ...) = 0 (72a).

22. The first pure rcciprocant a leads in this manner to the
differential equation of surfaces generated by straight lines parallel
to a iixed plane. It produces the cocyclicant, &c, discussed in § 13.

Tho second pure rcciprocant

is the criterion of parabolas. Hence either

M0(x,yz)= xioxi,-ix;o = O (73),

or M6(y}zx)= 2/02^-12/03=0 (73a),

or / i s J W - f B j = 0 (786),

is the differential equation of the family of surfaces all sections of
Avhich by planes parallel to s = 0 are parabolas.

The family of which all sections by parallels to Xx+fiy + v = 0 are
parabolas, is represented by

n = 0 (74);

0 (74a).



1888.] Ternary Reciprocants, and Allied Functions. 401

Again, if a surface cut all planes in parabolas, it must satisfy all
the equations

il./0 = ZOQ^HJ -£ #30 = U,

If, = WIA = A_ (2zn*sl-'4 + 2 ^ - 5 ^ + 2 ^ ) = 0,

= 0,

(75),

which last results are probably rather matters of curiosity than
value.

23. Again, A = a\l-Zabc + 2bs

is the criterion of a conic (Monge).

Thus either of the three equivalent diflerontial equations

Ao (x) =4o*m—3jJMa;3Oa4o + 2fl>M = 0 (70),

or Ao (u)=yliy»—^ymymyu+^ym = 0 (70a),

or a = ^i?0-3i',E3E4+27!73 = 0 (76b),

is the differential equation of the family of surfaces denoted by

i^x* + i\if + 10^211,^ + 2v.,x + 2w2xy = 0,

where «1} vu wv u^ viy 2^ are arbitrary functions of z.

Again, VU==JF2
2J?S_ 3 ^ 1^1^ + 2 2 ^ = 0 (77)

repi'escnts the family of surfaces which cut parallels to Xo;+/t?/ + s=O
in conies; and, if a surface cut all planes in conies, it satisfies all the

equations J o = 0, Oa^0 = 0, ... nj Ao = 0 (78).

24. Professor Sylvester (American Journal, ix., p. 10) has proved

that 1G (\ +1)2ill3 + 25 ( X - 2 ) ( 2 \ - l ) A" = 0

is the differential equation of curves of the class

ax + by + c = (a'x + b'y + c')* (79),

a, b, c, a, b', c being arbitrary constants.
VOL. XIX.—NO. 330 . 2 D
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It follows that, in the notation of the last two articles,

lG(\ + l ) V + 2 5 ( \ - 2 ) ( 2 \ - l ) a 9 = 0 (80)

aud lC(X + l)2(^) s+25(\-2)(2X-l)(Va)3 = 0 (81)

represent respectively the families of surfaces cutting planes parallel
to z = 0 and \x+/*y+z = 0 in curves of the same typo.

Tho results of the last two articles are included, as also are that

44(V/i)8+5»(Va)s = 0 (82),

given by \ = 3 or \, and

as = 0 (83),

given by X = •§ or •§, represent surfaces cutting parallels to
A,i'+/i7/ + z = 0 iii cubical and semicubical parabolas respectively.

25. The interpretation of Sylvester's B, C, D, ... (American Journal,
ix., p. 318) leads in like manner to those of the cocyclicants

ft^ElE^ElEl-iElE^+^EX^-^K (84),
y = ElEi-bElEiE, -42i£jEa2&e+1313^,23!

l E i E l E i + ^ K (85),

?1{...} (86),

and more generally to the interpretations of Vft, Vy, V8,..., the
results of replacing every E in /3, y, B by the corresponding F.

Halphen's A (" Theso sur les Invariants differentiels," pp. 12, &c),
or Sylvester's AG—B% (American Journal, ix., pp. 332, &c), is the
criterion of

log (ax + by + c) + w log (a'x4-b'y + c) + w2 log (a"x + b"y + c") = k,

where w is an imaginary cube root of unity, and a, b, c, a\ b\ c,
a", b", c", k aro arbitrary constants. The differential equation of which
the complete integral is

log (nix + v1y + wl) + iolog(nix + viy + wi) + u>i\og (usw + vay + ws) = U

(87),

in which «„ vly u\, n.,, v.2, w.^ u.it vit w3> U aro arbitrary functions of Z,
is then

-i0 (*. y») ^o(«, </*)- {^(*, y;)Y = o (88)
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or Ao (y, zx) Ou (y, zx)- {Bn (y, zx)}3 = 0 (88a),

or, again,

ay-/32 =

-K o
0 E\

0 0

E

E\

= 0

,(886).

A result including this, and also the a = 0 of § 23, obtained in liko
manner from a result of Sylvester's (American Journal, IX., pp. 387
338), is that, if \ be any constant,

27s (\ + l)2(X-2)2 (2 \ - l ) 2 (« y - /3 2 ) 8 = 3 \5 2 (\3-X + l)3a8 ...(89)

is the differential equation of surfaces whose equations arc of tlio type

)*"1 = TV... (00)

with certain special cases corresponding to the values 0, 00 , and 1 of X.
For these the differential equation is

(91),

and alternative complete integrals are

ii^x + v^y + Wy = log (ji^x + v2y + w2)

and

(92)

(93).

In all these results uu vu w,, n2, ...., MS, ..., 17 denote arbitrary func-
tions of z. A particular result of (89) is that

2 s ( n y - / F ) s = 3 V .(94)

represents surfaces where sections by parallels to z = 0 are cuspidal
cubics.

The generalisations of these results, obtained by inserting Va, Vft,
Vy for a, ft, y, i.e. F2, &c, for E2, &c, need not be stated at length.

26. A few more results may be stated without development.
The result of replacing X in (90) by an arbitrary function of z

2 D 2
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leads to a cocyclicant derived from Halphen's T (These, p. 42), or
Sylvester's A2D—3ABG + 2TJ3. The comprehensive conclusion de-
rived from this is that

24IV { (Va)3 (VcV) - 3 (Vo)(V/3)(Vy) + 2 (V/3)3} (95),

i.e.. 3F3 0 F, 0 0

4F4 F, F3 F% 2F;

5I<'5 2 F 4 ^ 2JP1, 5F 2

DX'O 61' 0 1'g di ' 4 01' 2

0

0

3JP,

IF, 4F0

8FS 5JP7 8F2Fa

.(95a),

is the criterion of surfaces cutting planes parallel to Xx+/xy + z = 0
in curves whose equations referred to axes in their own plane are
of the form

(ax+by+C)-1 (ax + b'y + c')x W • + c")1"x = * W ,

where \ as well as the other constants is arbitrary.

Again, Roberts's reciprocant expression for the criterion of a
general cubic curve (Educational Times Reprint, x., p. 47) leads us
to the conclusion that

F3 F4 Fl

I< 3 I ( 1
0 2 Z'"!, j

^ 2'V 22 ' ' ;

7i' W F (> FLa J-'r x s -tl2

0

*1
2 F S .

21'72

22<Y

F, 2F2F7+2F5F0+2FiF6 2F,. SJF? ?t+F;

...(97.

is the criterion of surfaces whose sections by parallels to
arc cubic curves.

And lastly, from Sylvester's criterion (American Journal, ix., p. 349)
of curves of the nlh order, we deduce the criterion of surfaces cutting
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planes parallel to \x+ny+z = 0 in curves of that order, viz.,

(2.1) (3.1) (4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) .

(3.1) (4.1) (5.1) (G.I) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) .

(3.2) (4.2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) .

(4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) .

(4.2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) .

(4.3) (5.3) (6.3) (7.3) (8.3) (9.3) (10.3) (11.3) (12.3) (13.3) .

(5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) (14.1) .

(5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) (14.2) .

5.3) (6.3) (7.3) (8.3) (9.3) (10.3) (11.3) (12.3) (13.3) (14.3) .

5.4) (6.4) (7.4) (8.4) (9.4) (10.4) (11.4) (12.4) (13.4) (14.4) .

(98),

to hi(n+\) rows and columns, Avhere (ra./ti) denotes ihc multiplier
of k'" in the expansion of

On the Figures formed by thn Tntevcapts of a Si/stem of Straight

Lines in a, Plane, and on analogous relations in Spa.ce of Three

Dimensions. By SAMUEL ROBERTS.

[Itcad May IQth, 1888.]

I. Plane Space.

1. In studying some questions relating to the closed branches of
curves, I was led to consider the clear spaces enclosed by the finite
segments determined by the intersections of straight linos in a plane.
By " clear spaces " I mean those not cut by any of the lines, and it
will be convenient to call them simply " spaces." I have since found
that, long ago, Stcincr treated of the subject, in consequence of his


