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Abstract—The rapid growth of emerging applications such
as social network analysis and ecosystem monitoring has led to
an explosion in the amount of data being generated. On the
other hand, the increased capabilities of cloud computing afford
more flexible computing resources to achieve better performance.
However, it is still difficult to determine how to provision
resources to fit large scale applications across different locales.
It is essential not only to be able to manage the greater volumes
of data but also to ensure that the QoS (quality of service)
requirements of processing are reliably satisfied. This paper
presents a Cloud engine that can provision a flexible network-
transparent virtual Cloud. In this virtual Cloud, complex virtual
infrastructure is distributed over multiple data centres or Cloud
providers. The Cloud engine can help application developers to
customise and provision virtual infrastructure for applications
with critical performance constraints that may influence how
and where application components should be hosted. First, we
introduce the capacity gap between such applications and the
Cloud. We then describe the cloud engine along with its key
technologies, including transparent network connectivity and
standardised multi-level infrastructure descriptions, as well as its
applicability to particular scenarios. Following these descriptions,
we discuss and demonstrate how to apply the Cloud engine to
help in a specific big data application use case and satisfy its QoS
constraints.

Keywords—Cloud engine; nearly real-time; networked infras-
tructure; inter-locale.

I. INTRODUCTION

Nowadays, big data applications not only consider the
amount of data they can process but also consider the process-
ing time. Data needs to be processed and fed back to users
in order to inform decisions and improve runtime steering
of applications. This constitutes the so-called ‘nearly real-
time’ constraint on application feedback and steering. Network
transmission time is an important factor to influence the
processing time. However, data collectors may be distributed
in different locations for certain large-scale big data applica-
tions [1]. There can be a significant physical distance between
the data collector and the data user. For distributed applications
executed over the Internet, the effective processing time is
often mainly determined by the network transmission time.

This kind of big data application is a type of quality
critical application, which often requires customised virtual
infrastructure with tailored SLAs (service level agreements)
when migrated into a cloud environment [2]. The Cloud can
be a powerful solution for big data processing, because the
computing ability of servers is constantly increasing and more
data centers are being set up around the world that can be used

to support these applications. It is still a problem however for
application developers to access and manage their cloud re-
sources. There exist studies which discuss using Cloud to solve
big data application challenges: Ji et al. [3] introduce some
famous tools and Cloud platforms to do large-scale big data
processing, while Rajiv [1] proposes a high-level architecture
of large-scale data processing service. The underlying resource
layer of the overall architecture is scalable across multiple
data centers or even Clouds, but both of these studies do not
mention how to help application developers manage virtual
Cloud resources and achieve better performance. Moreover,
some other Cloud tools, such as Chef [4], only focus on SaaS
(software-as-a-service) platforms to orchestrate services, or do
not take nearly real-time constraints into account.

In response to the current academic and industrial state-
of-the-art, we design and implement a flexible inter-locale
Cloud engine for quality critical applications to help satisfy
nearly real-time requirements for highly distributed big data
processing. This Cloud engine is able to provision a net-
worked infrastructure, recover from sudden failures quickly,
and scale across data centers or Clouds automatically. The
key technologies used include transparent network connection
and standardised multi-level infrastructure description. In this
paper, we use the scenario of a nearly real-time large scale
big data application as an example to describe our engine’s
operation.

The remainder of this paper is organised as follows. Section
2 describes the architecture of large-scale big data applications
and introduces the challenges of migrating these kinds of
application. Section 3 presents the key technologies of our
Cloud engine and its possible application scenarios. Section 4
proposes a solution for a specific use case and describes how
to apply it using our engine. We then do some experiments to
demonstrate the feasibility of this solution in Section 5. Finally,
Section 6 summarises the particular innovations of the engine
and concludes the paper.

II. PROBLEM STATEMENT AND CHALLENGES

Figure 1 illustrates a typical architecture and stages of a
big data application. The kind of nearly real-time big data
application we discuss in this paper however is particularly
large-scale. The data collectors can be distributed all around
the world, especially when the big data application is combined
with IoT (Internet of Things) [5] or sensor networks [6]. An
eddy covariance data processing service [7] is an example of a
typical nearly real-time big data application. It measures wind
and gas concentration at sites over different ecosystems. It



Fig. 1. Typical architecture of big data application

keeps collecting these data all year round and it need to calcu-
late the net exchange of gases, energy and temperature between
ecosystems and atmosphere under some time constraints.

According to the current state of the Cloud in industry, we
infer the following challenges and gaps when migrating this
kind of quality critical application onto Cloud, focusing mainly
on infrastructure provisioning.

1) Networked infrastructure. The applications workflow
becomes more complex with a lot of components that need to
communicate with each other. Separated instances cannot com-
plete the whole job. For instance, the components in different
stages in Figure 1 need to communicate with each other and
transfer data. The virtual infrastructure must therefore realise
a particular network topology. Most current cloud providers
cannot support this however; for example, Amazon EC2 can
only allow users to describe private subnets, making it hard to
build a complete topology.

2) Nearly real-time constraints. Nearly real-time applica-
tions require that most task deadlines be met over the lifetime
of the application. Missing one deadline does not lead to
immediate failure of the application, but continued failure to
meet deadlines is unacceptable. We identify two particular
types of nearly real-time constraints in this paper. The first type
is of static constraints on network transmission time as data is
processed, which restrict task scheduling before provisioning.
The second type is of runtime constraints restricting the time
the application has to recover from sudden failures—because
the application is running all the time and some failures cannot
be avoided, especially where the Cloud is remote and not
totally reliable. Currently developers generally put all compo-
nents in one data centre. If that data centre is not accessible,
then we have to re-provision the whole infrastructure within
another data centre, which is a costly operation.

3) Geography. Figure 1 shows that not all the components
of an application are on the cloud. Data collectors such as
(for example) cameras providing video of a live event are
not on the Cloud themselves. The geographic location of any
virtual infrastructure therefore has to be considered to satisfy
the nearly real-time constraints on data delivery [6].

4) Auto provisioning and federated cloud. Since these
applications are complex, we need a way to provision the
whole infrastructure and deploy applications automatically.
Currently, some tools can only provision automatically at
instance level, for example Chef [4]. On the other hand, we
may need more resources from other Clouds to provision a

large scale infrastructure [8]. It is a problem to combine these
resources across multiple locales however.

III. INTER-LOCALE CLOUD ENGINE

A. Methodology

To address these challenges, we design and develop a
Cloud engine to set up the virtual Cloud. This virtual Cloud
is an encapsulation of different data centres or other Clouds.
With the help of this Cloud engine, the Cloud user can pro-
vision networked virtual infrastructure and manage all virtual
resources together on the one virtual Cloud. This engine relies
on transparent network connection methods and standardised
multi-level infrastructure descriptions.

This engine applies two different methods to settle the
problem of connectivity between partitioned topologies in
different locales, which is a key step for provisioning across
multiple data centres or Clouds. These two connection methods
have been briefly discussed in our previous paper [9].

Figure 2 illustrates the first connection method. It shows
how one packet gets through the public network between two
sub-topologies. It is mainly based on NAT. The proxy node
works as a mirror of the node in another topology and is not
made visible to the Cloud user. At the same time, VM1 and
VM2 can communicate via private IP addresses, which are
selected by the application developer.

Fig. 2. Connection technique with proxy nodes.

The second method to connect these sub-topologies is using
IP tunnelling. This method is shown in Figure 3. With the
IP tunnelling technique, the original packet, which uses the
internal private network addresses provided by the application
developer, can be wrapped in another packet which allows the
original packet to be delivered through the public network.

Fig. 3. Connection method with IP tunnel.

The advantage of the second method is that it does not add
the extra overhead of proxy nodes for every link that crosses
sub-topologies, in contrast with the first method. However,
only some versions of Linux support IP tunnelling by default.
If the customer adopts (for example) Windows for the virtual
machines to run on, then the second method cannot be easily
made to work. Another disadvantage of the second method
is that we need to re-configure the original nodes provided
by the developer. It is therefore not totally transparent when



Fig. 4. Infrastructure description.

compared with the proxy node method. We therefore adopt
both methods and choose which one to apply depending on
the specific situation. Meanwhile, we have tested to confirm
that the network performance will not significantly drop with
use of either of these methods.

Another key part of our solution lies with infrastructure
description. The infrastructure specification used by our engine
adopts the YAML format, which is human readable and allows
for compatibility with TOSCA (Topology and Orchestration
Specification for Cloud Applications) standard. The multi-
level description is used to provision infrastructure provided
by different data centres or even different Clouds. Figure 4
shows an example of the files used.

In Figure 4 the file zh_all.yml provides a top-level
infrastructure description. It specifies different sub-topologies
and their providers. The field “topologies” defines the whole
topology. The subfield “topology” of this field defines the
name of the sub-topology. It is also the name of the low-level
description file, which describes the detailed infrastructure
further. The user should also define which cloud provider this
sub-topology belongs to. The field “connections” describes
how the two sub-topologies are connected. Besides these,
the fields “publicKeyPath” and “userName” are important to
set up the virtual Cloud. The user generates a RSA key
pair. He keeps the private key and publishes the public key
within the field “publicKeyPath”. After the virtual resources
are provisioned, the user can then login to every instance with
the corresponding private key and the user name defined in
the configuration file. Otherwise, the user would need different
private keys to access resources from different cloud providers.
The default user-name would also be different.

File zh_a.yml is an example of the low-level infras-
tructure description. The infrastructure resources described in
one file are all in one data centre. The field “components”
describes the computing resources of VM nodes. The fields
“subnets” and “connections” describe the network resources.
Among them, the field “subnets” is used to describe several
nodes in one subnet. The field “connections” defines a specific
link between two nodes. This field makes it easy to describe
the network topology. It is worth mentioning that the user
can specify the installation file and installation script path

in each node description. With these fields, the applications
developed by developers can be automatically deployed after
provisioning.

These files are human readable and standardised. It is easy
for application developers to directly design the infrastructure
with these files. These files can also be generated by other
components, such as an automated infrastructure planner;
however, that is beyond the scope of this paper.

B. Application scenarios

The Cloud engine can be used in a number of scenarios
to satisfy the static and runtime requirements of big data
applications.

1) Provisioning networked infrastructure. While the user
can describe network topologies using networked infrastructure
providers such as ExoGENI [10], the user cannot get network
topology on other providers such as EC2 or EGI [11] Cloud, as
shown in Figure 5. EC2 and EGI Cloud represent the current
state of most cloud providers whether private or public. With
our Cloud engine, the user can describe his own network topol-
ogy even on these Clouds by defining the field “connections”
in infrastructure descriptions. In addition, it is transparent to
the provider, which means that the cloud provider does not
need to do anything to support this feature. Thus our Cloud
engine is able to set up a networked virtual Cloud across these
Clouds.

Fig. 5. Provisioning networked infrastructure.

2) Fast failure recovery. Figure 6 describes the process
of failure recovery with our Cloud engine. There are two key
components of the Cloud engine that are relevant to this sce-
nario: the provisioning agent and the monitoring agent. When
some data centre is down or inaccessible, a probe previously
installed on the node can detect this. The monitoring agent can
then invoke the provisioning agent to perform recovery. The
provisioning agent then just needs to provision the specific
part of the application hosted on the failed infrastructure.
As the infrastructure description is already partitioned, it is
easy for the agent to provision the same topology in another
data centre. Meanwhile, the connection method will keep the
topology identical to the previous one. From the application
point of view, the topology is the same and the application
does not need to be changed. Avoiding the re-provisioning of
the whole infrastructure can save a lot of time and make the
overall infrastructure more reliable.

3) Auto scaling among data centers or Clouds. Currently,
the user can only define an auto-scaling group in one data



Fig. 6. Fast failure recovery.

centre as in the example of Amazon EC2. Moreover, most
cloud providers do not even afford this function. With our
Cloud engine, the user just needs to define an address pool
for auto-scaling. Figure 7 shows the process. The scaling part
can then be provisioned from another data centre or Cloud at
runtime. More importantly, the address pool can be defined in
the range of private IP addresses. The application can then be
configured to know where the scaling part is before execution.
Otherwise, the application needs to be configured manually
at runtime. This is also useful for large-scale applications;
when the resources are exhausted or limited in one data centre
or Cloud currently in use, the Cloud engine can make the
infrastructure scale-out to use resources from other locations.

IV. SOLUTION FOR NEARLY REAL-TIME BIG DATA
APPLICATION

Following the typical architecture of big data application
shown in Figure 1, we propose a solution architecture for those
kinds of nearly real-time big data application using our Cloud
engine, specifically for the use case of an eddy covariance
data processing service as formulated within the ENVRIPLUS
project, shown in Figure 8. In the ENVRIPLUS project use
case, the data collectors are significantly spread out geograph-
ically and often do not have high-quality network access to
the Internet. If the data collector is geographically far from the
processing server, then the network performance will be too
low to satisfy real-time requirements, for instance to transfer
a certain amount of data within a particular time limit. Jiang
et al. [12] points out however that the emergence of private
back-bones in recent years to connect globally distributed data
centers can serve as a readily available infrastructure for a
managed overlay network. Haq et al. [13] use cloud-based
overlays to afford a packet recovery service. We can adopt
this idea of using the cloud-based network instead of the pure
Internet-based network to try and satisfy the nearly real-time
requirements of the application.

The problem is that it is very hard for the application
developer to apply and manage many virtual resources. He
or she needs to interact with different data centres or even
cloud providers. It is also difficult for them to develop their
applications, because while if the application is deployed in
one data centre, then all the components on different hosts
can communicate with each other with predefined private IP

Fig. 7. Auto-scaling among data centres or Clouds.

addresses, if the components are hosted on different data
centres then communication addresses can only be known after
the instances are provisioned. Hence, the application developer
cannot design his or her own infrastructure and there is still
a lot of manual configuration work to be done to make the
components connected after all resources are provisioned and
the relevant public addresses are known.

The Cloud engine developed by us is therefore a key
component of the architecture shown in Figure 8, acting as
an automatic provisioning agent which not only provisions the
virtual computing resources but also the network resources.
With the connection techniques mentioned in Section 3, the
Cloud engine is able to integrate resources from different
data centres or Clouds as a single infrastructure. From the
application developer’s point of view, the Cloud engine set up
a virtual Cloud for them. They do not need to consider about
where the virtual resources come from. They can always use
their own account and private key, which are defined in the
infrastructure description files, to manage all the resources
on the virtual Cloud. With this help, developers can focus
on designing the infrastructure with the necessary private IP
addresses and develop their applications. The Cloud engine
can then take the infrastructure description files as input to
provision resources and run the application automatically.

According to the use case, the data collectors collect data
from different ecosystems. In order to satisfy the first type of
nearly real-time constraint mentioned in Section 2, the Cloud

Fig. 8. Solution architecture for nearly real-time big data application.



TABLE I. PROPERTIES OF OBJECTS IN THE EXPERIMENT

Number Subject Computing Properties Access Network Properties Geography Properties
CPU Core OS Memory Mode Upload Download Cloud Provider Location

1© Laptop 1 GB MacOS 8 WIFI1 0.94 Mbps 8.59 Mbps -2 Amsterdam
2© Laptop 1 GB MacOS 8 WIFI3 193 Mbps 305 Mbps - UvA
3© VM 1 GB Ubuntu 14.04 3 Ethernet - - ExoGENI UvA
4© VM 1 GB Ubuntu 14.04 3 Ethernet - - ExoGENI CA, US

1 It is connected with the home network.
2 ’-’ means unknown.
3 It is connected with Eduroam.

engine must provision the resources from regional data centres
close to data collectors. As EGI Cloud only has data centres in
Europe, we can choose other cloud providers as supplements,
such as EC2, ExoGENI, etc. The reduced latency between the
acquisition and pre-processing stages makes data collectors
forward data more efficiently. The network performance be-
tween pre-processing and analysis is better than that of directly
sending all data from collectors to the final processing servers.
It is out of the scope of this paper to actually determine
how best to distribute resources across data centres to satisfy
time constraints, but our engine provides the mechanisms to
perform the optimal distribution when it is identified. During
runtime, the application must keep running all year round. The
Cloud engine makes it recover from failures fast to satisfy
the second type of nearly real-time constraint as discussed in
Section 3. Moreover, the scalability across Clouds makes the
infrastructure more flexible for meeting dynamic constraints at
runtime.

V. EVALUATION AND ANALYSIS

In this section, we set up experiments to test the feasibility
of the solution provided by the Cloud engine, supplementing
the network experiments of [9]. In order to simulate the
real situation, we create four objects in the experiment. The
detailed properties of these objects are listed in Table I. We
use a laptop to act in the role of data collector and put it
in different network environments. For object 1, the laptop
is connected with the home network via WIFI. This object
is designed to simulate the situation where the data collector
is far from the regional data centre and does not have a
particularly good network connection. Object 2 is deployed
within the campus network of UvA (University of Amsterdam)
to simulate the situation where the data collector is close to
the regional data centre and does have a very good network
connection. Objects 3 and 4 are two VM nodes provisioned
by our Cloud engine within different locales provided by
the ExoGENI infrastructure platform. They are connected via
private IP addresses far from each other geographically. We
adopt the second connection method described in Section 2
(IP tunnelling). Object 3 acts in the role of virtual resources
provisioned in the regional data centre in Figure 8 while object
4 acts in the role of remote virtual resources close to the data
user. There are two main scenarios we need to compare in
this section. The first scenario is the deployment of all the
components in one data centre without use of our engine. The
second scenario is to adopt our solution, which is to distribute
the components on the virtual Cloud set up by our engine.

We therefore design the first experiment to test the latency
in these two scenarios. The results are shown in Figure 9. We

start sixty ping requests one by one between different objects
of Table I. From the legend in the figure, we can tell which
link between two objects each plot belongs to. In addition,
“S1” preceding the legend indicates that it refers to the first
scenario (without engine) described above and “S2” for the
second scenario (with engine). It is obvious that the latency
is lower when the data collector is closer to the server. In
the first scenario without our solution, despite the fact that
the data collector has good network connectivity, the average
latencies are nearly ten times higher than those in the second
scenario. Moreover, the latencies in scenario 1 are not stable,
especially when network access is bad, which is common for
real data collectors. It is also worth pointing out that real data
collectors are typically not as powerful as the laptop used in
this experiment, and so the real performance may be even
worse. Adopting our solution dramatically reduces the latency.

The second experiment is to test the bandwidth in these
two scenarios. Figure 10 shows the results. We measure the
bandwidth continuously over 200 seconds. The corresponding
y-axis of all blue lines in this figure is on the left, measured
in Mbps. The corresponding y-axis of the green line is on the
right, measured in Kbps. This figure shows that the quality of
the cloud-based network is better. The link between the two
VMs (objects 3 and 4) provisioned by our Cloud engine use
a cloud-based network which exhibits superior bandwidth. If
we deploy the application without our solution, data collectors
are needed to directly connect to the faraway server. Two lines
in Figure 10 with “S1” denotes the performance. Although the
object 2 is in a very good network environment, the average
bandwidth is 26 Mbps less when it is directly connected to the
faraway server. Moreover, it is obvious that the bandwidth of
the cloud-based network is more stable. In addition, the green
line shows that when data collectors do not have a good access
network, the bandwidth is much worse.

The transmission time for data collectors can therefore
be reduced using our solution. Our Cloud engine can set
up a virtual Cloud that considers the underlying network in
order to better satisfy the nearly real-time requirements of
the application to the extent that it is possible. This kind
of consideration is essential for data collectors to work more
efficiently as part of a larger distributed system. In this paper,
we mainly test the static nearly real-time constraints above. For
the runtime nearly real-time constraints, we have demonstrated
it partially in paper [9] and will test it further in the future.

VI. INNOVATIONS AND CONCLUSION

There are several innovations demonstrated by our Cloud
engine. These innovations can help satisfy the requirements of
quality-critical applications such as those described earlier.



Fig. 9. Latency comparison.

1) Fast and flexible. Multiple smaller infrastructures can
be provisioned with less overhead. On the other hand, if
some part of the infrastructure crashes, we just need to re-
provision the smaller sub-infrastructure containing the failed
component, not the whole aggregate infrastructure. This prop-
erty can minimise violations of the real-time constraints of
some quality-critical applications. Flexibility in where parts
of the application are provisioned can also help satisfy any
geographic requirements of the application.

2) Flexible scaling. As cloud providers often have limita-
tions on the scale of infrastructure provisioned for a particular
application, our mechanism puts forward a way to provision
large-scale infrastructure across multiple domains. The infras-
tructure can then even scale across cloud providers.

3) Transparency. Our mechanism is not only transpar-
ent to cloud providers but also to cloud users. From the
providers’ point of view, there is nothing required of them
to support this kind of provisioning. From the point of view
of application developers, the infrastructure is provisioned as
designed, including selected IP addresses, the precise locations
of components hidden in the network configuration. It is also
totally transparent to use the tools like Hadoop or Spark,
as long as they are configured with the proper private IP
addresses.

4) Standardised infrastructure level auto-provisioning.
The Cloud engine only takes as input description files like
those illustrated in Figure 4. The files are human readable
and can be written compatible with the emerging TOSCA
standard. Hence, they are easy to standardise. Compared with
other automatic provisioning tools, it not only provisions
the separate instances but also the network as defined by
the user. Moreover, the application can be installed and run
automatically after the infrastructure is provisioned.

This paper presents the Cloud engine we have been devel-
oping. With this engine, application developers can design and
deploy their applications on an inter-locale virtual Cloud. We
are drawing upon specific use cases from the ENVRIPLUS
project in order to test our approach in the context of large
scale distributed environmental research, and have proposed a
solution architecture for such applications. The results of the
simple experiments we have so far conducted demonstrate the
feasibility and potential efficiency of our solution.

Fig. 10. Bandwidth comparison.
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