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ABSTRACT

The composition information of audio recordings is highly
valuable for many tasks such as automatic music descrip-
tion and music discovery. Given a music collection, two
typical scenarios are retrieving the composition(s) perfor-
med in an audio recording and retrieving the audio record-
ing(s), where a composition is performed. We present a
composition identification methodology for these two tasks,
which makes use of music scores. Our methodology first
attempts to align a fragment of the music score of a com-
position with an audio recording. Next, it computes a sim-
ilarity from the best obtained alignment. True audio-score
pair emits a high similarity value. We repeat this proce-
dure between all audio recordings and music scores, and
filter the true pairs by a simple approach using logistic re-
gression. The methodology is specialized according to the
cultural-specific aspects of Ottoman-Turkish makam mu-
sic (OTMM), achieving 0.96 and 0.95 mean average preci-
sion (MAP) for composition retrieval and performance re-
trieval tasks, respectively. We hope that our method would
be useful in creating semantically linked music corpora for
cultural heritage and preservation, semantic web applica-
tions and musicological studies.

1. INTRODUCTION

Version identification is an important task in music infor-
mation retrieval which aims to find the versions of a mu-
sic piece from a collection of audio recordings automati-
cally [1,2]. For popular music such as rap, pop and rock,
the task aims to identify the covers of an original audio
recording. For classical music traditions a more relevant
task is associating compositions with the audio performan-
ces. The composition information is highly useful in many
other computational tasks such as automatic content de-
scription and music discovery (e.g. searching the perfor-
mances of a composition in a music collection).

For classical music cultures, music collections consist-
ing of music scores and audio recordings along with edito-
rial metadata are desirable in many applications involving
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cultural heritage archival, music preservation and musico-
logical studies. Composition identification is a crucial step
linking performances and compositions during the creation
of such music corpus from unlabeled musical data [3].

Composition information can be used to generate and im-
prove linked musical data, enhance the music content de-
scription and facilitate navigation in semantic web appli-
cations. Consider a scenario, where a musician uploads
his interpretation of a composition to a platform such as
SoundCloud, YouTube etc. The performed compositions
can be automatically identified and labeled semantically
using an ontology, e.g. [4]. Next the performance can be
linked with related concepts (e.g. form, composer, score)
available in other sources such as biographies of the per-
forming artist, the music score of the composition or the
musical and editorial metadata stored in open encyclope-
dias such as MusicBrainz and Wikipedia. Such a scheme
would facilitate searching, accessing and navigating rele-
vant music content in a more informed manner. Likewise,
tasks such as enhanced listening and music recommenda-
tion may also benefit from the musical data linked via au-
tomatic composition identification.

Due to inherent characteristics of the oral tradition and
the practice of Ottoman-Turkish makam music (OTMM),
performances of the same piece may be substantially dif-
ferent from one another. This aspect brings certain compu-
tational challenges for the computational analysis and re-
trieval of OTMM (Section 2). In this paper, we propose a
composition identification methodology, which makes use
of the available music scores of the relevant compositions
using partial audio-score alignment. The methodology is
designed to address the culture-specific challenges brought
by OTMM. To the best of our knowledge, our methodology
is the first automatic composition identification proposed
for OTMM. We consider two composition identification
scenarios, 1) identifying the compositions performed in
an audio recording, 2) identifying the audio recordings in
which a composition is performed. Note that there might
not be any relevant audio recordings for some composi-
tions, and vice versa. Our methodology also aims to iden-
tify such cases. Our contributions can be summarized as:

1. The first composition identification methodology ap-
plied to Ottoman-Turkish makam music

2. An open and editorially complete dataset for com-
position identification in OTMM (Section 5.1)

3. Extending the state of the art in transposition-inva-
riant partial audio-score alignment for OTMM by in-
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troducing subsequence dynamic time warping (Sec-
tion 4.2.2)

4. Simplifications and generalizations of the fragment
selection and the fragment duration steps used in the
score-informed tonic identification method proposed
by [5] and verification of this method on a larger
dataset as a side product of the composition iden-
tification experiments (Table 1)

For reproducibility purposes, relevant materials such as
musical examples, data and results are open and publicly
available via the Compmusic Website. !

The rest of the paper is structured as follows: Section 2
provides an introduction to Ottoman-Turkish makam mu-
sic. Section 3 gives a definition of the composition iden-
tification tasks we are dealing with. Section 4 explains
the methodology applied to both composition identifica-
tion scenarios explained above. Section 5 presents the ex-
perimental setup, the test dataset and the results. Section 6
discusses the obtained results. Section 7 wraps up the pa-
per with a brief conclusion.

2. OTTOMAN-TURKISH MAKAM MUSIC

The melodic structure of most of the traditional music re-
pertoires of Turkey follow the concept of makams [6]. Cur-
rently, Arel-Ezgi-Uzdilek (AEU) theory is the mainstream
theory for OTMM [6]. AEU theory argues that there are
24 equal intervals and that a whole tone is divided into
9 equidistant intervals. These intervals can be approxi-
mated from 53-TET (tone equal tempered) intervals, each
of which is termed as a Holdrian comma (Hc) [6].

For centuries, OMMT has been predominantly an oral
tradition. Since the start of the 20th century, a notational
representation extending standard Western music notation
has been used in OTMM complementary to the oral prac-
tice [7]. This notation typically follows the rules of AEU
theory.

Below we list some of the characteristics of OTMM, which
pose challenges for composition identification:

e There is no definite tonic frequency (e.g. A4 = 440Hz)
in the performances. The performed tonic is occasion-
ally transposed due to instrument/vocal range or aes-
thetic reasons [6]. This necessitates automatic tonic iden-
tification for any fully-automatic alignment method (Sec-
tion 4.2).

e The performances of OTMM occasionally include im-
provisations played before, after or even within a com-
position. It is also common to repeat, insert or omit sec-
tions of a composition.

e Until the 20" century, most of these music has been
strictly transmitted from a master to the students within
the oral tradition. This resulted in the musical material
propagating differently in different “schools.” There-
fore, performances of the same composition may differ
from each other substantially.

e OTMM is a heterophonic music tradition. Musicians
simultaneously perform the same “melodic idea;” Yet
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they are supposed to show their virtuosity by changing
the tuning and the intonation of some intervals, adding
embellishments and/or inserting, repeating and omitting
notes and phrases during the performance. Melody ex-
traction algorithms might not perform well in recordings
with substantial heterophonic interactions [8].

e Most of the scores of OTMM are descriptive and they
are transcribed sometimes centuries later. The scores
typically notate basic, monophonic melodic lines. They
do not usually indicate the heterophony, intonation de-
viations and other expressive elements observed in the
performances.

In the experiments, we focus on pesrev and saz semaisi,
which are the two most common instrumental forms of the
classical repertoire. Both pesrev and saz semaisi typically
consist of four non-repeating sections called hane and a
repetitive section called teslim performed between these
hanes.

3. PROBLEM DEFINITION

Given a specific music collection, two basic composition
identification scenarios are:

1. Composition retrieval: Identification of the com-
positions which are performed in an audio record-
ing.

2. Performance retrieval: Identification of the audio
recordings in which a composition is performed.

These scenarios are ranked retrieval problems where the
query is an audio recording and the retrieved documents
are the compositions in the composition identification task,
and vice versa. In both cases, the common step is to esti-
mate whether a composition and an audio recording are
relevant to one another. The relevances in the composition
identification problems are binary, i.e. 1 if the composition
and the audio recordings are paired and 0 otherwise.

The results in both cases can be aggregated by applying
this step to multiple documents and queries. Neverthe-
less, there might be situations where it may be impossible
or impractical to retrieve the whole collection, for exam-
ple restricted access to copyrighted music material or the
lack of computational resources in fast-query applications
(e.g. real-time composition identification in mobile appli-
cations). Moreover, both scenarios might require different
constraints to obtain better results and/or process more effi-
ciently. For example, a good performance retrieval method
should find multiple relevant audio recordings for a com-
position; on the other hand only the top ranked documents
are important in composition retrieval when more than a
single composition is rarely performed in the queried au-
dio recordings (Section 5.1). In this paper, we deal with
these two tasks separately and leave the joint retrieval task
as a future direction to explore.

4. METHODOLOGY

We assume that the scores of the compositions are avail-
able and estimate the relevance by partially aligning the
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score of a composition (n) with the audio recording of a
performance (m). The alignment step in our methodology
is based on the score-informed tonic identification proce-
dure described in [5], which we use to obtain the best pos-
sible alignment between a score and an audio recording in
a manner invariant of the transposition of the performance
(Section 4.2). Next, we compute a similarity value € [0, 1]
between the composition and the performance from the
best alignment path. We observe a high similarity value,
if the composition (n) is indeed performed in the audio
recording (m) (Section 4.3). The block diagram of trans-
position invariant partial-audio score alignment is given in
Figure 1. The alignment process is repeated between each
audio recording and music score, and a similarity value
is obtained for each composition and performance pair in
our collection. Finally, the performance-composition pairs
with low similarity values are discarded using outlier de-
tection (Section 4.4) and the relevant pairs are obtained.

4.1 Feature Extraction

In audio-score alignment of Eurogenetic music, features
which can capture the harmony such as chroma features [9,
10] are typically used. In [8], it is shown that predomi-
nant melody performs better for OTMM due the melodic
nature of the music tradition. In our method we follow
the melodic features proposed for audio-score alignment
of OTMM in [5] and [8].

From the audio recording (m), we extract a predomi-
nant melody using a version of the methodology proposed
in [11], optimized for makam music [12].% The pitch pre-
cision of the predominant melody is taken as 7.5 cents
(= 1/3 Hc), which is a suitable value for tracking pitch
deviations in makam music [13]. The frame rate of the ex-
tracted predominant melody is downsampled from ~ 2.9
ms to ~ 46 ms, which is shown to be sufficient for audio-
score alignment in OTMM [8]. We denote the predom-
inant melody extracted from the audio recording (m) as

xXm) = (:zzgm),...,:cy("nz)), m € [1 : M], where M is
number of audio recordings in the collection and (") is
the number of samples in the audio predominant melody
(Figure 1d).

From the machine readable score of the composition (n),
we first pick a short fragment (either from the start of the
score or from the repetition) indicated in the score. We
also try different fragment durations in Section 5. Then
we sample the note symbols in the note sequence of the
selected fragment according to their durations in nominal
tempo indicated in the score [8]. In practice, the previ-
ous note is commonly sustained in the place of a rest, so
we omit the rests in the score and add their duration to
the previous note [8]. The sampled symbols are mapped
to the theoretical scale-degrees in cents according to the
AEU theory such that the tonic symbol is assigned to 0
cents (Figure 1b). The generated synthetic pitch track has
a sampling rate of ~ 46 ms, equal to the frame rate of
the predominant melody. We denote the synthetic melody
computed from the score of the composition (1) as Y (") =

2The implementation is available in https://github.com/
sertansenturk/predominantmelodymakam

(™, ... 7y§?3,)), n € [1 : NJ, where N is number of
compositions with scores in the collection and .J(") is the
number of samples in the synthetic melody (Figure 1b).

Notice that the unit of the pitch values in the audio pre-
dominant melody X (™) is Hertz, whereas the unit of the
pitch values in the synthetic melody Y (™) is cents. For
proper alignment of Y (") within X (") (provided that they
are related with each other), X (M) has to be normalized
with respect to the tonic frequency.

To identify the tonic, we first compute a pitch class distri-
bution from the audio predominant melody [5]. We use
kernel-density estimation to obtain a smooth pitch class
distribution without spurious peaks [5]. We select the bin
width of the distribution as 7.5 cents (the same as the pitch
precision of the audio predominant melody) and use a Gaus-
sian kernel with a standard deviation of 15 cents (=~ 2/3
Hc) so that a pitch value contributes in an interval slightly
smaller than a semitone, which is reported as optimal for
this task [5]. The width of the kernel is selected as 75 cents
center to tail (i.e. 5 times the standard deviation) as the
contribution to the samples beyond this width are redun-
dant.

Finally we pick the peaks of the distribution as the tonic
candidates [5, 13] (Figure le). We denote the tonic candi-

dates for the audio recording (m) as C(™) = {c(lm), ces

Cg(?n) }, where K (™) is the number of peaks in the pitch
class distribution (Figure 1e). Notable is that the candi-
dates correspond to (stable) pitch classes instead of fre-
quencies. This choice reduces the computational complex-
ity as we will compute the “octave-wrapped” pitch dis-
tances in the alignment step (Section 4.2, Equation 2).

4.2 Transposition-Independent Partial Alignment

Assuming a candidate cgcm) obtained from the pitch class

distribution as the tonic frequency, we normalize each pitch
sample in the audio predominant melody to cent scale by:

2" = 1200 log, (xf.m) /c,gm>) (1)

Note that there are 1200 cents in an octave. We denote the
predominant melody normalized with respect to the tonic
candidate an) as X (™%) Next, we attempt to align the
score fragment to the corresponding location in the au-
dio recording by searching the synthetic melody Y ("),
computed from the selected score fragment in the normal-
ized audio predominant melody X(mk) we compare two
methods for partial alignment: 1) Hough transform, and 2)
Subsequence DTW.

4.2.1 Hough Transform

The Hough transform is a simple and yet effective para-
metric line detection method [14]. It is previously used
in section-level audio-score alignment [8], tonic identifica-
tion [5] and tempo estimation [15] in OTMM and found to
produce comparable results to methodologies using com-
plex models such as hierarchical hidden Markov models [15].
Nevertheless, it cannot handle extensive tempo deviations
or insertions, repetitions and omission in a musical phrase
since it is a linear operation.
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Figure 1. Block diagram of the transposition invariant partial audio-score alignment using the Hough transform a) A
short fragment selected from the score, b) The synthetic pitch computed from the score fragment, ¢) The audio recording,
d) The predominant melody extracted from the audio recording, e) The pitch class distribution computed from the audio
predominant melody and its detected peaks, f) The set of predominant melodies normalized with respect to the detected
peaks, g) The set of distance matrices between the synthetic melody and the normalized predominant melodies, h) The
set of binary similarity matrices computed from the distance matrices. A linear alignment path obtained using the Hough
transform is displayed on top of one of the binary similarity matrices along with i) the similarity value computed for the
path. All the blocks except g and h are the same for partial alignment using SDTW.

If the Hough transform is selected for partial alignment,
a distance metric is computed between the synthetic pitch

track Y (™) and the normalized audio predominant melody

X (m:F) Each element D(i, j) in the distance matrix D is
computed as:

D (i,7) = min((|x(m *)_ (-n)\ mod 1200),

1200 - (|&™* = 5| mod 1200))  (2)

(m;k)

where £, denotes the i*" sample of the normalized au-

dio predominant melody X (™*) and yj(n) denotes the jt"

sample of the synthetic pitch Y ("), respectively. This dis-
tance may be interpreted as the shortest distance in cents
between two pitch classes. It is not affected by octave-
errors in the predominant melody or the tonic.

If the selected score fragment is performed within the au-
dio recording and the predominant melody is normalized
with the correct tonic frequency, the distance matrix will
show blob(s) in a diagonal trajectory formed by low dis-
tance values. The projection of the blob to the audio-axis
indicates the time-interval in the audio recording where the
score fragment is performed. To make the line segment
more prominent, we binarize the distance matrix and ob-
tain a binary similarity matrix B (Figure 1h). We use the
binarization criteria proposed in [8] and compute each ele-
ment B(i, §) in the binary similarity matrix as:

{1, D(i,j)<a
B(Z,])—{Q (i) > a 3)

Here two pitch values are considered to belong to the
same note if the distance (in cents) is less than the given
binarization threshold, . We take o« = 50 cents, which is
reported as an optimum of this value for makam music [8].

As can be seen in Figure 1g, these blobs can be approxi-
mated as line segments. To detect the line segments, we
apply the Hough transform to the binary similarity ma-
trix (Figure 1h). We restrict the searched angles between
—26.57° and —63.43°, which allows the alignment to have
a tempo deviation between 0.5 and 2 times the nominal
tempo indicated in the score. From the obtained trans-
formation matrix, we select the highest peak, which indi-
cates the most prominent line segment [14]. The linear
path p("™F) which the line segment follows, is simply
the sequence of the points that has accumulated this peak
in the transformation matrix. An example alignment found
by the Hough transform can be seen in Figure 1h.

4.2.2 Subsequence DTW

Dynamic programming and more specifically dynamic time
warping (DTW) are the state-of-the-art methodologies for
many relevant tasks such as cover song identification [1,2]
and audio score alignment [16, 17]. Unlike the Hough
transform, DTW is robust to changes in tempo and mu-
sical insertions, deletions and repetitions. However, it can
be prone to pathological warpings.

We use subsequence DTW (SDTW), which is a typical
variant used when one of the time series is a subsequence
of the other [18,19]. In this variant the paths are allowed to
start/end within target. We refer the readers to [19, Chap-
ter 4] for a thorough explanation of DTW and SDTW.

Using SDTW, we compute an element A(i, 7) in the ac-
cumulated cost matrix A recursively as:

0, i=0
+00, Jj=0
A(i,j) = A(i=1,j-1) “
(4,4) +min A(i—2,5—-1), i>1 i,j#0
Ali-1,j-2), j>1

As seen above, we select the step size condition as {(2, 1),



(1,1),(1,2)}. Analogous to the angle restriction in the
Hough transform (Section 4.2.1), this step size ensures
that the intra-tempo variations in any path will stay be-
tween half and double the nominal tempo indicated in the
score. Moreover, we use Equation 2 as the local distance
measure to calculate the accumulated cost matrix. Also,
notice that the accumulated cost matrix is extended with a
zeroth row and column, initialized to enable subsequence
matching. Finally we back-track the path p(™"*) ending
at arg min; A(i, J (m)) (remember that J(™) is the length
of the synthetic melody), which emits the lowest accumu-
lated cost [19, Chapter 4].

4.3 Similarity Computation

Using either the Hough transform or SDTW, we obtain a
path p(m-mk) — (pgm’”’k) . p(LT”k,z)) between the au-
dio recording of the performance (m) and the score of the
composition (n) using the tonic candidate ¢, with p,
(ry™ ™ g ) e e 1 g™ € (1 g
and ! € [1: L(™™M], where L(™™*) is the length of the
path p(™*)  We compute a similarity, s(™™*) € [0 : 1],
between the score fragment and the audio recording for the
tonic candidate c,(cm) by:

m,n,k m,n,k
(m,n,k) __ Zl B(Tl( )7 ql( ))
- ,(m,n,k)

&)

S

s(m:m:k) gives us a measure of how closely the score frag-
ment is followed by the corresponding time-interval in the
audio recording indicated by the path. For example if the
difference between the matched values of the audio pre-
dominant melody and the synthetic predominant melody
are always below 50 cents, the similarity is 1.

For the partial alignment between the score of the com-
position (n) and the audio recording (m), we obtain a

set of alignment similarities as S(™™) = {s(m’”vl)7 el

S(MMK("L))}, where s(™"*) is the alignment similarity

between the composition () and audio recording (n) for
the tonic candidate ¢, k € [1: K(™)] .

The similarity between the composition (n) and the audio
recording (m) is simply taken as the maximum alignment
similarity value, i.e: (™™ = maz(S™™).

Figure 2 show the similarities computed between the per-
formances in our audio collection (Section 5.1) and the
composition, “Acemasiran Pesrevi.”* In this example the
similarity of the relevant audio recordings are much higher
compared to the non-relevant ones.

Note that finding a true pair also implies correctly identi-
fying the tonic pitch class [5], i.e. (™™ = arg MaX ()

(S(mm)) where ¢ (™) is the estimated tonic pitch class of
the performance of the composition in the audio recording.
4.4 Irrelevant Document Rejection

In many common retrieval scenarios, including composi-
tion identification, the users are only interested in checking

3http://musicbrainz.org/work/
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Figure 2. Similarity vs Mahalanobis distance between the
composition “Acemagiran Pesrevi” and the audio record-
ings in the dataset, and the kernel density-estimate com-
puted from the similarity values between the audio record-
ings and the composition.

the top documents [20]. After applying partial audio-score
alignment between the query and each document, we rank
the documents with respect to the similarities obtained. We
then reject documents with low similarities according to an
automatically learned threshold.

As seen in Figure 2, the relevant documents stand as “out-
liers” among the irrelevant documents with respect to the
similarities they emit. To fetch the relevant documents per
query, one can apply “outlier detection” using similarities
between each document and query. Outlier detection is a
common problem, which has many applications such as
fraud detection and server malfunction detection [21].

Upon inspecting the similarity values emitted by irrele-
vant documents, we have noticed that the values roughly
follow a Normal distribution (Figure 2). However, the dis-
tributions observed for each query have a different mean
and variance. This is expected since the similarity com-
putation could be affected by several factors such as the
melodic complexities of the score fragment and the audio
performance, as well as the quality of the extracted audio
predominant melody. To deal with this variability, we com-
pute the Mahalanobis distance of each similarity value to
the distribution represented by the other similarity values
(Figure 2).* Mahalanobis distance is a unitless and scale-
invariant distance metric, which outputs the distance be-
tween a point and a distribution in standard deviations.

To reject irrelevant documents we apply a simple method
where all documents below a certain threshold are rejected.
To learn the decision boundary for thresholding, we ap-
ply logistic regression [20], a simple binary classification
model, to the similarity values and the Mahalanobis dis-
tances on labeled data (Section 5.1). The training step will
be explained in Section 5 in more detail.

After eliminating the documents according to the learned
decision boundary, we add a last document called none to
the end of the list. This document indicates that the query
might not have any relevant document in the collection if
all of the documents above are irrelevant.

5. EXPERIMENTS

In the experiments, we compare two alignment methods
(Hough vs. SDTW). We try to align either the repetition in

4 Note that the Mahalanobis distances shown in Figure 2 are less than
what a “real” Normal distribution would produce. This is because of the
contribution by the true pairs to the distribution.
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the score as done in [5] or the start in the score as a simpler
alternative and for the case when the structure information
is not available in the score. We search the optimal frag-
ment duration between 4 and 24 seconds.

As mentioned in Section 3, we evaluate the performance
retrieval and the composition retrieval tasks separately. To
test the document rejection step, we use 10-fold cross val-
idation. We run the transposition-invariant partial audio
score alignment between each score fragment and audio
recording (Section 4.2) and then compute the similarity
value for each performance-composition pair in the train-
ing set (Section 4.3). We also compute the Mahalanobis
distance for each query (performance in composition re-
trieval task and vice versa). We apply logistic regression to
the similarity values and the Mahalonobis distances com-
puted for each annotated audio-score pair (with the binary
relevances 0 or 1), and learn a decision boundary between
the relevant and irrelevant documents. Then given a query
(a composition in the performance retrieval task, and vice
versa) from the testing set, we carry out all the steps ex-
plained in Section 4 and reject all the documents (perfor-
mances in the performance retrieval task, and vice versa)
“below” the decision boundary.

We use mean average precision (MAP) [20] to evaluate
the methodology. MAP can be considered as a summary
of how a method performs for different queries and the
number of documents retrieved per query. For the docu-
ment rejection step, we report the average MAP obtained
from the MAPs of each testing set. We also conduct 3-
way ANOVA tests on the MAPs obtained from each testing
set to find if there are significant differences between the
alignment methods, fragment locations and fragment dura-
tions. For all results below, the term “significant” has the
following meaning: the claim is statistically significant at
the p = 0.01 level as determined by a multiple comparison
test using the Tukey-Kramer statistic.

5.1 Dataset

For our experiments, we gathered a collection of 743 audio
recordings and 146 music scores of different pesrev and
saz semaisi compositions. The audio recordings are se-
lected from the CompMusic corpus [22]. These recordings
are either in public-domain or commercially available. The
scores are selected from the SymbTr score collection [23].
SymbTr-scores are given in a machine readable format,
which stores the duration and symbol of each note. The
structural divisions in the compositions (i.e. the start and
end note of each section) and the nominal tempo are also
indicated in the scores.

We manually labeled the compositions performed in each
audio recording. In the dataset there are 360 recordings as-
sociated with 87 music scores, forming 362 audio-score
pairs. This information along with other relevant metadata
such as the releases, performers and composers are stored
in MusicBrainz.> Figure 3 shows the histogram of the
number of relevant compositions per audio recording and
the number of relevant audio recordings per composition.
The number of recordings for a particular composition in

3 http://musicbrainz.org/
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Figure 3. The number of relevant documents for the
queries a) Histogram of the number of relevant audio
recordings per score, b) Histogram of the number of rel-
evant scores per audio recording
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Figure 4. MAP for composition and performance retrieval
task before document rejection, across different methods,
fragment locations and durations. Only the queries with at
least one relevant document are considered.

our collection may be as many as 11. On the other hand,
the releases of OTMM are typically organized such that
there is a single composition performed in each track. For
this reason, we were only able to obtain two audio record-
ings in which there are two compositions performed. Note
that the tonic frequency changes in the performances of
each composition in these two recordings.

The average cardinalities of the compositions per audio
recording and audio recordings per composition are 0.49
and 2.48, respectively. Notice that we have also included
some compositions in our data collection, which do not
have any relevant performances, and vice versa (Figure 3).
Our methodology also aims to identify such queries with-
out relevant documents. If we consider this case as an ad-
ditional, special “document” called none, the average car-
dinality for compositions per audio recording and audio
recordings per composition is 1.00 and 2.88, respectively.

5.2 Results
Before document rejection, the MAP is around 0.47 for

both composition retrieval and performance retrieval tasks

Composition Retrieval Performance Retrieval

-+ SDTW, repetition
*+ SDTW, start

8 12 16 20 24 8
Score Duration (seconds)

12 16 20 24
Score Duration (seconds)

Figure 5. MAP for composition and performance retrieval
task after document rejection, across different methods,
fragment locations and durations. All queries are consid-
ered.
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Composition Retrieval

- Hough, repetition

0.9 [ -3¢+ Hough, start
=)+ SDTW, repetition
&) SDTW, start

4 8 12 16 20 24 4 8 12 16 20 24
Score Duration (seconds) Score Duration (seconds)

Figure 6. MAP for composition and performance retrieval
task after document rejection, across different methods,
fragment locations and durations. Only the queries with
no relevant documents are considered.

. Durations (sec.)
Methods | Locations 4 8 12 16 20 24
Hough Start | 30 15 2 3 2 2
B | Repetition [ 14 5 0 0 0 0
Start | 32 6 3 3 3 3
SDTW | Repetition |24 3 1 2 3 3

Table 1. Number of errors in tonic identification

using either of the alignment methods, fragment locations
and fragment durations longer than 8 seconds. The MAP
is low before document rejection since the queries without
relevant documents will practically have 0 average preci-
sion. Figure 4 shows the composition retrieval and perfor-
mance retrieval results before document rejection only for
the queries with relevant documents. The retrieval results
before document rejection show that most of the audio-
score pairs may be found by partial audio-score alignment
by using a score fragment of at least 12 seconds. Although
Hough transform performs slightly better than SDTW, these
increases are not significant for fragment durations longer
than 8 seconds.

Figure 5 shows the average MAPs from all queries ob-
tained using different fragment durations, fragment loca-
tions and partial alignment methods in a 10-fold cross val-
idation scheme. The best average MAP is 0.96 for compo-
sition retrieval using either the Hough transform or SDTW
and aligning 24 seconds from the start. For performance
retrieval the best average MAP of 0.95 is achieved using
the Hough transform and aligning 16 seconds from the
start. When we inspect average MAPs obtained from the
queries without any relevant documents (Figure 6), we ob-
serve that the document rejection step always achieves an
average MAP higher than 0.95 for all the parameter com-
binations in the composition retrieval task and an average
MAP closer to or higher than 0.9 for all the parameter com-
binations in the performance retrieval task, respectively.

When we inspect the alignment results, we find that the
score fragments were aligned properly for most of the cases.
Moreover the tonic is identified almost perfectly for all the
audio recordings by aligning the relevant scores (Table 1),
and we achieved 100% accuracy out of the 362 audio-score
pairs by aligning at least 12 seconds from the repetition us-
ing the Hough transform.

6. DISCUSSION

The results show that even aligning an 8 second fragment
is highly effective, nevertheless, the optimal value of frag-
ment duration for composition identification is around 16
seconds. Using a fragment duration longer than 16 sec-
onds is not necessary since it increases the computation
time without any significant benefit on identification per-
formance. The results further show that aligning the start
is sufficient, and there is no need to exploit the structure in-
formation to select a fragment from the repetition as in [5].

If a fragment of 16 seconds from the start of the score
is selected, the Hough transform and SDTW produces the
same results in both composition retrieval and performance
retrieval tasks. One surprising case is the lower MAP’s
obtained in the performance retrieval task using SDTW to
align the repetition. Although the drop is not significant for
fragment durations longer than 12 seconds, we observed
that SDTW tends to align irrelevant subsequences in the
performances with the score fragments, which have similar
note-symbol sequences but different durations.

Both the Hough transform and SDTW have a complex-
ity of O(1™ J(™)), where I1(™) is the length of the pre-
dominant melody extracted from the audio recording (m)
and J(™ is the length of the synthetic melody generated
from the score of the composition (n). Nonetheless, the
Hough transform is applied to a sparse, binary similarity
matrix, hence it can operate faster than SDTW. Moreover,
the Hough transform is a simpler algorithm. These prop-
erties make the Hough transform an alternative to more
complex alignment algorithms, when precision in intra-
alignment (e.g. note-level) is not necessary. Given these
observations, we select alignment of the first 16 seconds of
the score using the Hough transform as the optimal setting.

For the score fragments longer than 8 seconds, the tonic
identification errors always occur in two historical record-
ings, where the recording speed (hence the pitch) is not
stable and another recording where the musicians some-
times play the repetition by transposing the melodic inter-
vals by a fifth. Even though the tonic identification has
failed in these cases, the fragments are correctly aligned
to the score. For such recordings, the stability of the tonic
frequency can be assessed and the tonic frequency can be
refined locally by referring to aligned tonic notes in the
alignment path computed using SDTW.

From Figure 5, we can observe that by using a simple
outlier detection step based on logistic regression, we were
able to reject most of the irrelevant documents in both com-
position retrieval and performance retrieval scenarios. By
comparing Figure 4 with Figure 5, we can also conclude
that this step does not remove many relevant documents,
providing reliable performance and composition matches.
The usefulness of this step is more evident when the results
for the queries with no relevant documents are checked
(Figure 6). For such queries, since all the documents typ-
ically have a low, comparable similarity, our methodology
is able to reject almost all the irrelevant documents. From
Figure 6, we can also observe that the document rejection
step is robust to changes in the fragment duration, the frag-
ment location and the alignment method.



7. CONCLUSION

In this paper, we presented a methodology to identify the
relevant compositions and performances in a collection con-
sisting of audio recordings and music scores, using trans-
position invariant partial audio-score alignment. To the
best of our knowledge, our methodology is the first auto-
matic composition identification proposed for OTMM. The
methodology is highly successful, achieving 0.95 MAP in
retrieving the compositions performed in a recording and
0.96 MAP in retrieving the audio recordings where a com-
position is performed. What is more, our methodology is
not only reliable in identifying relevant compositions and
audio recordings but also identifying the cases when there
are no relevant documents for a given query. Our algo-
rithm additionally identifies the tonic frequency of the per-
formance of each composition in the audio recording al-
most perfectly, as a result of partial audio-score alignment.
Our results indicate that the Hough transform can be a
cheaper and effective alternative to alignment methods with
more temporal flexibility such as SDTW in finding musi-
cally relevant patterns. As the next step we would like to
evaluate our method on more forms, possibly with shorter
structural elements such as the vocal form, sarki. We would
also like to investigate network analysis methods to iden-
tify the relevant performances and compositions jointly.
Our method can easily be adapted to neighboring music
cultures such as Greek, Armenian, Azerbaijani, Arabic and
Persian music, which share similar melodic characteristics.
We hope that our method would be a starting point for fu-
ture studies in automatic composition identification, and
facilitate future research and applications on linked data,
automatic music description, discovery and archival.
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