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that every triad of its component points is a restricted triad (§90).
The points in such an extended linear set maybe regarded as forming
a circuit. This circuit may be divided into two ordinary straight lines
in an infinite number of ways.

156. In the same way, in place of the set of points in ordinary
geometric space which compose a plane, i.e., which are such that every
tetrad of them is a flat tetrad (§ 150), in the extended geometric set
wo have an extended plane which is such that every tetrad of its
component points is a restricted tetrad.

157. And generally, in place of tho set of points in flat space of
infinite dimensions which compose a flat space of n dimensions, i.e., are

• such that every (w-f2)-ad of them is a flat (w + 2)-ad, we have in
our extended geometric space a sefc of points composing a restricted
space of n dimensions, i.e., such that every (w-t-2)-ad of them is a
restricted (w + 2)-ad.

158. It would carry me beyond the purpose of this paper to develop
further the consequences of thus regarding geometric space of any
dimensions as only a half of the more complete and symmetrical space
derived by taking into account the obverses of points as woll as the
points themselves. It seemed right, however, to call attention to the
fact that spaco could be so regarded, as such fact is plainly brought
out by the preceding results.

On the Square of Euler's Scries.

By J . W. L. GLAISEIER, SC.D. , F.R.S.

[Read June \Wi, 1889.]

Introduction, §§ 1-3.

1. Few results in pure algebra are moro curious than Enlcr's
celebrated theorem that the expanded value of the infinite product

(1
is the series

the general term being ( — l)ngi»(»»±i). The exponents are the
pentagonal numbers, and the signs of the terms, after the first, are
negative and positive in pairs.
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Euler discovered the law of the series by actually multiplying
together the factors 1— q, 1— q*, 1— qs, &c. He published his result
in 1750, and applied it to obtain various remarkable theorems relating
to partitions, sums of divisors, &c* Finally, in 1754, he succeeded
in demonstrating the equality of the product and the series.f

2. Among the numerous and wonderful algebraical identities that
sprang out from the analysis of Elliptic Functions as Jacobi developed
the subject in the historic Fundamenla Nova, not only did the expanded
value of the Eulerian product present itself, bnt also a hitherto un-
suspected expression of its cubej. The series thus found by Jacobi
was

the general term being ( —1)" (2?i + l) 2ilI("+1)- The exponents are
the triangular numbers, and the terms are alternately positive and
negative.

We thus see that the cube of the Eulerian product

or of the Eulerian series 1 —g~g2 + 25 + g7—&c,

is tho Jacobian series l—3q + 5q* — 7q° + &c.

3. The object of the present paper is to consider the law of the
coefficients in the series which is equal to the square of the Eulerian
product or series. I had no hope that these coefficients would follow
any simple law, as in the Eulerian or Jacobian series ; for, if such a law
existed,it could not fail to have been discovered long ago by observation.
Nevertheless, it seemed interesting to examine in some detail the
functions of n which form the coefficients of the powers of q.

It will be seen in the following articles that the coefficient of qn

depends upon a function of 12»-fl5 which is denoted by 6?(12>i + l ) .
This function (in common with a great many functions connected with
the Theory of Numbers) possesses the property that, if p and r are
relatively prime, O (pr) = G (p) G (r). We are thus enabled to obtain
rules by means of which the value of G can bo calculated with great
facility (§§ 9, 10). It is shown that the numerical value of the
coefficient of qn can always be assigned by means of the real divisors
ofl2» + l (§13).

• Commentntiones Arithmetical Collccl<c, Vol. i., pp. 91, 151.
t Ibid., Vol. i., p. 234. Full references to the subject of Eulor's product are

given in a note to Art. 129 of H. J. S. Smith's " Report on the Thoory of Numbers "
(Report of the British Association, 18G5, p. 345). See alBO §§ 33, 34 of tho prosont
paper.

% Fundanicnta Nova (1829), p . 185.
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In the latter part of the paper, various recurriiig formula, which are
available for the calculation of Ot are investigated. Two other
functions E and H are also considered (§§ 15 and 28).

Squaring the Series, §§ 4-7.
4. Let

Pnt qu for q, and multiply throughout by 2*; we thus find

This equation shows that Pn is equal to the number of compositions of
24« + 2 as the sum of two squares both of which are of the form
(12r db l) s , or of the form (12r =fc 5)8, diminished by the number of com-
positions in which one square is of one form and the other square of
the other form.

5. If a number be expressible as the sum of two uneven squares, it
must be = 2, mod. 8; and if we put

8n + 2 = (2 r+ l ) s + (2s+ l ) a ,

we have 4?i + l = (r—s)2+(r+s+l) s ,

in which one square is even and the other uneven.

It can also be shown that every composition of 8n + 2 corresponds
to four representations of 4ra + 1.

6. By considering the separate cases which arise in § 4, it will be
found that every composition of 24n + 2 of either of the forms

l)\ (12r±5)s+(r2s=fc5)3

corresponds to four representations of 12n + l of the form

and that every composition of the form

(12rd=l)8+(12s±5)1

corresponds to four representations of the form

We are thus enabled to express the value of Pn by means of the
representations of 12u + l, instead of by means of the compositions of
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24n + 2; viz., we have found that 4Pn is equal to the number of repre-
sentations of 12w+l as a sum of two squares of the form

diminished by the number of representations of the form

(Gr±2)'+(6s=b3)a.*

7. "We therefore pot
P 2)

whcro 4C? (it) denotes the excess of the number of representations of n
of the form (6r)24- (Gs + 1)2 over those of the form (6r + 2)2+(6s + 3)J.
This excess may, of course, be negative.

We nre only concerned with the function G (n) for values of n
which are = 1, mod. 12, and in this case the representations of n as a
sum of two squares nro necessarily of the forms

(Gr)2+(6s+l)2 or (<Jr-r2)2 + (6s + 3)2.

In what follows, the argument of the function G will always be
supposed to be = 1, mod. 12.

The Function G, §§ 8-14.

8. If p and q are any two numbers = 1, mod. 12, which are prime to
each other, then

( )
To prove this, resolve 2? ^nd r in all possible ways into their conjugate
complex factors, so that

P — (

Let these equations be written

P = PiPi —PiPi = ... = Pal'n —

r = rxr\ = r2 r2 = . . . = rbr'b =

where jp, and p\, p2 and p'2, &c. are pairs of conjugate factors; and
Pn B> ••• »Pa, »*n rv ... rb are of the form 6r+i(Gs + l), and TT,, 7r2,... 7r.,
fu Pn "• > P? °f *he form Gr-f-2 + i (Gs + o).

Thus G{p) = a - a , G (r) = &-/3.

SitKie p and r are prime to each other, the resolutions of pr into pairs

* Wo may dispenses with tho doublo sign in (C«± I)2, (Or ± 2)3, (C« ± 3)2, if wo
admit ncgativo us well as positive values of tho integers r and «. This will bo
supposed to bo tho case in future, nnd tho doublo sign will bo omitted throughout
tho whole of tho subsequent portion of the paper.
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of conjugate complex factors will be of the four types

prp'r, ppp'p', irrir'r, trpit'p'.

Now the product of two numbers of the form 6r+i (60+1), or of two
numbers of the form 6r + 2 + i (6s + 3), is of the form 6 r+ i (6s +1) ; and
the product of two numbers of which oue is of one form, and the other
of the other form, is of the form 6r+2+i(G$ + 3).

Thus the numbers which are of the types pr and irp are of the form
Qr + i (6s + l), and those which are of tho types pp, trr are of the form
6r+2-f t (6s+3). Now the numbers of numbers of the forms pr, pp,
vr, np are respectively ah, aft, ah, aft ; therefore

G (pr) = ab — aft — ab + aft

9. The values of G (») for all values of n mny therefore be derived
by simple multiplication from the values of G («) for the cases in
which n is a prime or a power of a prime. It is only necessary, there-
fore, to consider tho values of G (11) for these values of n.

Tho only possible factors of a number which is = 1, mod. 12, are
necessarily = 11, 7, 5, or 1, mod. 12. The cases in Avhich n is a
prime, or a power of a prime, having ono of these forms will now be
examined.

(1) Values of 0 (a") where a is a prime = 11 or 7, mod. 12. Primes
of these forms have no complex factors. If a be uneven, G (a*) = 0;
for a" cannot be expressed ns a sum of two squares. If a be even,

• I t will bo observed tbat tbo reasoning in tho text admits of a rrmchmoro gonoral
application. For supposo that, connected with a number P, wo have a Rot of
quantities P\, j>2» •••» P*t ""i» "a* •••*•> a n d connected with a number It we havo a
similar Bet >•], r2, ...r/,, p,, p2, ... pn ; and supposo that tho corresponding set, connected
with tho number 1'Jt, may bo obtained by multiplying all the membors of the T-sot
by those of tho Ji-aot. Supposo, further, that tho quantities denoted by tho Italic
lottora belong to a class A, and that tho quantities denoted by tho Greek letters bo-
long to a class B, and that tho product of two members of class A, or of class B, is
a member of class A, but that tho product of ono member of class A and ono membor
of class B is a member of class B. Then, if

and <p (11) = rj + r* + ... + r£ ± (PJ + p* + ... + pj),
it follows that ' <p (HI) = <p(P)<f> (Jt).

Tho function O belongs to tho particular caso of k = 0, tho ncgativo sign being
taken. As other examples of tho application of this reasoning may bo mentioned
the function 7?* (») which expresses tho excess of tho sum of tho kUl powors of tho
divisors of n which = 1, mod. 4, ovor tho sum of tho £th powers of tho divisors which
3 3, mod. 4 ; and tho function J/Jt («) which expresses tho ram of the kitl powers of
tho divisors of n which = 1, mod. 3, over tho sum of tho kih powers of tho divisors
which s 2, mod. 3. Tho function E (») and Jl («) (§§ 15 and 28) are tho particular
cases corresponding to k = 0 of the functions 1* («) and Ilk («)•
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Q (a") = 1; for p' can be expressed as a sura of two squares in one way,
i.e., as 0a + (al")a. This partition* is of the form (6r)2 + (6s +1)8 ; and
it gives rise to four representations ; therefore the value of G is + 1 .

(2) Values of 0 (b0) where b is a prime = 5 , mod. 12.
In this case the two conjugate complex factors of b are of the form

6r + 2 rt i (6s + l ) . Tims G (b) = 0. The partitions of ts as the sum
of two squares consist of 02+6a and a single partition of the form
(6r+2)24-(6s + 3)3. The former gives rise to four representations,
the latter to eight. Thus 0 (&*) = 1-2 = - 1 .

* In counting the number of compositions of a number as a Bum of squares, the
order of tho squares is to be takon iuto account. In counting tho representations,
the signs of the roots of the squares are to be taken into account as well. Each
composition of. a number as a sum of r squares none of which is zero gives rise,
therefore, to 2r representations. When we are restricting ourselves to uneven squares,
it is convenient to consider compositions; but, when oven squares are admitted (in-
cluding zoro among them), it is necessary to consider representations instead. Thore
Beems to be need of a word to express a partitionmeut into squares without roforenco
to their order or to the signs of their roots. For this purpose I have in other writings
used the word resolution /bu t in this paper I use the word partition, which scorns to
me preferable. Thus, for examplo, taking two squares, tho partition I2 + 2- gives
rise to the two compositions I2 + 2- and 2- + I2, and to tho eight representations

(+l)2+(+2)2, (-1)9+ ( + 2)2, (+1)3+(-2)2, (_l)2+(-2)=,

tho partition 12 + O2 gives riso to two compositions, but to only four representations.
(The square 0- is treated in exactly the same manner as any other square, as far as
partitions or compositions are concerned; but, when representations are considered,
it differs from all other squares in having one root instead of two.)

It seems to me convoniont to regard these- meanings of tho words partition and
composition as of general application, whenever a number is to bo partitioned into a
given number of the parts a, $, 7,... . Thus every distinct manner in which a
number n can be producod by tho addition of the parts a, j9, 7, ... is called & partition
into theso parts. If, in addition, we take cognisance of the places occupied by tho
parts, we use tho word composition. Thus two partitions are identical if tho parts
occurring in them aro tho same; but for two compositions to be tho same, it is further
necoBsary that tho Bame part should occupy the same placo. (We may, of course,
consider partitions in which, no limit is placed on the number of times that any part
may occur, or in which tho same part may not occur twice, or in which any other
condition is imposed. When tho word partition is used without qualification, it is
understood that tho same part may occur any number of times.) Thcso definitions
of partitions and compositions do not conflict in any respoct with ordinary usago.

Partitions and compositions have reforunco solely to the magnitude of tho parts by
tho addition of which the given number is produced. Tho word representation has
roforenco to a difforont kind of problem, i.e., to tho numbpr of possible solutions, in
integral numbers, of systems of equations. Partitions and compositions aro con-
cerned only with tho magnitudes of a, /3, 7 ... , not with their structure; the word
representation has the technical meaning assigned to it by Gauss in the Theory of
Forms. I may add that tho above use of partition corresponds exactly to Gauss's
definition of discerptio ; for he distinguishes between discerptiones and reprccscntationes
as follows:—"Discerptioncs numcrorum (ut formarum binariarum supra) in tria
quadruta a reproosentationibus per xx + yy + zz ita distinguimus, ut in illis ad Bolam
quadratorum magnitudinem, in his vor'o insuper ad ipsorum ordinom rudicumqne
signa reapieiumus, adooque repriosentationes x = a, y — b, z = 0 et * = a', y = b\
z — c' pro divorsis habcamus nisi simul a = a', b = b', c — c'; discerptiones autem in
«« + bb + co et in a'a' + b'b' + c'o' pro una, si nullo ordinis respectu habito hcec quadrata
illis sequalia suut" (Disq. Arith., } 292).
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In the case of b* there is no partition into two squares of the forms
considered. Thus 0 (&s) = 0. For h* we have the partitions of fc2 each

• multiplied by fc3, and a new partition, which is of the form
(6r)2+(66-+l)3.

Thus G (6*) = 1-2 + 2 = 1 .

Proceeding in this manner, we find that, if ft be uneven, 0 (bp) = 0,
And that, if/3 be even, O(V) = (-1)**.

(3) Values of G (cT) where c is a prime = 1, mod. 12.
The two conjugate complex factors of c may be either of the form

<6r± i (6s + l ) or of the form 6r + 2 ± t (6s + 3). Consider these two
cases separately.

(i.) If c be of the form (6r)9 + (6s+l)2, then
<?(c)=2, G(c2) = 3, G(o8)=4,

.and in general 0 (c1) = y + 1.

(ii.) If c be of the form (6r+2)2 + (fJs+3)2, then

G(c) = - 2 , G(c2) = 3, G(c8) = - 4 ,

and in general 0 (c') = ( — l ) r ( y + l ) .

10. Thus, on the whole, we find that, if

whore
... ef

alt a,, ... are primes = 11 or 7, mod. 12,

6,, &a, ... „ „ — 5, mod. 12,
eu es» ••• » i» = 1> mod. 12, and of the form

/it /s» ••• t» » = 1> m0(^- 12, and of the form

then

unless a,, a2,..., and /3U fti} ..., are all even (including zero as an even
number) ; and that, if these exponents are all even, then

O (12n + l) = (-I)****-. X fo

For example,

P M = (?(169)=(?(13l) = + 3 ,

P S J =G(265) = (?(5.53) = 0 (5) G(53) = 0,

P w = G (325) = 0 (5M3) = G (5s) G(13) = - 1 x - 2 = + 2 ,

P 7 0 = ( ? ( 9 4 9 ) = G (13.73)=
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As a more complicated example, .we may take

0 (IV. 19*. 5M7M8 1 .37 .978.1094),

which = — I x 3 x 2 x — 4 x 5 = +120.

Tho even powers of the primes 11 and 19 (which are = 11 and 7,.
mod. 12) produce no effect. The same is true of the evenly even
power of 17 (which = 5, mod. 12), but the unevenly even power of 5
(which also = 5 , mod. 12) gives rise to the factor —1. The only
primes remaining are = 1 , mod. 12. The first two, 13 and 37, are of
the form (6r)a+ (6& + 1)8; they give rise to the factors 3 and 2. The
last two are of the form (6r+2)9+(6s+ 3)a, and give rise to the
factors ( - 1 ) 8 4 and ( -1 ) 4 5.

11. It will be noticed that for a great many values of n the value
of P,, will be zero; for this will happen whenever any of the prime
factors of 12» + 1 which = 11, 7, or 5, mod. 12, occur with uneven
exponents.

It is only in the case of prime factors which are = 1 , mod. 12, and
'when these factors occur with uneven exponents, that we have to take
into consideration their complex factors, or, which is the same thing,
resolve them into the sum of two squares. There is but one such
partition for each prime, and upon its nature depends the sign which
is to be attributed to the factor to which it gives rise in the value
of 0.

12. We may conveniently use the term character to distinguish
between the cases when the prime is of the form (6r)a + (6s + l)8, and
when it is of the form (6r+2)*+(6«+3)9. In the former case the
character will be said to be positive ; in the latter, negative.

Thus the character of a prime = 1, mod. 12, is positive or negative,
according as, when expressed as a sum of two squares, it is the even
or the unoven square which is divisible by 3, or, which is the same
thing, according as it is tho even or uneven term in the complex
factors of the prime which is divisible by 3.

We may also extend the idea of character to partitions, composi-
tions, or representations, which will be distinguished as positive or
negative, according as it is the even or tho uneven square which in
divisible by 3.

13. It is singular that the determination of the magnitude of P,,
should depend wholly on the real factors of 12ra + l, and that it is
only for the sake of the sign that we have to attend to the complex
factors. Even for this purpose, it is only occasionally that recourse
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to the complex factors is necessary, and, when such is the case, it is
only the character of certain prime factors that has to be deter-
mined.

14. 1 give below a table of the values of the coefficient

for all non-zero values of n up to n = 100. The values of the func-
tion JS(12J» + 1 ) , which forms the subject of §§15-18, are also
added.

TABLE I.—Values of P(, = G(12w+1), and of JE7(12n+l), for all
"values of n for which PM iB not zero from n = 1 to n = 100.

n

1
2
3
4
5
6
8
9
10
13
14
15
16
19
20
23
24
26
27
28
29
30
31
33
34
35
36
38
40
44
45

12M + 1

13
25
37
49
61
73
97
109
121
357
169
181
193
229
241
277
289
313
325
337
349
361
373
397
409
4iil
433
457
481
529
541

£(12»+1)

- 2
_ i

+ 2
+ 1
+ 2
-2
-2
-2
+ 1
+ 2
+ 3
-2
+ 2
-2
o

-2
-1
+ 2
+ 2
2

+ 2
+ 1
+ 2
+ 2
-2
2

+ 2
-2
4

+ 1
-2

JE(12»+1)

2
3
2
1
2
2
2
2
1
2
3
2
2
2
2
2
3
2
6
2
2
1
2
2
2
2
2
2
4
1
2

M

48
50
51
52
53
55
56
59
61
63
64
66
69
70
71
73
77
78
79
80
83
84
S5
86
89
91
93
94
96
100

12«+1

577
601
613
-625
637
661
673
709
733
757
769
793
821)
841
853
877
925
937
949
961
997
1009
1021
1033
1069
1093
1117
1129
1153
1201

P » -
0(12» + 1)

+ 2
+ 2
+ 2
+ 1
• -2
+ 2
+ 2
2

-2
-2
+ 2
-4
-2
-1
+ 2
+ 2
-2
+ 2
+4
+ 1
+ 2
-2
+ 2
-2
+ 2
-2
-2
-2
-2
+ 2

.E(12tt +1)

2
2
2
5
2
2
2
2
2
2
2
4
2
3
2
2
6
2
4
1
2
2
2
2
2
2
2
2
2
2
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The next table shows the character of all primes = 1, mod. 12, up
to 12373. By its means wo aro able to writo down at once (§ 10) the
values of P n as far as n = 1031, and, unless 12n + l be prime, to a
very much greater extent. Tho manner in which tho table was
obtained is explained in § 19.*

TABLE II. — Showing the positivo or negative character of the
primes = 1, mod. 12, up to 12373.

13 -
37 +
61 +
73 —
07 -
109 -
157 H-
181 -
193 +
229 -
241 -
277 -
313 +
337 -
349 +
373 +
397 +
409 -
421 -
433 +
457 -
541 -
577
601
613 +
GG1 +
673 +
709 -
733 -
757 -
7G9 +
829 -
853 +
877 +
937 +

+
+

997 +
1009 -
1021 +
1033 —
1009 +
1093 -
1117 -
1129 -
1153 -
1201 +
1213 -
1237 -
1249 -
1297 +
1321 +
1381 -
1429 +
1453 -
1489 -
1549 +
1597 -
1609 -
1021 -
1657 +
1GG9 —
1693 +
1741 +
1753 -
1777 -
1789 +
1801 +
18G1 +
1873 -
1933 +
1993 -H

2017 -
2029 -
2053 +
2089 —
2113 -
2137 +
2101 -
2-221 -
2209 +
2281 -
2293 +
2341 -
2377 -
238!) +
2437 +
2473 +
2521 +
2557 -
25!);; +
2617 -
2077 -
2G89 —
2713 -
2741* +
271)7 -
2833 +
2857 -
2917 +
2953 +
3001 -
3()37 +
3049 -
3061 +
3109 +
3121 -

3169 +
3181 -
3217 -
3229 —
3253 -
3301 +
3313 -
3361 -
3373 -
3433 -
3457 -
3169 -
3517 +
3529 +
3541 +
3613 +
3637 -
3073 +
3G97 +
3709 +
3733 -
37i)9 +
37!)3 -
3853 -
3877 +
3889 +
4021 -
4057 +
4093 -
4129 +
4153 +
4177 -
4201 -
4261 +
4273 -

4297 +
4357 +
4441 +
4513 +
4549 +
4561 +
4597 +
4G21 +
4657 -
4729 -
4789 +
4801 +
4813 +
4801 -
4909 -
4933 -
4957 -
49G9 +
4993 -
5077 +
5101 -
5113 +
5197 +
5209 +
5233 +
5281 +
5413 -
5437 -
5449 +
5521 +
5557 -
55G9 -
5581 +
5G41 -
5653 +

5689 -
5701 -
5737 -
5741) —
5821 -
5857 -
5869 -
5881 -
5953 -
G037 +
G073 +
G121 -
G133 +
G217 -
G229
0277
0301
0337
G3G1 —
63 73 +
6397 +
G421 -
G4G9 -
0481 -
6529 +
G553 +
6577 -
GG37 +
6661 -
6673 -
6709 +
G733 -
6781 -
G793 +
6829 +

* Barlow's TiiWos of 1814 contain tho comploto resolutions of all numbers into
thoir ]>riine factors up to 10,000. Chcrnuc (Cribrum Arithmetician, 1811) gives all
tho priino factors of numlxirs up to 1,020,000. Tho Tables of Burckhardt, DUBO,
und J . Glaiaher givo tho least factors of numbers up to 9,000,000.
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6841 -
6949 -
6961 -
6997 -
7057 +
7069 -
7129 -
7177 +
7213 +
7237 -
7297 -
7309 +
7321 +
7333 -
7309 +
7393 +
7417 +
7477 -
7489 -
7537 +
7549 +
7561 -
7573 -
7621 -
7669 -

Dr. J. W . L. Glaisher on

7681 +
7717 -
7741 -
7753 -
7789 +
7873 -
7933 +
7993 +
8017 +
8053 -
8089 +
8101 +
8161 -
8209 +
8221 +
8233 +
8269 +
8293 +
8317 +
8329 -
8353 -
8377 -
8389 +
8401 +
8521 +

8581 +
8629 +
8641 +
8677 -
8689 -
8713 -
8737 +
8761 -
8821 +
8893 +
8929 +
8941 +
9001 -
9013 -
9049 -
9109 -f-
9133 -
9157 +
9181 4-
9241 +
9277 -
9337 +
9349 +
9b97 +
9421 -

9433 -
9601 +
9613-
9649 -
9061 -
9097 -
9721 -
9733 +
9769 -
9781 +
9817 -
9829 -
9901 -
9949 +
9973 -
10009 -
10069 -
10093 -
10141 +
10177 +
10273 -
10321 +
10333 -
10357 +
10369 -

10429 +
10453 +
10477 -
10501 +
10513 +
10597 +
10657 -
10729 -
10753 +
10789 +
10837 +
10861 -
10909 +
10957 -
10993 -
11113 +
11149 -
11101 -
11173 +
11197 +
11257 -
11317 -
11329 +
11353 -
11437 -

[June 13,

11497 +
11593 +
11617 +
11677 -
11689 +
11701 -
11821 +
11833 +
11941 +
11953 +
12037 -
12049 -
12073 +
12097 +
12109 -
12157 -
12241 +
12253 +
12277 +
12289 +
12301 -
12373 +

Connexion with the Function H («), §§ 15-18.

15. T.ho function J? (n), wliicli may be defined as the excess of the
number of divisors of u "which tiro == 1, mod. 4, over the number of
divisors Avhich are = 3, mod. 4, has been considered iu Vol, xv.,
pp. 104-122.* If n bo uneven, E (n) is equal to tho number of
primary complex numbers having' n as tlieir norm; and for all values
of n, 4Zi' (?i) is equal to the number of representations of n as a sum
of two squares.

Thus, when n = 1, mod. 12, 41'7 («) is equal to the sum of the
numbers of positivo and negative representations of n, while 4(7 (u)
is numerically equal to their difference. When, therefore, all the
compositions of n are-.of tho same character, G(n) is numerically
equal to E (n). This will evidently be the case when n is a prime;,
and, as Svill be shown in the next article, it will happen also when-
ever n contains no prime factor which = 5, mod. 12.

* "On tho Function which denotes tho difforenuo hutween the numlior of
(4m + l)-divisors, and the numbor of (4;/» +3)-divisors of a Number," road
February 14th, 1884.
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The function E (n) satisfies the condition that, if p and r are prime
to each other, E (pr) = E (p) E (r) ; and, in general, if

n — a ^ a * . . . b\ b y . . . ,

where alt a2, ... are primes = 3, mod. 4,

and iit &a, ... ,, = I1, mod. 4,

then E (n) = 0 unless a,, a2,... are all even (including zero as an even
numbei1), and if these exponents are all even,

16. In the calculation, therefore, of J5?and O, in cases in which they
do not both vanish, prime factors which are = 11 or 7, mod. 12, give
rise to the factor unity, that is to say, they produce no effect; prime
factors which are = 1, mod. 12, give rise to the same factors in E and
(•?, though they may differ in sign. But in the case of prime factors
which are s 5, mod. 12, there is a difference of numei'ical value; for,
if b be a prime of this form, the factor b" occurring in n gives rise to
the factor /3-f 1 in E} but in 0 it gives rise to the factors —1 or 0,
according as /3 is even or uneven.

Thus (supposing w, as always, to be = 1, mod. 12) the numerical
values of 0 (n) and E (n) are the same whenever n contains no prime
factor = 5, mod. 12. If any such factor occurs raised to an uneven
power, it reduces 0 to zero; if raised to an even power, it merely
produces a change of sign. In E. it gives rise in each case to a finite
factor greater than unity.

The greater number of zero values of G (n) than of E («) is due to
the presence of uneven powers of primes = 5, mod. 12; viz., any one
of the factors 5, 5", 56, ..., 17, 17s,... 29, 29s, ... &c. reduces G to zero.
For non-vanishing values of G (n), we have seen that the only case
in which a difference of numerical value occurs is when these factors
present themselves with even exponents, and if bu &a,... denote the
prime factors of this form, and (3V /38,... are their exponents (supposed
to be all even), then

17. In Table I. (p. 190) the values of E (n) were given in an addi-
tional column for the sake of comparison. Within the limits of that
table there are seventeen arguments for which E remains finite while

YOL. xxi.—NO. 382. o
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0 vanishes. These are—

8 5 = 5*17, 505= 5-101, 901 = 17-53,

145= 529, 565= 5113, 985= 5197,

205= 541, 685= 5137, 1105= 51317,

265= 5-53, 697 = 17-41, 1165= 5*233,

4 4 5 = 5-89, 745= 5-149, 1189 = 29-41.

493 = 17-29, 865= 5-173,

For the argument 1105 the value of E is 8 ; in all the other cases ifc
is 4.*

There are six cases in which 0 does not vanish, but in which its
numerical value differs from E. These are—

25 = 5s,
289 = 17',

325 = 5 s . 13,
625 = 54,

841 = 29s,

925 = 58.37,

Value of O.
- 1 ,
- 1 ,

2,

1,
1

- 2 ,

Value of E.
3,
3,

6,

5,
3,
6.

It will be noticed that the corresponding values of O and E are con-
nected by tho relation given at the end of the preceding article.

18. Tho values of O («), iti Tablo I., wcro originally calculated by
finding the partitions of 24?i + 2 into two unevon squares (§ 4), before
I had obtained the method described in §§ 6-10. Tho corresponding
values of E(n) wero taken from tho paper in Vol. xv. of the
Proceedings, already cited in tho noto to § 15. Tho tablo of E (n)
contained in that paper gives the values of E (n) for all values of n
up to n = 1000 for which E (M) does not vanish.t

The Function x (»), § 19.

19. In Vol. xx. (1884) of the Quarterly Journal% I have considered

* It is evident that, whon G vanishos and E docs not, the value of E must
necessarily be an evenly even number, for thero must be an equal numbor of posi-
tivo and negative compositions, each of which counts in J? as + 2.

f The definition of E(u) applios to all positivo integral values of ». The defini-
tion of O (»») only applies to numbers = 1, mod. 12.

% " On tho Function x («)»" PP- 97-167.
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the function \ (?i), which is defined as the sum of the primary num-
bers having n as their norm.

If n be a prime = 1, mod. 12, then either

or n = (

In the former case the value of x 00 is

and in the latter (_l)»e*»> (I2r+6).

Therefore, when the character of a prime is positive, x (w) is n0$
divisible by 3 ; and when the character is negative, x 00 is divisible
by 3. '

In the paper on x 00 to which reference has just been made, I
have given a table of the values of x 00 for all primes = 1, mod. 4,
up to n = 12377. Table II. was derived from this table by selecting
from it the primes = 1, mod. 12, and affixing the sign — or •+•
according as x 00 was, or was not, divisible by 3.

Analytical Formulae connected with the Functions E and 0, §§ 20-27.

20. It can be shown by elliptic functions that, if n denote any
number (and thoreforo 2n any even number), and m any uneven
number,

2 ! . gml x S!« g4n' = 2 20" E (4n

{2!x q
mtY = 4S? J0 (4n+l) g8n+2.

The second formula shows that the number of representations of
4n+l as the sum of an even and an uneven square is equal to
4iE (4»i+l), and the third formula shows that tho number of repre-
sentations of 8?i + 2 as a sum of two uneven squares is also equal to
4sE (4n+l). It follows, thereforo, that if n = 1, mod. 4, the number
of representations of 2n as a sum of two squares is equal to the
number of representations of n as a sum of two squares. This
theorem, of which it is easy to give an arithmetical proof, has been
referred to in § 5.

21. Evidently (Gr+l^+Ces)3 = 1, mod. 12,

(6r+3)a + (6s+2)2 = 1, mod. 12,

(6r+l) '+(6s+2)1 = 5, mod. 12,

(6r+3)8 + (6s)' = 9 , mod. 36.
0 2
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By separating the terms whose exponents are s 1 from those which
are = 5, mod. 12, in the second formula of the preceding artiole, we
obtain the following results :—

a:» 2(6n+i)i x a : . g(6n) f+a:« g(6n+8)t x a : . g(6n+2)t = a? ^ ( i 2 » + i > g
w»+ i ,

a : . g(6n+1)> x a : . f"*2)' = *ar # ( i 2 » + 5 ) ?12ii+8.
We find also

a : .g i ( t o + 8 ) i xa : . j 1 8 " ' 1 = 2 a r 2? (36^+9) g38»+9
;

but this formula is equivalent to the original equation, for, by
replacing q by gi, it becomes

a : , g(2n+i)l x a : . g(2rt)i = 2 a ;

It is easy to see that, for all values of n,

JE (36?i+9) = E (4»+l) ;

for, if the highest power of 3 which occurs in 4n-\-l as a factor be
uneven, U vanishes for both arguments, and if the highest power is
even, = 3^ (including the case a = 0), then

= E {32° (4r + l ) } = 7̂ (32a) ^ (4r+l ) = JE7

and, similarly,

^ (36n+9) = JE7 {33o+a (4r+1)} = E (4 r+ l ) .

22. Treating in the same manner the third formula of § 20, by
means of the congruences

(6 r+ l ) 8 + (6s+ l ) 5 = 2, mod. 24,

(6r+l)8+(65+3)a = 10, mod. 24,

(6r+3)*+(6s+3y ss 18, mod. 36,

we obtain the formulae

i{a:. gwv j " = a : E (i2«+i) 2
2*»+2,

a : . 2I8B+1)' x a : . g(6M+3)i = a? E (i2n+s) s
un*\

We find also

{S! . g(
6"+»)'}!1 = 4S0"E (36n+9)

which is, however, only a repetition of the original formula.
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23. It is worth while to notice the identical relations to which the
formulae in the two preceding articles give rise, viz.,

S!» g(8"+1)° x a" . gW+S!.^811*811 x T.m g(0"+2)' = { 3 ! . g**8"*"'}",

X.n tf—w x 5:M f"+2)I = } S ! . g*<8"+1>' x Z ! . gl(8n+s»\
The original formula in § 20 give rise to the identity

from which, of course, the two preceding identities might be directly
obtained by the method employed in the two preceding articles.

24. Passing now to the function Q, we have, from § 4,

and from § 5 it follows that

T.« g(6tt+1)' x S! . g ^ ' - S t . g(6n+8)* x 2 ! . g(6n+2)> = 2 ^ 0 (12n+1) g""+1.

These formulro correspond to

{2!» 2
(<!"+1)"}a = So" E (12n + l ) gM-»

and

5 : . g(6ntl)t x S t . g'^' + S : . g(6"*3)1 X r . g(6n+2)I = ^E (12n+l) 2l2n+1,

which were given in §§ 22 and 21.

25. Combining, by addition and subtraction, the first and third
formulae, we find

These equations express the theorems:

(i.) The number of compositions of a number p (necessarily = 2,
mod. 24) as the sum of two squares, which are both of the form
(12 l)a, or both of the form (12w + 5)9, is equal to

(ii.) The nnmber of compositions of a number p (necessarily = 2 ,
mod. 24) as the sum of two squares, of which one is of the form
(12n+l)a and the other of the form (1271+5)3, is equal to

\{E\V)-Q{p)}.
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26. Combining in the same manner the second and fonrfch formuloe
of § 24, we find

S t . g ^ ' x S t . 3(6n)' = |S? {^(12n+l)4-6?(12w+l)}3
12'1+1,

S t . 2("l+3)'X S t . g(6nt2)' = |S? {J0 (12n+1) -G (12n+1)} g18w+1,

which express the theorems:

(i.) The number of representations of a number p (necessarily == 1,
mod. 12) by the form (0V+1)* + (6s)a is equal to

(ii.) The number of representations of a number p (necessarily = 1,
mod. 12) by tho form (6r+3)s+(6s + 2)J j s e q u a l to

2{E(p)-G(p)}*

27. It will be noticed that the formulro in the last two articles lead
to the identities

s t . 2
t(!"+1>' x 2C.V*0 ' = { a t . g»<i2»+i>'}»+ { s t . a»<»"+*}«,

S t . g16ll+3)'x S t . g(6n+2)' = 2S_. 2i(12"+1)1 x S t . g»<I2»+s>\

T/ie Function H (n), §§ 28, 29.

28. It can be shown by the Theory of Numbers that tho number of
representations of any uneven number m by the form xa+3</8 is equal
to four times the excess of the number of divisors of m which = 1,
mod. 3, over the number of divisors which == 2, mod. 3.

Lot H (n) denote tho excess of the number of divisors of n which
= 1, mod. 3, over those which = 2, mod. 3.

If an uuovcn number be represented by the form a;9-f 3j/*, either x
or y must be even and the other uneven ; observing that

(2r+l) 2 4-3(2s) 3 =l , mod. 4,

(2r)9+3(2s + l)2 = 3, mod. 4,

we thus obtain the analytical theorems,

S t . g"1' x S t . g12'" = 22" H (4n+1) g4l>+1,

S t . g4'" x S t . g3m' = 2S? H (4n + 3) g4n+s,

where n denotes any number, and m any uneven number.

* In (i.) the number^ is expressed as a sum of two squares, of which the even
fiqunro is aivisible by 3, and tho uneven square is not; in (ii.) p is expressed as a
sum of two squares, of which tho uneveu square is divisible by S, and the evon
aquaro is not.
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Taking the first formula, since

(6r+l)8+3(2s)a = l,mod. 12,

(Gr+3)2 + 3 (2s)2 = 9, mod. 12,

we find, by similar reasoning to that employed in § 21,

2 C 3(B"+1)' X X . q™' =

29. The function H (n) possesses the property that, if p and q are
prime to each other,

This may be proved by exactly the same methods as in the case of the
corresponding theorem

i.e., analytically, as in Proc. Lond.Math. Soc, Vol. xv., pp. 104, 105, or
by goncral reasoning, as in the note to § 8 of the present paper.

The former method shows that H (n) vanishes unless every prime
divisor of n which == 2, mod. 3, is raised to an even power, and that if,
in general, n = d''uv2, where all the prime factors of u are == 1, mod. 2,
and all the prime factors of v are = 2, mod. 3, then

H(n) = H ( t t ) = v(«),

v (u) denoting the number of divisors of u.

The Functions 0, E, H, §§ 30-32.

30. Wo may obtain an equation similar in form to the last equation
in § 28, but in which 0 is involved instead of II, by the following
method.

Putting g12 for q, this equation becomes

X Pnq
nn = S t . (-l)ng12"(3"+1'x2:« ( - l ) n g 1 2 n ' ;

whence, replacing Pn by 0 (12ra+l), and multiplying throughout by
q, we find

St. ( - l rg^ 'xS! . (-l)ng12"' = So" (-1)"
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81. It was found, in §§ 22 and 24, that

{ S ! . ^ 1 } 1 = 3 ? E (12n + l ) qUn*\

{S! . ( - l ) - ^ * * } 1 = S? 0 (12n+l)gMn+a,

and, in §§ 28 and 30, that

S t . g(fl"+1)1 X 3 ! . g"* = 3? JET (12n+l) g12-1,

2 t . (-1)"g(8"+1)1 X 2 ! , ( - 1)B ql2n' = a? O (12n+1) g""+1.

Writing these formula at full length, they become

E (1) q'+E (13) qn+E (25) gw + JS'(37) 3
74+&o.

G (1) 2J+ 0 (13) gM+ 0 (25) g!0+ 0 (37) gM+&c.

= (g-2"-24 9+21 2 1 + 2l09

and

0 (1) 2 + 0 (13) 218+0 (25) g
2 f l+^ (37) 287+&c.

The first pair of formulre show that 0 (12ra + l ) must vanish when
E (12»+1) vanishes ; for 4>E (12n + l ) is equal to the total number of
representations of 12n + l as a sum of two squares neither of which is
divisible by 3, so that, when JE?(12» + 1) vanishes, 12w+l does not
admit of being so expressed.

Similarly, from the second pair of formulas we see that 0 (12w+l)
must vanish when JET(12n-f 1) vanishes ; for 4£T(12n4-l) is equal to
the total number of representations of 12n + l as the sum of an uneven
square not divisible by 3 and of the triple of an even square.

Now E (n) vanishes unless all the prime factors of n which are = 3,
mod. 4, are raised to even powers; and H (n) vanishes unless all the
prime factors of n which are = 2, mod. 3, are raised to even powers.

Thus either E (n) or H(n) vanishes (or both vanish) unless all the
prime factors of n which are = 3, 5, 7, or H, mod. 12, are raised to
even powers. It follows, therefore, that G (12«-f 1) vanishes, unless
all the prime factors of 12n-f 1 which are = 3 , 5, 7, or 11, mod. 12,
are raised to even powers. This resnlt is included in the arith-
metical investigation of § 9.



1889.] the Square ofEuler's Series. 201

32. Five years ago (in 1884) I found, by the analytical process of
the preceding article, that Pn was always zero unless all the prime
factors of 12w-f-l which were = 3, 5, 7, or 11, mod. 12, were raised to
even powers. The process did not show, however, that it might not
happen that Pn should vanish, even when this condition was satisfied,
and I did not then attempt an arithmetical investigation. It appears
from § 9, however, that Pn can never vanish when all the prime factors
of the above forms occur with even exponents. I have thought the
results contained in the four preceding articles worth giving, partly
because of the analytical proof which we thus obtain of the theorem
that Pn vanishes unless the prime factors of 12n + l which are of a
certain form occur with even exponents, and partly for the sake of
introducing the function J3", which belongs to the same class of
coefficients as E and 0.

Linear relations connecting the values of P,,, §§ 33-44.

33. When Euler had obtained the formula

he applied it in the following manner to obtain results connected with
the Theory of Numbers:—

(i.) If P (w) denote the number of partitions of the number n into
the parts 1, 2, 3, . . . , repetitions not excluded, we have

whence it follows that

{ l+P( l )g+P(2) 2
3 +P(3) 3

8 +&c.}{l - 2 -2 8 +2 5 +2 7 -&c.}=l .

Equating the coefficients of qn, we find, for all values of w,

P(n ) -P (n - l ) -P (? i -2 )+P( rc -5 )4 -P( ra -7 ) -&c . = 0,

the series being continued so long as the arguments remain positive.*
The value of P (0), when it occurs, is supposed to be unity.

(ii.) By taking logarithms and differentiating, we deduce from
Euler's series the equation

Commentationet Arithmeticce Colleeta, Vol. i., p. 91.



202 Dr. J. W. L. Glaisher on [June 13,

Denoting by <r (n) the sum of the divisors of n, this equation may
bo written

{o- (1) j + cr (2) 2
s+<r (3) 2

8+&c. j {l-g-21+g8+27-&c}

whence, by equating coefficients, we obtain the relation

o- (n)-a (n - l ) -o - (w-2)+o- (w-5) +<r (w-7)-&c. = 0,*

if we adopt the convention that <r(0), i.e., o-(n—n), when it occurs, is
to have assigned to it the value n.

34. It may be remarked that, by writing the equation obtained in
the preceding section in the form

we find, by equating the coefficients of qn on each side,

This result, combined with Euler's second theorem, shows that the
values of

and
P ( n - l ) + 2 P ( w - 2 ) - 5 P ( » - 5 ) - 7 P ( n - 7 ) + &c.

are equal.

35. We may apply Euler's second method to deduce from Jacobi's
formula,

a corresponding property of the function a (n).

For we thus find

from which, by equating coefficients, we have

a (w)-3cr ( n - l ) + 5cr (n_3)-7<r (»-6)+9tr (?i-1

if we assign to o- (0), i.e. to <r («— M), the meaning £».

JiU, pp. 161-164.
t Messenger of Mathematics, Vol. xn., p. 170. This paper also contains other

theorems connecting partitions and sums of divisors.
t Quarterly Journal, Vol. xix., p. 220. It is so obvious, however, that Euler's

method is exactly applicable to Jacobi's formula, that the result must have been
noticed before. See also Proc. Camb. Phil. Soc, Vol. v., p. 109.
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36. Passing now to the formula

I proceed to consider the properties of the coefficient Pn that can be
obtained by methods of a similar character to those employed in the
three preceding sections.

(i.) Applying Euler's first process (§ 33), we have

{l+Plq+Piq*+Piq*+&c.}{l+P(l)q+P(2)qi+P(d)q'+&o.}

= l-g-38+25+27-&c.;

whence it follows that

= 0 or (-1) ' ,

according as n is not of the form \r (3r±l), or iseqnal to \r (3r±l).

(ii.) Applying Euler's second method, we have

QC q 2g8 3<y8 . ] _
i l - g 1-29 1-28 ) ~

which gives the relation

37. Since

and

we find, by equating coefficients,

P (n ) -3P(« - l )+5P(n-3 ) -7P(n -6 )+&o. = Pn,

and P,.-PM-,-Pn_2+P,,-6+-P»-7-&c.

= 0 or ( - l ) - (2r+l) ,

according as n is not of the form \r (r-f-1), or is equal to %r (r+1).
The value of Po is supposed to be unity.

38. Since
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we find, by differentiating,

whence, by equating coefficients,

P,,-, + 2Pn_a-5P,,_6-7Pn_7+&c. = 0 or

according as » is not of the form \r (r+1), or is equal to \r (r+1).*

In §§ 34, 35, and 36, three fractional formulae have been obtained
for the series 2f <r (n) qn. We do not obtain new formulae by equating
these fractional expressions. Tor example, from §§ 35 and 36 we
have

giving
nPn-(n-l) Pn.x-(n-2) PB_,+ (»-5) Pn.6+ (n- 7) P,,.7-&c.

= 0 or ( - l y ' -

according as « is not of the form \r (r+1), or is equal to \r (r+1).

This formula, however, is easily deducible from the expressions
forPn_, + 2P,,_2-5Pn_6-&c., and PB-PfI.i-PB.a-Ao., which have
been already obtained.

In the six following articles, various formulae involving the func-
tions P,,, and connecting them with other functions, are obtained by
equating coefficients.

39. From § 30 we have

whence

* In the case of the function P («), we have the theorem
JD(n-l) + 2i>(«- '2)-6P(n-5)-7P(»-7) + &c. =<r(«),

which, however, only holds good when n is unevea {Meuenger, Vol. XII., p. 170).
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Multiplying up and equating the coefficients of gn, we find that, if n
be any uneven number,

P,,+2Pn_1+2Pn..4+2P,,.9+2Pn_w+&c. = 0.*

40. By multiplying the first equation in the preceding article by
( l - 3

9 ) ( l - 2 4 ) ( l - 2 8 ) . . - » we have

whence, by equating coefficients, we find, for all values of n,

= Po+2P,,_a+2P,,_8+2Pn_18+&c.,

and Pm-Pm_s-PM_4+Pm_1o+Pm_u-&c.

= -2P n -2P n _ , -2P n _ l a -2P , ,_ M -&c. ,

where, in the second formula, m denotes 2n +1*

In the right-hand member of the first formula the suffix in the
general term is n—2r*, and in the second formula it is n—2rs—2r.

41. If we denote by Q (n) the number of partitions of n into the
elements 1, 2, 3, . . . in which no part is repeated in the same partition,
so that

g8+Q(3)g8+<2 (4) g«+&c,

then we have

= {l + Q(l)g + Q(2)gs+<3(3)g8+&c.)}(l-3g+5g8-7g6+9g10-«5bc);

whence, by equating coefficients,

for all values of n ; the value of Q (0) being supposed to be unity.

* Similar formulas relating to the functions x> -&• a n ( i a a r e given in the Quarterly
Journal, Vol. xs . , pp. 120, 121. A formula of the same kind for H is given
in § 48.
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By combining this result with those of the preceding article, we
see that

^ P P + ^ -10 + Pin -14 ~ &C.,

Pn+2P,,.a+2P,,_8+2Pn_18

are all three equal; and that

•Pm — Pm-a—-Pm-4

- 2P, ,- 2Pn_4-2P,,_ M - 2P, , .«- 2Pn.w-&c.,

where m = 2n + l, are all three equal.

42. From the equation

(l+P1g+Pag
8+P828+&e.)(l+g+g8+g8+g10+&c.)

we may deduce the formula)

and P,,,+P,n.1+Pm_3+Pm-6+&c.

where n = 2n + l.

The numbers 1, 6, 11, ... which occur in the first formula are the
halves of the even pentagonal numbors. The corresponding numbers
2, 3, 7, ... in the second formula are the halves of the uneven penta-
gonal numbers diminished by unity.

Similarly, from tho equation

= (l+P1gl+P,g4+P8g8+&c.)(H-g+g8+g8+gl0+&c.)>

we find
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and Q(m)

where m = 2n 4-1.

The numbers 3, 5, 14, ... which occur in the first formula are the
halves of the even triangular numbers. The corresponding numbers-
1, 7,10,... in the second formula are the halves of the uneven
triangular numbers diminished by unity.

43. It can be shown that

and

By equating the coefficients of q" in these equations, we find that

Pr,+P(l)P,,_2+P(2)P,,_4+P(3)Pn_9+<fec. = 0, +2, or - 2 ,

according as n is not a square, is an even square, or is an uneven,
square; and that

+ . = 0 or

accoi'ding as n is not, or is, a triangular number.*

44. We havo also the formula

where \ (w) is the function considered in § 19.

By equating coefficients, wo find

* The value of the expression

Pn + P(1) i>,,_, + P (2) i>n.a +... + P (»-1) Pi + P

was given in § 36.
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Elliptic Function Expressions for Series involving the Function 0,
§§ 45-47.

2K
45. Denoting — by p, we have, in Elliptic Functions, the following

formula giving the valnes of the series which have been principally
-considered in this paper:—

fc'V = 2 V

'These formnl® may be also written

= 2 ( 2 i -

or, by expressing only the general term of the series and using
(?(12n+l) in place of Pn in the second formula,

where n represents any number, and m any uneven number. The

•coefficients [—) and ( ^ ~ ) are Legondre's symbols (as extended
\m I \ m I

by Jacobi) expressing the quadratic character of 3 and of —1 with

respect to w, so that ( — ) = ( - 1 ) " " - " .

46. By substituting in this group of formulas 2', 2* a n d ~2*
wo obtain also the following groups :—

m
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TO

m

The symbol ( = ^ ) is equal to ( - l ) i i -«)*^-» The symbols

— J are supposed to be zero whenever m is not prime to 3 or

6 respectively.

( q v
— J = (—l)i(tB±l), where in the exponent

that sign is to be taken which makes m ± l divisible by 6; TO being

supposed not to be a multiple of 3, as in that case (— ) is zero.
\ TO /

Thus, also, [ A ) = = / l ) ( l \ = = (_i)*<«±i>*f (».--i>#
\TO/\TO/\TO/

4)7. The following formula* may also be added:—

= 3 sy

= 3* X

where the function H is the same as in the Fundamenta Nova.

Linear Relations involving H(n), and connecting H(ri) and E (»),
§§ 48, 49.

48. We may obtain various formulae, of the kind considered in
§§ 33-44, relating to the function H(n) whioh was defined in § 28

VOL. xxi.—NO. 383. P
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as the excess of the number of divisors of n which = 1, mod. 3, over
those which = 2, mod. 3. We obtain also, by the same methods,
relations involving both H(«) and E{n).

From § 28*

2! x qw' X 2 ! . qUnt = 22O

S! . qu" X 2!* q31"' = 220" II (4n + 3) 3
4"+3,

where n and m denote, as before, any number and any u no von number
respectively.

From these formula) wo may deduce

+ i/(21)

21 (3) + 7T (11) (/3+/r (10) L ^9
5) 75+iZ (23) 2

8 + &o 22 + V + 2<f + &o. " '

whenco, by equating coefficients, we find that, if n — 5, mod. 8,

If0z)-2i/-(n-12)+2IT(n-48)-2ir(M-108) + &c. = 0,

and that, if n = 7, mod. 8,

Jf («) -2 / r (n-4) + 2ir(»-16)-225f-(n-36)+&o. = 0.

41). From §20,

i!!» g1"' x s : . 241'" = 22; E (4u +

and by combining these identities with thoso involving II in the pro-
coding article, and equating coefficients, we may obtain the four
following formula):—

(i.) If n = 1, mod. 4,

.In the first lino the numbers 4, 16, 36, ... are the even squares; the
corresponding numbers in the second line are the triples of theso
squares.
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(ii.) If p = 4?i+l, s = 8 n + l ,

where n is any number, then

II00 + H (s - 8) 4- E (a- 24)+E (»-48) + &c.

= E(p) + 2E (p-24,)+2E(p-9G)+2E (p-216)+&c.
The numbers 8, 24, 48,... are the unoven squares diminished by
unity. The numbers 24, 96, 216, ... are the squares multiplied
by 24.

(iii.) If 1= in—3, « =

where n is any number, then

II (0 + E(t-8) + JTO-24) +H (*-48) + &c.

= 27*7 (Z)+21*7 (Z-48)+ 2.E (i-144)+2^(2-288) +&c.

The numbers 8, 24, 48,... are as above. The numbers 48, 144, 288
are these numbers multiplied by 6. " '

(iv.) If r — 4n + 3,

II (r) + 2H ( r - 4 ) +27 / ( r -16 ) +211 ( r -36 ) + &c.

= 4JS7 (n) + 4J57 («—6) +42? (n -18) +4J? (n—36) + &o.

The numbers 6, 18, 36, ... are the triangular numbers multiplied
by 6. The quantity E (0), when it occurs, is to have the value | .

It may be remarked that wo find also that, if p = 4re-f 1,

E (p) + 2E (p - 4) + 2E (p-16) + 2E (p -36) + &c.

- 4>E (n) +477 (n-2) +4E (n-G)4-427 («-12) + &c.,

where, as in (iv.), E (0) is to have the value %.

The Functions O and E, §§ 50-56.

50. Taking tho second pair of formula) in § 31, and changing the-
sign of g12 in the second of them, we have

2 ! . (-l)"g(on+1)1x S t . 212"' = S" ( - l

These equations express the theorems:—

(i.) If a3 denote an even square, and 6a an unoven square not
divisible by 3, then the number of representations of a number p
(necessarily = 1, mod. 12) by the form 3tta + 62 is equal to 4E (p).

p 2
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(ii.) If a* denote an even sqnare, c1 a square of the form (12»+1)*,
and d? a square of the form (12ra+5)', then the excess of the number
of representations of a number p (necessarily = 1, mod. 12) by the
form 3a'+c' over the number of representations by the form 8a'+cP
is equal to 4 (-I )A(P-D Q (p).

Combining these two theorems, we see that (a*, &*, cs having the
same meanings as above) the number of representations of p
(necessarily = 1, mod. 12) by the form 3a'+c' is equal to

and by the form 3a*+d? is equal to

2{H(p)-(-l

51. From the formulae in the preceding section, it follows that

:§!» (-1)" g'6n+1)' Sox (-1)"
whence

+ JT(25) q*+II(37) q*+&c. l + q*+q*

Equating coefficients, we find that, if n = 1, mod. 12,

0 (n) + 0 (n-24) + 0 (n-48) + G (n-120) + G (n-168) + &c.

= (-1)*(»-'J {fl-(»)-iZ-(«-24)-JT(n-48)+H(n-120)
+H(n-168)-&c.)}.

The numbers 24, 48, 120, ... are the uneven squares which are not
divisible by 3 diminished by unity.

52. It can be shown that

whence we deduce

3% (-l)"g(6n*1)'x:Cg8-mi = 22" (?(12»+l)g*?-+4,
where m denotes any uneven number.

This equation expresses the theorem:
If m* denote an uneven square, c' a square of the form (12n-f 1)*,

and d4 a square of the form (12n+5)s, then the excess of the number
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of representations of any number p (necessarily = 2, mod. 24) by the
form 3m*+c* over the number of representations by the form 3m1+ d*
is equal to zero, if p = 2, mod. 48, and is equal to 80 (\p) if p = 4,
mod. 48.

53. From the formulae,

we obtain, by division,

1 + P, 2
4

whence, by equating coefficients, we find that

Pn + P«.a + P«-e+P«.i, + &o.

is equal to zero, if n = 2 or 3, mod. 4 ; is equal to

if w = 0, mod. 4, where u = in ; and is equal to

- 2P0-2P,,_2-2PU_6-2P0_l a-&c,

if n = 1, mod. 4, where t> = | (n—1).

54. The second of the above results shows that, for all values of n,

Now, in § 39 it was shown that

Pn + 2P,,_1 +

is equal to zero for all uneven values of n. It follows, therefore, that

is equal to zero whenever n is the quadruple of an uneven number,
that is to say, whenever n = 4, mod. 8.

The third result shows that, if p = 4w-f 1, then, for all values of n,

. = - 2 { }

Similarly, if r = 16n + 5,

P r +P r - a +P r - ,+P r - ,2 + &c. = 4 {Pn
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and in general, if

,..M+&o. = ( -2) '{P n +P n _ 2 +P n . 6 +P n _ H +&c.} .

As a particular case, putting n = 0, we see that, if a = J (4*—1),

-i2 + &c. = (-2) ' .

55. It has been shown in the two preceding articles that

is equal to zero, if n = 2 or 3, mod. 4, or = 4, mod. 8; and it follows,
therefore, from the theorem just proved, that it is also equal to zero, if

where c is any number == 2 or 3, mod. 4, or = 4, mod. 8 ; or, which
is the same thing, = 2, 3, 4, 6, or 7, mod. 8. For example, putting.
s = 1, and c = 2 or 3, mod. 4, we see that it is equal to zero when
n = 9 or 13, mod. 16.

We have found, therefore, that the expression

is equal to zero, if n = 2, 3, 4, 6, or 7, mod. 8; or if n = 2, 3, 4, 6, 7i
9, 10, 11,12,13, 14, or 15, mod. 1G; and so on. In other words, if
the expression does not vanish, n must nocessarily == 0, 1, or 5, mod.
8 ; or = 0, 1, 5, 8, mod. 16; and so on.

56. The class of functions to which 0 (») belongs possesses two
distinct kinds of properties, both of which are available for their
calculation. The one kind, depending upon the divisors of n, is
practically contained in the theorem

<P (pq) = * GO * (?)>

where p and q are relatively prime ; the other consists of the various
recurring formulra (such as those considered in §§ 33-44) in which
0 (n) is expressed as a finite series of <p's of arguments less than n, and
separated from n by numbers of special forms, such as squai'es, ponta-
gonal numbers, &c. Properties of the former kind depend, as it were,
on the arithmetical structure of the function <j> (?i), and cannot, so far
as I see, be directly derived from tho sorics in which tho functions
0 (n) appear as coefficients. On the other hand, tho recurring f ormulce
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connecting the values of 0 (n) are readily obtained by equating co-
efficients ; but the kind of consideration by which such a theorem as

0 in) = 0 (P) 0 (2)
is proved, appears to afford no clue to the discovery of these formulre,
nor to their demonstration when found. Amongst functions of this
class [i.e., which possess the property <p (pq) = 0 (p) <j> (2), and satisfy
also various recurring formulae] may be mentioned the functions E,
X, Ht <r, referred to in this paper, and £, X (JProc. Lond. Math. Soc,
Vol. xv., p. 109, and Quart. Journ., Vol. xx., p. 145).

Complex Multiplication Moduli of Elliptic Functions for the
Determinants — 53 and —61. By Professor G. B. MATHEWS.

[Head Dec. YLth, 1889.]

The following note contains the solution of two cases of complex
multiplication referred to by Mr. Greenhill in his papor on the sub-
ject (Proceedings, Vol. xix.) as being hitherto unsolved : viz., thoso in
which A = 53, 61, respectively.

As my results are merely supplementary to the paper just quoted,
and the method of procedure (which is essentially Hermite's) is there
sufficiently explained and illustrated (sec, for instance, pp. 326-328),
I have not thought it necessary to do more than give the actual
algobraical work.

Applying Hermite's method to the modular equation for n = 31,
the values of

2 n - p ' (P = l , 3 , 5 , 7)

are 61, 53, 37, 13.

We have to put K\ = w*, K'K' = 2tu>8,
and then in Russell's notation

P=sw+\/(l+i) w

Q =zw/(l + i)w+J(l+i) w+w,

R =


