
An architecture for time-critical IP broadcasting in
the cloud

Miguel Poeira∗, Pedro Santos†, Alexandre Ulisses‡, Daniel Costa§, Pedro Ferreira¶ and Rui Amor‖
MOG Technologies

Email: ∗miguel.poeira@mog-technologies.com, †pedro.santos@mog-technologies.com, ‡alexandre.ulisses@mog-technologies.com,
§daniel.costa@mog-technologies.com, ¶pedro.ferreira@mog-technologies.com, ‖rui.amor@mog-technologies.com

Abstract—Today’s live remote TV production is still based on
very expensive and specific equipment. Besides that, covering big
events is a complex challenge, both from technological and logistic
point of view. In this paper, we present a high-level architecture
to virtualize live IP production to the cloud, in order to provide
production teams with more flexible tools at reduced cost. While
we outline the basic components for a modular distributed system,
we also address some problems in the time-critical domain.

Keywords—cloud computing, time-critical, soft real-time, broad-
casting, TV production

I. INTRODUCTION

Live remote TV production, due to its distributed na-
ture, requires broadcasters to deploy equipment and human
resources to different places, severely increasing production’s
costs. With the evolution of virtualization technologies and
the efforts developed in order to provide solutions based on
elastic, adaptive, controllable cloud environments, it is possible
to consider this technological stack for time-critical scenarios,
such as a live TV production.

In this paper, we present a high-level architecture to vir-
tualize remote production using a cloud-based infrastructure,
outlining the main components for a distributed system that
takes advantage of that infrastructure.

II. STATE-OF-THE-ART

Today’s most used professional broadcasting solutions for
live coverage rely on Outside Broadcasting vans, production
trucks that are both expensive and complex to use [1], and
satellite links or 3G/4G networks, depending on the available
equipment and the venue location. Live remote coverage of an
event can be as simple as one camera recording an interview,
or a complex scenario, such as covering the Olympics. This
wide range of scenarios, from small to big venues, with the
possibility to need to cover more than one location at the same
time, it is not only a technological challenge, but also a logistic
challenge.

A. Soft Real-time Applications

A time-critical application is a specific ”system or mode
of operation in which computation is performed during the
actual time that an external process occurs, in order that the
computation results can be used to control, monitor, or respond
to the external process in a timely manner” [2].

While operating a soft real-time application, such as the
one we address here, it is important to understand that,
although the deadline for a given task may be missed, doing
it will degrade the Quality of Service (QoS), upon which
professional broadcasters set very hard constraints. In order to
achieve the desired QoS, broadcasters usually rely on specific
hardware, which is very expensive to buy, operate and maintain
[3].

B. Internet Media Consumption

Media consumption, via the Internet, is largely established
and has a huge viewer base, such as Youtube and Twitch, ser-
vices that may peak at more than 1 Tbps [4]. These platforms
are used mainly for non-professional broadcasting. Any user
may set up an account and start a live broadcasting session
right away, as they are served as a Software-as-a-Service
system. The problem is that those are closed platforms, in the
sense that it is not possible to freely control the environment
on which the system runs. Likewise, by only being able to
stream to closed platforms, it becomes restrictive, both in a
technological and business sense.

In a professional broadcasting, there is the need to control
and monitor the whole system’s life-cycle, from design, to
provisioning and run-time monitoring. This means that the
running environment must lay on a Platform-as-a-Service
architecture that supports real-time QoS specification, dy-
namic Service-Level-Agreement negotiation, on-demand re-
source provisioning and QoS event monitoring [5]. That said,
it is not feasible to use already market-established platforms,
such as Youtube, to perform professional TV production.

III. SCENARIO

A scenario to handle live remote TV production for the
professional broadcasting industry, where operations are still
very tied to hardware processing [6], requires the processing
of high-volume data within a very limited time frame, which
usually requires very specialized hardware. Nevertheless, the
importance of delivering software-based processing, which was
previously done by hardware specific material, is a key aspect
to avoid vendor lock-in [7], [8].

A. Considerations

Since we are proposing a virtualized environment to run a
scenario where reliability is an important part of the industry’s
business, it is important to keep the same quality of experience



that end-users already have. This means that the environment
where these scenarios are deployed needs to be well-controlled
and deterministic, in a sense that assures repeatability of
processes’ results. That predictability is what defines a real-
time system [9].

Because we are talking about a soft real-time system, where
low latency is a key aspect to whole system’s success, it is
important to recognize Workflow Management Systems, such
as SWITCH [10], [11], as an important part of the ecosystem
that is needed to support these kind of scenarios. This means
that not only it is important to understand the conditions
within the applications’ deployment, but it is also necessary
to understand how to monitor and dynamically manage the
different subsystems that cooperate for the system’s success.

In a data-driven scenario as the one we present, it is very
important to be able to operate in an active manner. This means
being reactive upon data imperfections (delayed, missing and
out-of-order data) and pro-active to seamlessly reconfigure
without human intervention.

The keystone of our foundational architecture is the Ref-
erence Architecture of Joint Task Force on Networked Media
[12].

B. Scope

TV production world is very broad and the endless dif-
ferent scenarios that broadcasters face each day make it as
interesting as complex. With so many different interactions
and workflows, we believe that there is no one-size-fits-all
solution. So, we are defining the scope of this work as an
cloud’s distributed system architecture for live IP production,
where producers may switch cameras from a given number of
input streams. This way, we recognize the diversity that exists
in broadcaster’s world, but focus our attention in live scenarios.

We define out of scope how contents are delivered to and
from our cloud system, as we believe both topics are broad
enough and too complex to address within our work’s scope.

IV. HIGH-LEVEL ARCHITECTURE

In order to virtualize TV live production, we propose a
cloud-based distributed system, as well as an IP-based content
transport fabric. This system should be able to receive a given
number of input streams, generate control versions of that
streams, enable video switching and deliver the output in
several different formats. This converged workflow enables
teams to produce once, deliver everywhere [13].

By taking advantage of cloud’s benefits, we are proposing
an architecture that is:

• Built on modular components and blocks, that can be
re-utilized to build new nodes and functionalities.

• Expansible, which means that it can be adapted to
new scenarios on-the-fly.

• Scalable, that is, operation’s needs are not bound by
hardware stock availability or ease of deployment.

• Based on state-of-the-art technology, battle-tested by
other industries.

• Compliant with industry standards and compatible
with already-established components.

• Collaborative, because it enables people to easily
collaborate on the same project, wherever they are
located.

• Enables fast, transparent updates and bug fixes,
which lets the production team abstract on technical
details.

A. Assumptions and Requirements

As we designed this architecture, we defined some require-
ments that should be met. These are hard constraints in the
sense that not being able to ensure them may result in system’s
failure.

We assume the knowledge of Workflow Management
Systems and redundancy and high-availability techniques, in
order to understand how the system should keep itself up
and running upon failure. Also, the deployment environment
must provide built-in mechanisms to provide resiliency against
”imperfections” on data, including missing and out-of-order
data.

We also assume that the network for the deployed envi-
ronment provides the required resources in order to ensure
the QoS that enables the system to work as expected in a
professional broadcasting soft real-time scenario. It is also out
of scope of our work how the system should be deployed and
in what ways it can be configured and personalized. We believe
that there is a lot of work to do in this field, including the use
of visual human-friendly tools to deploy a whole broadcasting
infrastructure.

B. Components

In this section, we present the five basic components that
compose our architecture for live IP production. These are
the foundational components, which we believe that will be
present in the majority of the scenarios.

Each component is a ”Node” on the network and it may
be virtual or physical. Each node is based on a layered struc-
ture proposed by the Networked Media Open Specifications
(NMOS) [14] and it has a specific purpose, which is well-
described at section V and summarized hereunder:

• Input Distributor is responsible to receive the incom-
ing streams and distribute them to other nodes of the
system.

• Proxy Transcoder generates low-resolution control
streams to be presented in a Web GUI, which will
enable live IP production.

• Video Switcher switches from the input streams, the
desired output.

• Output Transcoder serves the output from the Video
Switcher node to ”outside” of the system boundaries.

• Business Logic orchestrates the whole system and
provides a REST API to control it.



Fig. 1: Components and its interactions

C. Data Flow

The transport of audio and video (AV) through the system
is a critical issue, not only because it is a challenge to
keep delay to a minimum, but also because of timing and
synchronization issues. So, in our architecture we took two
major decisions: to process AV as two separate entities and
deliver them using multicast.

Processing AV as separate entities gives the flexibility to
only address entities that are relevant within a given context.
This means that, from a given source, it is possible to easily
discard the video flow when there is the need to only receive
the audio, for instance.

All AV data will be served in our system using multicast
delivery. By achieving ”one-to-many delivery” it is possible
to abstract nodes from time-consuming operations (such as
keeping sessions) and keep latency to a minimum. We suggest
different multicast addresses for different flows, as it makes it
much more easier to filter the content to subscribe.

When a node fails, for instance, it should be possible to
get another up and listening to the same multicast address,
without the need to reconfigure the other nodes in the system.
Moreover, nodes don’t need to be aware of failures in other
nodes.

Furthermore, changes in a deployed application, such as
adding one more output format, are straightforward and trans-
parent to the end-user as one just needs to configure a new
Output Transcoder node and put it online.

D. Node Communication and Layered Architecture

Each node has the layered architecture that NMOS pro-
poses, where the high-level layers are common to all nodes
and allow interoperability, and the lower level layers are
responsible for the specific content processing of that node
and its control logic, which handles requests and updates.

All communication and exchange of information between
nodes is done using the HTTP Transactions API that NMOS

proposes, using the Business Logic node as the centralized
server for discovery and registration purposes.

V. DISTRIBUTED SYSTEM’S COMPONENTS

In this section we provide more details about the nodes that
compose the proposed architecture (Fig. 1). Although we are
giving more details about how the nodes should interoperate,
we are keeping this description as high-level as possible,
mainly because we want to stay agnostic about how to deliver
content into the system and how to distribute its output. The
same applies to how to transport media content inside the
system. These are operational decisions, which should be
evaluated within a given context and a well-defined purpose.

A. Input Distributor

The Input Distributor is the entry-point of the distributed
system. It must de-multiplex the input stream (if necessary) and
multicast the resulting flows, so that other nodes may subscribe
them.

Each Input Distributor node is responsible for a single input
stream. That means that the number of Input Distributor nodes
that exist is, at any given point of the system’s lifetime, the
same as the input streams that the system is receiving (Fig.
1A).

A typical input stream is composed of video and audio.
Because of the de-multiplexing that is done and the data flow
that was adopted, from N input streams 2N flows are derived,
which are multicasted separately (Fig. 1B).

It is not defined how the routing should be done, as the
operations team should evaluate in a case-by-case basis.

B. Proxy Transcoder

Each Proxy Transcoder node is responsible to serve a low-
resolution control stream that may be consumed by an external
client or service. Proxy Transcoder has a 1:1 relationship with



Input Distributor, which means that each Proxy Transcoder is
responsible for the flows of one Input Distributor (Fig. 1C).

The same way, one Proxy Transcoder should also subscribe
the resulting flows from the Video Switcher node, in order to
provide a control version of the output result. That means that
for N input streams, we get N+1 deployed nodes (Fig. 1D).

C. Video Switcher

The Video Switcher node is unique in the system and
will multicast the resulting AV pair of flows of the switching
operation (Fig. 1E). Because of that, it needs to know all
multicast addresses that Input Distributors are feeding. Video
switching, by itself, it’s a pretty complex research topic, which
[15] and [16] address in much more detail, and would require,
alone, a dedicated paper.

D. Output Transcoder

Each Output Transcoder node must subscribe multicast
addresses that are being fed by Video Switcher (Fig. 1F), or
one Input Distributor (Fig. 1G), and deliver them to outside
of the application, with a specific format and for a specific
platform. This means that, although the output of the system is
editorially unique, the system may have more than one Output
node, in order to deliver different formats. So, the number of
nodes required is equal to the number of different outputs that
may be produced (Fig. 1H).

As it was defined before, transporting audio and video in
separate gives flexibility, given that it allows to serve as output
an audio-only version (for instance) and thus it is only needed
to subscribe the audio flow (and completely ignore the video
one).

By the same logic, an Output node that delivers the output
stream with the same characteristics of the Input’s may exist,
in order to enable cascade scenarios.

E. Business Logic

The Business Logic node is the brain of the whole system.
It is responsible for the orchestration of the other nodes,
playing a three-folded role. It enables other nodes to register
its capabilities, assets and tasks; by keeping a centralized
database, it also enables nodes to query and discover all other
nodes and their associated functions and flows; at the same
time, it serves a REST API that enables end-users to control
and monitor the whole system (Fig. 1I).

VI. CONCLUSION

This paper has described a high-level architecture to op-
erate an IP broadcasting session in the cloud. The presented
distributed system is designed to cope with industry’s standards
and current operations, while addressing the flexibility required
to cope with the multitude of possible scenarios.

The idea of operating a broadcasting session through the
cloud is a shift in the media and broadcasting industry. It
gives production teams the freedom to create new and different
workflows, more flexible, based on on-demand, pay-per-use,
infrastructures, which not only enable resources to be better

managed, but also provides organizations with a shorter time
to market.

There is still a lot to study in the future, namely how
the system should behave and adapt during runtime resource
provisioning and how it is possible to scale this architecture
to a full IP studio.

ACKNOWLEDGMENT

This project was supported by European Union’s Horizon
2020 program under grant agreements No. 643963 (SWITCH).

REFERENCES

[1] J. Jachetta, “Ip to the camera-completing the broadcast chain,” in Annual
Technical Conference & Exhibition, SMPTE 2014. SMPTE, 2014, pp.
1–29.

[2] J. Radatz, A. Geraci, and F. Katki, “Ieee standard glossary of software
engineering terminology,” IEEE Std, vol. 610121990, no. 121990, p. 3,
1990.

[3] S. Gogouvitis, K. Konstanteli, S. Waldschmidt, G. Kousiouris, G. Kat-
saros, A. Menychtas, D. Kyriazis, and T. Varvarigou, “Workflow
management for soft real-time interactive applications in virtualized
environments,” Future generation computer systems, vol. 28, no. 1, pp.
193–209, 2012.

[4] K. Pires and G. Simon, “Youtube live and twitch: a tour of user-
generated live streaming systems,” in Proceedings of the 6th ACM
Multimedia Systems Conference. ACM, 2015, pp. 225–230.

[5] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin, X. Yang,
Z. Zlatev, S. V. Gogouvitis, G. Katsaros, K. Konstanteli et al.,
“Platform-as-a-service architecture for real-time quality of service man-
agement in clouds,” in Internet and Web Applications and Services
(ICIW), 2010 Fifth International Conference on. IEEE, 2010, pp.
155–160.

[6] A. S. Davies, “The Silver Lining: Utilizing Cloud Computing in
Broadcast Applications,” SMPTE Motion Imaging Journal, vol. 120,
no. 2, pp. 30–36, mar 2011.

[7] J. Footen and M. Ananthanarayanan, “Service-Oriented Architecture
and Cloud Computing in the Media Industry,” SMPTE Motion Imaging
Journal, vol. 121, no. 2, pp. 22–30, mar 2012.

[8] N. P. J.D. Mitchell, M. Thorp, C.K.P. Clarke, “Making TV Programmes
using IP Networks,” BBC R&D White Paper WHP281, 2014.

[9] L. Abeni, G. Buttazzo, G. Lipari, and M. Caccamo, “Soft real-
time systems: predictability vs. efficiency,” Massachusetts institute of
technology-2005, 2005.

[10] K. Evans, J. Trnkoczy, G. Suciu, V. Suciu, P. Martin, J. Wang,
Z. Zhao, A. Jones, A. Preece, F. Quevedo, D. Rogers, I. Spasić, I. Tay-
lor, V. Stankovski, and S. Taherizadeh, “Dynamically reconfigurable
workflows for time-critical applications,” in Proceedings of the 10th
Workshop on Workflows in Support of Large-Scale Science - WORKS
’15. New York, New York, USA: ACM Press, nov 2015, pp. 1–10.

[11] Z. Zhao, P. Martin, J. Wang, and A. Taal, “Developing and Operating
Time Critical Applications in Clouds: The State of the Art and the
SWITCH Approach,” Procedia Computer . . . , 2015.

[12] European Broadcasting Union, Society of Motion Picture
and Television Engineers, and Video Services Forum, “Joint
Task Force on Networked Media - Reference Architecture
v1.0,” 2015. [Online]. Available: http://jt-nm.org/RA-1.0/JT-
NMReferenceArchitecturev1.0 150904 FINAL.pdf

[13] P. J. Cianci, Technology and Workflows for Multiple Channel Content
Distribution: Infrastructure implementation strategies for converged
production, 1st ed., S. M. Weiss, Ed. Focal Press, 2009.

[14] A. M. W. Association, “Networked Media Open Specification,” 2016.
[Online]. Available: https://github.com/AMWA-TV/nmos

[15] T. Kojima, J. J. Stone, J.-R. Chen, and P. N. Gardiner, “A Practical
Approach to IP Live Production,” SMPTE Motion Imaging Journal,
vol. 124, no. 2, pp. 29–40, mar 2015.

[16] A. Rawcliffe, “Covering the Glasgow 2014 Commonwealth Games
using IP Studio,” BBC R&D White Paper WHP289, 2015.


