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that every triad of its component points is & restricted triad (§ 90).
The points in such an extended linear set may be regarded as forming
a circuit. This circuit may be divided into two ordinary straight lines
in an infinite number of ways,

156. In the same way, in place of the set of points in ordinary
geometric space which compose a plane, ¢.e., which are such that every
tetrad of them is a flat tetrad (§150), in the extended geometric set
wo have an extended plane which is such that every tetrad of its
component points is a restricted tetrad.

157. And generally, in place of the set of points in flat space of
infinite dimensions which compose a flat space of n dimensions, i.e., are
-such that every (n+42)-ad of them is a flat (n+2)-ad, we have in
our extended geometric space & set of points composing a restricted
space of n dimensions, t.e., such that every (n+2)-ad of them is a
restricted (n+42)-ad.

158. It would carry me beyond the purpose of this paper to develop
further the consequences of thus regarding geometric space of any
‘dimensions as only a half of the morc complete and symmetrical space
derived by taking into acconut the obverses of points as well as the
points themselves. It seemed right, however, to call attention to the
fact that space could be so regarded, as such fact is plainly brought
out by the preceding results.

On the Square of BEuler’s Series.
By J. W. L. Guasuger, Se.D., F.R.S.
[Read June 13th, 1889.]

Introduction, §§ 1-3.

1, Few results in pure Mgebm are more curious than Ruler's
celebrated theorem that the cxpanded value of the infinite product

A=-9)(1-¢g"A—g»(A—gH) ...

1 _q_qa+qn+q7_q|s_q1s+ qii +g’°—&c.,
the general term being (—1)"ginen2n, The exponents are the

pentagonal numbers, and the signs of the terms, after the first, are
negative and positive in pairs.

is the series
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Euler discovered the law of the series by actually multiplying
together the factors 1—q, 1 —¢°, 1—¢° &c. He published his result
in 1750, and applied it to obtain various remarkable theorems relating
to partitions, sums of divisors, &c.* TFinally, in 1754, he succeeded
in demonstrating the equality of the product and the series.t

2. Among the numerous and wonderful algebraical identities that
sprang out from the analysis of Elliptic Functions as Jacobi developed
the subject in tho historic Fundamenta Nova, not only did the expanded
value of the Eulerian product present itself, but also a hitherto un-
suspected expression of its cubef. The series thus found by Jacobi
was

1—39+5¢°—7¢°+9¢*—119" +13¢" — &e.,

the general term being (—1)"(2rn+1) ¢""®*). The exponents are
the triangular numbers, and the terms are alternately positive and
negative.

We thus see that the cube of the Eulerian product

A-9A=-9HA=g) ...,
or of the Eulerian series 1—g—¢’+¢*+9'—&e.,
is the Jacobian series 1—3q+5¢° — 7¢° + &e.

3. The object of the present paper is to consider the law of the
coefficicnts in the series which is equal to the square of the Eulerian
product or series. - I had no hope that these cocfficients would follow
any simple law, as in the Bulerinn or Jacobian series; for, if such alaw
existed, it could not fail to have been discovered long ago byobservation.
Nevertheless, it scemed interesting to examine in some detail the
functions of #n which form the coeflicients of the powers of q.

It will be seen in the following articles that the coefficient of ¢"
depends upon a function of 12z+1, which is denoted by G (12241).
This function (in common with a great many functions connected with
the Theory of Numbers) possesses the property that, if p and r are
. relatively prime, @ (pr)=G (p) G (+r). We ave thus enabled to obtain

rules by mcans of which the value of G can be calculated with great
facility (§§9, 10). It is shown that the numerical value of the
“cocflicient of 3" can always be assigned by means of the real divisors
of 12241 (§13).

* Commentationes Avithmetice Collecte, Vol. 1., pp. 91, 151,

+ Ibid., Vol. 1., p. 234, Full reforonces to the subject of Eulor’s product are
given in n note to Art. 129 of H. J. S. Smith’s ¢‘ Report on the Theory of Numbers '
(Report of the British Association, 1865, p. 346). Sce also §§ 33, 34 of tho present
paper. )

1 Fundamenta Nova (1829), p. 185,
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In the latter part of the paper, various recurridg formulm, which are
available for the calculation of @, are investigated, Two other
functions E and H are also congidered (§§15 and 28).

Squaring the Series, §§ 4-7.
4. Let '

(1—g—g"+ ¢+ 9 —g"~¢"+&0.)' = 14 Prg+ Pog’ + Pig’+ Pog* + &c
Put ¢* for ¢, and multiply throughout by ¢*; we thus find
(g— =g+ ¢+ ¢ — g — g¥' + &e.)*
= ¢"+P,¢" + D1q" + Pyqg"* + P " + &c.

This equation shows that P, is equal to the number of compositions of
24242 as the sum of two squares both of which are of the form
(12r %= 1)* or of the form (12r & 5)*, diminished by the number of com-
positions in which one square is of one form and the other square of
the other form.

5. If a number be expressible as the sum of two uneven squares, it
must be = 2, mod. 8; and if we put
8n+2 = (2r+1)"+ (2s+1)’,
we have dn+1l = (r—s)’+ (r+s+1)%
in which one square is even and the other uneven.

It can also be shown that every composition of 8n+2 corresponds
to four representations of 4n+1.

6. By considering the scparate cases which arise in § 4, it will be
found that every composition of 24742 of either of the forms

(12r£1)*+ (125 £1)%, (127 5)'+ (12s £ 5)°
corresponds to four representations of 12141 of the form
(67)*+(Gs £ 1)?,
and that every composition of the form
(12r£1)*+ (125 £ 5)?
corresponds to four representations of the form
(6r £ 2)*+ (65 = 3)*

We are thus enabled to express the value of P, by meaus of the
representations of 12141, instead of by means of the compositions of
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24n+2; viz., we have found that 4P, is equal to the number of repre-
sentations of 12n+1 as & sum of two squares of the form

(6r)*+ (6s £ 1)*
diminished by the number of representations of the form
(6r £ 2)*+4 (65 £ 3)%.*

7. We therefore put
P, =G(12%+1),

where 4G (n) denotes the excess of the number of representations of »
of the form (67)*+ (6s+1)% over thosc of the form (6r+2)*+ (6s+3).
This excess may, of course, be negative.

We arc only concerned with the function G (n) for values of n
whicl are = 1, mod. 12, and in this case the representations of n as a
sum of two squares nro necessarily of the forms

(67)*+ (6s+1)* or (6r+2)*+(6s+3)%
In what follows, the argument of the function G will always be
suppored to be =1, mod. 12,

The Function G, §§ 8-14.

8. If p and q ave any two numbers =1, mod. 12, which are prime to

each other, then
G (pr) =G (p) G (7).

To prove this, resolve p and 7 in all possible ways into their conjugate
complex factors, so that :

p = (a,+3b)(a,—b,) = ("'2+":bz)(as_7:bz) = e
= (a,-f-il%) (ay=iBy) = (@ +if)(ag—1By) = ...
Let these cquations be written
PEPPI=PPI= o S P = Im = mm =L =,
TS = TS L S 0 = pipl = PPl = e = PaPy

where p, and pj, p, and p;, &c. are pairs of conjugate factors; and
Pu Doy oe s Pay Ty Ty .. 73 are of the form 6r+4(6s+1), and =, m, ... 7,
01y Py +ov y pp Of the form 6r 4247 (6s+3).

Thus G(p) =a—a, G(r)=0-4

Since p and r are prime to cach other, the resolutions of pr into pairs

* Wo may dispensc with tho doublo sign in (Gs1)3, (6r & 2)3, (Gs & 3)3, if we
admit ncgativo us well as positive values of tho integers » and s. This will bo
supposed to bo the case in future, and tho double sign will bo omitted throughout
the whole of tho subscquent portion of the paper.
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of conjugate complex factors will be of the four types
.pfp'r” PPPIPI, "T "I'rl, TF nlpl.

Now the preduct of two numbers of the form 67+ (6s+1), or of two
numbers of the form 6r+2+4 (6s+3), is of the form 67+ (6s+1); and
the product of two numbers of which one is of one form, and the other
of the other form, is of the form 674241 (6s+ 3).

Thus the numbers which are of the types pr and mp are of the form
6r+1 (6s+1), nnd those which are of the types pp, #r are of the form
6r+2+41 (65s4+3). Now the numbers of numbers of the forms pr, pp,
wr, mp are respectively ab, aB, ab, af3 ; therefore

G (pr) = ab—afB—ab+af
= (a—a)(b—B) = G (p) G().*

9. The valnes of G (#) for all values of » mny therefore be derived
by simple multiplication from the values of @ (n) for the cnses in
which n is a prime or a power of a prime. It is only necessary, there-
fore, to consider the valucs of G (n) for these values of .

The only possible factors of a number which is = 1, mod. 12, are
necessarily = 11, 7, 5, or 1, mod. 12. The cases in which = is a
prime, or a power of a prime, having onc of these forms will now be
examined.

(1) Values of G (a*) where aisa prime =11 or 7, mod. 12. Primes
of these forms have no complex factors. If  be uneven, G (a*) = 0;
for a* cannot be expressed as a sum of two squares. If a be even,

* It will bo observed that tho rcasoning in the text admits of a much moro goneral
application. For supposo that, connccted with n number P, wo have n sot of
quantities 2y, pa, ...y Pay My, My ... 7., and connected with & number R wo have a
similar set 7y, g, ... 75, py, Poy ... pa; nnd Buppose that the corresponding set, connected
with tho number 7’2, may be obtained by wmultiplying all the members of the P-sct
by thoso of the R-set. Suppose, further, that tho quantities denoted by the Italic
lottors belong to a class A, and that tho quantitios denoted by the Greck lotters bo-
long to a class B, and that tho product of two members of class A, or of class B, is
a member of class A, but that the product of ono member of class A and one member
of class B is a member of class B, Then, if

P(D) =phapie . AphE(r +mit b,
and OR) = ket b x (o),
it follows that ¢ (PR) = ¢ (P) ¢ (R).

The function & belongs to tho partienlar case of & = 0, the negative sign being
taken. As other examples of tho application of this reasoning may be mentioned
the function 5 (n) which expresses the cxcess of tho sum of the Ath powors of the
divisersof # which=1, mod. 4, ovor tho sum of tho At" powers of the divisors which
=3, mod. 4; and the function If; (#) which cxpresses tho sum of the &th powers of
tho divisors of # which = 1, mod. 3, over the sum of tho it powers of the divisors
which =2, mod. 3. The function £ (») and X (n) (§§ 15 and 28) are tho particular
casos corresponding to & = 0 of the functions Ej (v) and If; (n).
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@ (a*) = 1; for p* can be expressed as a sum of two squares in one way,
i.c., a8 0°+ (a*)®. This partition* is of the form (67)°+(6s+1)*; and
it gives rise to four representations ; therefore the value of @is +1.

(2) Values of @ (¥*) where b is a prime =5, mod. 12.

In this case the two conjugate complex factors of b are of the form
6r+2:17(6s+1). Thus G (b) = 0. The partitions of 3* as the sum
of two squares consist of 0*°+4b* and a single partition of the form
(6r+2)*+ (6s+3)". The former gives rise to four representations,
the latter to eight. Thus G (V*) =1—-2=—1.

¢ In counting the number of compositions of a number as a sum of squares, the
order of tho squares is to be takon into account. In counting tho representations,
the signs of the roots of the squares are to be taken into account as well. Ench
composition of. & number as a sum of # squarcs none of which is zero gives rise,
thercfore, to 2+ representations. 'When we are restricting ourselves to uneven squares,
it is convenient to consider compositions; but, when oven squares are admitted (in-
cluding zoro amoeng them), it is necessary to consider reprosentationsinstead. Thore
seems to be need of a word to express a partitioninent into squares without roforence
to their order or to the signs of their roots. For this purpose I have in other writings
used-the word resolution ; but in this paper I use the word pasrtition, which scems to
mo preferable. Thus, for example, tuking two squares, tho partition 1%+ 22 gives
rige to tho two compositions 12 + 2% and 2% + 12, and to the oight represontations

(+124(+2)% (=1F+(+2)5 (+1)2+(-2)% (—1)*+(-2)p
(F2F+(+1)% (=2)7+(+1) (+22+(=1)% (=27+(=1)%
the partition 1%+ 02 gives riso to two compositions, but to only four representations.
(The square 0% is treated in exactly tho same manner as any other squars, s far as
artitions or compositions are concerned; but, when representations are considered,
1t differs from all other squares in having one root insteud of two.)

It scoms to me convenient to regard these meanings of the words partition and
composition as of general application, whenever & number is to be partitioned into a
given number of the paits a, 8, 7, ... . Thus every distinct manner in which a
number # can be producod by tho addition of the parts a, 8, 7, ... i8 called & purtition
into theso parts. If, in addition, we take cognisanco of tho places occupied by the
purts, we use the word composition. Thus two partitions are idontical if tho parts
occurring in them aro the same; but for two compositions to be tho same, it is further
necessary that the.same part should occupy the same place. (We may, of course,
couisider partitions in which no limit is placed on the number of times that any part
may occur, or in which the same part may not occur twice, or in which any other
condition is imposed. When tho word partition is used without qualification, it is
understood that tho same part may occur any number of times.) ‘These definitions
of partitions and compositions do not conflict in.any respect with ordinary usago.

Partitions and compositions have reference solely to the magnitude of tho parts by
the addition of which the given number is produced. The word representation has
roforenco to a different kind of problem, i.e., to the number of possible solutions, in -
intogral numbers, of systems of equations. Partitions and compositions are con-
cerned only with tho wagnitudes of a, 8, 4 ..., not with their structure; the word
representation bas the tochnical meaning assigned to it by Gauss in the Theory of
Forms. Imay add that the nbove use of partition corresponds exactly to Gauss’s
definition of discerptio ; for hedistinguishes between discerptiones and reprecsentationes
as follows ;——¢¢ Discerptiones numerorum (ut formarum binariarum supra) in tria
quadruta n reproosentationibus per 22 +yy + 22 ita distinguimus, ut in illis ad solam
quadratorum magnitudinem, in his vero insuper ad ipsorum ordinem rudicumque
signa respiciumus, adcoque repracsentationes 2 =@, y =6, z=cetx = a’, y = &,
z = ¢’ pro diversis habeamus nisi simul @ = @', b = ¥, ¢ = ¢’; discerptiones nutem in
4@+ bb+ cc ot in &’a’ + 4’V + ¢’c’ pro una, sinullo ordinis respectu habito hee quadrata.

- illis mqualia suut *’ (Disg. Arith., § 292).
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In the case of b* there is no partition into two squares of the forms
considered. Thus G (b°*) = 0. For b* we have the partitions of &* each
multiplied by %%, and a new partition, which is of the form

(67)'+ (6s+1)%
Thus G =1-24+2=1.
Proceeding in this manner, we find that, if 8 be uneyen, G (4*) =0,
-and that, if 3 be even, @ (3*) = (—1)*.

(3) Values of G (c*) where ¢ is a prime =1, mod. 12.

The two conjugate complex factors of ¢ may be either of the form
6r & 7 (6s+1) or of the form 6r+24< (6s+3). Consider these two
-cases separately,

(i.) If ¢ be of the form (6r)'+ (6s+1)?% then
AG)=2 QD=3 G(")=4
and in general G(c") =y+1.
(ii.) If ¢ be of the form (674 2)°+ (6is+3)? then
Gl)=-2, G(MN =3, G()=—4,
and in general G (c) = (—1) (y+1).

10. Thus, on the whole, we find that, if .
12n41= araz .. bk ... eper... frfe,

where
@y, Qg ... &re primes = 11 or 7, mod. 12,
bn bﬂi e gy 9 = 5, mod. 12,
€ € ver 3 g = 1, - mod. 12, and of the form
(67)°+ (6s+1)%,
Jofo o » n = 1, mod. 12, and of the form
‘ (6742)*+ (6s+3)%,

then G(122+41) =0,

-unless a,, ay, ..., and B,, B, ..., are all even (including zero as aneven
number) ; and that, if these exponents are all even, then

G(12n+1) = (=1)asita s x (e, +1) (e +1) ...
X (=1t (A D+D)

For example,
P,= G(169)=G (13") =+3,
Py = ((265) =G (5.53) = @ (5) @(53) =0,
P,=G@20)=G(.13)=0((*)G(13) =—1x-2=+2,
Pp= ((949) = G (18.73) = G(13)G(73) = —2X —2 = +4.
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As a more complicated example, .we may take
G (11°.19°. 5*. 17¢.13'. 37 . 97°.109%),
which =—1x3x2x-4x5=+120.

Tho even powers of the primes 11 and 19 (which are =11 and 7,
mod. 12) producé no effect. The same is true of the evenly even
power of 17 (which = 5, mod. 12), but the unevenly even power of 5.
(which also =5, mod. 12) gives rise to the factor —1. The ounly
primes remaining are =1, mod. 12, The first two, 13 and 37, are of
the form (6r)*+ (6s+1)%; they give rise to the factors 3 and 2. The
last two are of the form (6r+ 2)’+(63+3)“, and give rise to the
factors ( 1)*4 and (— 1)‘ 5. :

11. Tt will be noticed that for a great many values of n the value
of I, will be zero; for this will happen whenever any of the prime
factors of 12241 which = 11 7, or 5, mod. 12, occur with uueveu
exponents.

1t is only in the case of prime factors which are =1, mod. 12, and
‘wlen these factors occur with uneven exponents, that we have to take
into consideration their complex factors, or, which is the same thing,
resolve them into the sum . of two squares. There is but one such
par tition for each prime, and upon its nature depends the sign which
is to be attributed to the factor to which it glves rise in the value
of G.

12. We may conveniently use the term character to distinguish
between the cases when the prime is of the form (67)?+ (6s+1)?% and.
when it is of the form (67+2)'+ (6s+3)% " In the former case the
character will be said to be posibive in the latter, negative.

Thus the character of a prime = 1, mod. 12, is positive or negative,
according as, when expressed as a sum of two squares, it is the even
or the uneven square which is divisible by 3, or, which is the same
thing, according as it is the cven or uneven term in the complex
factors of the prime which is divisible by 3.

We may also extend the idea of character to partitions, composi-
tions, or representations; which will be distinguished as positive or
negative, according as it is the even or the uneven square which is

divisible by 3.

13. It is singular that the determination of the magnitude of P,
should depend wholly on the real factors of 12x+1, and that it is
only for the sake of the sign that we have to attend to the complex
factors. Iiven for this purpose, it is only occasionally that recourse
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to the complex factors is necessary, and, when such is the case, it is
only the character of certain prime factors that has to be deter-

mined.

14. 1 give below a table of the values of the coefficient

for all non-zero values of #» up to » = 100. The values of the func-
tion F (12n+1), which forms the subject of §§15-18, are also

added.

TanLe I.—Values of P, = G (12n+1), and of E (12041), for all

Dr. J. W. L. Glaisher on

P, =G (12n+1),

* [June 13,

values of » for which P, 18 not zero from n = 1 to n = 100.

ot ot o
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26
27
28
29
3

31
33
34
35
36
38
40
44
45

12041 G({).é',; HE2+ D 2 12041 G({’é'": 1) E(125 +1)
13| - 2 48 | 8771 +2 2
25| -1 3 o0+ 601 +2 2
371 +2 2 511 613 +2 2
49 | +1 1 52| 625 | +1 5
611 +2 2 53| 637 | -—2 2
3| -2 2 55 601 | +2 2
97 | -2 2 56 | 673 +2 2

109 | —¢ 2 50 | 709 | -2 2
121 | +1 1 61| 733 | =2 2
157 | +2 2 63| 7571 -2 2
169 ) +3 3 64| 769 | +2 2
181 | —2 2 66| 793 | —4 4
193 +2 2 69 824 —2 2
220 | —2 2 70| 841§ —1 3
241 | -2 2 1| 83| +2 2
277 | ¢ 2 3| 877 +2 2
280 | —1 3 771 0251 -2 6
313 | +2 2 781 937 +2 2
325 +2 6 791 949 +4 4
337 | -2 2 801 961 | +1 1
349 [ +2 2 831 9971 +2 2

"361 | +1 1 84 | 1009 | —2 2
373 | +2 2 85| 1021 | +2 2
397 | +2 2 86 | 1083 | —2 2
409 | —2 2 890 | 1069 | +2 2
421 | -2 2 91 {1093 | —2 2
433 ] 4+ 2 93 | 1117 | -2 2
457 | -2 2 94 | 1129 | —~2 2
481 | —4 4 96 | 1163 | —2 2
529 | +1 "1 100 [ 1201 | 4-2 2
541 | -2 2
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The next table shows the character of all primes =1, mod. 12, up
to 12373. By its means we are able to write down at once (§ 10) the
values of P, as far as » = 1031, and, unless 12n 41 be prime, to a
vory much greater extent. The manner in which the table was
obtained is explained in §19.%

TapLe II.— Showing the positive or ncgative charactor of the
primes = 1, mod. 12, up to 12373,

13 — 997 + | 2017 — | 3169 + | 4297 + | 5689 —
37 + | 1009 — | 2020 — | 3181 — | 4357 + | 56701 —
61 + | 1021 4+ | 2003 + | 3217 — | 4441 + | 5737 —
73 — 1033 — | 2089 — | 8229 — | 45613 + 5749 —
97 — 1 1069 + | 2113 — | 3253 — [ 4549 + | 5821 —
109 — | 1093 — | 2137 + | 3301 + | 4601 + | 5857 —
157 4- | 1117 — | 2161 — | 3313 — | 4597 + | 5869 —
181 — | 1129 — | 2221 — | 3361 — | 4621 + | 5881 —
193 + | 1153 — | 2269 + | 3373 — | 4657 — | 59563 —
229 — | 1201 + | 2281 — | 3433 — | 4729 — | G037 +
241 — | 1213 — | 2293 4 | 3457 — | 4780 + | 6073 +
277 — | 1237 — | 2341 — | 3160 — | 4801 4+ | 6121 —
313 + | 1249 — | 2377 — | 3517 + | 4813 + | 6133 +
337 — | 1297 + | 2389 + | 3529 + | 4861 — | 6217 —
349 + | 1321 + | 2437 + | 3541 + | 4909 — | (6229 +
373 + | 1381 — | 2473 + | 3613 + | 4933 — | 6277 +
397 + | 1420 + | 2521 + | 3637 — [ 4957 — | (6301 —
409 — | 1453 — | 2557 — | 3673 4+ | 4969 + | 6337 +
421 — | 1489 — | 2595 + | 3697 + | 4993 — | 6361 —
433 + | 1549 + | 2617 — | 8700 + | 65077 + | 6373 +
457 — | 15697 — | 2677 — | 3733 — | 5101 — | 6397 +
541 — | 1609 — | 2689 — | 8769 + | 5113 4+ | 6421 —
577 + | 1621 — | 2713 — | 8793 — | 5197 + | 6469 —
GOl + | 1657 + | 2749 4+ | 3853 — | 5209 + | 6481 —
Gl3 + | 1669 — | 2797 — | 3877 + | 8233 + | 6529 4 °
661 + [ 1693 4+ | 2833 + | ©88Y + | 5281 + | 65563 +
673 + | 1741 + | 2857 — | 4021 — | 5413 — | 6577 —
709 — [ 1753 — | 2917 + | 4067 4+ | 5437 — | G637 +
733 — | 1777 — | 2953 + | 4093 — | 5449 + | 6661 —
767 — | 1789 + | 3001 — | 4129 + | 55621 + | 6673 —
769 + [ 1801 4 | 3037 + | 4153 + | 5557 — | 6709 +
820 — | 1861 + | 8049 — | 4177 — | 5560 — | 6733 —
853 + | 1873 — | 8061 + | 4201 — | 5581 + | 6781 —
877 + | 1933 + | 8109 + | 4261 + | 5641 — | 6793 +
937 + | 1993 + | 8121 — | 4273 — | 5653 + | 6829 +

* Barlow’s Tubles of 1814 contain tho complete resolulions of all numbers into
their prime factors up to 10,000, Chernac (Cribrum Arithmeticion, 1811) gives all
tho primo fuctors of numbers up to 1,020,000. The 1ables of Burckhardt, Daso,
and J. Gluisher givo tho least factors of numbers up to 9,000,000,



192 Dr. J. W. L. Glaisher on * [June 13,

6841— | 7681 + | 8581 + 9433 — | 10429 + | 11497 +
6949 — | 7717 — | 8629 + 9601 + | 10453 + | 11593 +
6961 — | 7741 — | 8641 + 9613 — | 10477 — | 11617 +

6997 — | 77563 — | 8677 — 9649 — | 10501 + | 11677 —
7057 + | 7789 + | 8680 — | 9661 — | 10513 + | 11689 +
7069 — | 7873 — | 8713 — 9697 — | 10597 + | 11701 —
7129 — | 7933 + | 8737 + 9721 — | 10657 — | 11821 +
7177 + | 7993 + | 8761 — 9733 + | 10729 — | 11833 +

7213 + | 8017 + | 8821 + 9769 — | 10753 + | 11941 +
7237 — | 8053 — | 88Y3 + 9761 + | 10789 + | 11953 +
7297 — | 8089 + | 8929 + 9817 — | 10837 + | 12037 —
7309 + | 8101 4 | 8941 + 9820 — [-10861 — | 12049 —

7321 + | 8161 — | 9001 — 9901 — | 10909 + | 12073 +
7333 — | 8209 + | 9013 — 9949 + | 10957 — | 12097 +
7369 + | 8221 + | 9049 — 9973 — | 10993 — | 12109 —

7393 + | 8233 + | 9109 + | 10009 —-| 11113 + | 12167 —
7417 + | 8269 + | 9133 — | 10069 — | 11149 — | 12241 4
7477 — | 8293 + | 9157 + | 10093 — | 11161 — | 12353 +
7489 — | 8317 + | 9181 + | 10141 + | 11173 + | 12277 +
7537 4+ | 8329 — | 9241 4+ | 10177 + | 11197 4+ | 12289 +
7549 + | 8353 — | 9277 — | 10273 — | 11257 — | 12301 —
7561 — | 8377 — | 0337 4+ | 10321 + | 11317 — | 12373 +
7573 — | 838Y + | 9349 4 | 10333 — | 11329 +
7621 — | 8461 4 | 9597 + | 10357 + { 11353 —
7669 — | 8521 + 1 9421 — 1-10369 — | 11437 —

Oonnexion with the Function B (n), §§ 15-18.

15. The function I7 (), which may be defined as the excess of the
number of divisors of x which sare = 1, mod. 4, over the number of
divisors which are =3, mod. 4, has Leen considered in Vol, xv.,
pp. 104-122% If n be uncven, If () is cqual to the number of
primary complex numbers having # as their norm ; and for all values
of n, 4I (n) is equal to the number of representations of u as a sum
of two squares. . .

Thus, when o =1, mod. 12, 41/ (z) is cqual to the sum of the
numbers of positivo and negative representations of u, while 4G (n)
is nmmerically equal to their difference. © When, therefore, all the

. compositions of « are of tho same charvactor, ¢ (n) is numerically
equal to 27 (). This will evidently be the caso when n is a prime,
and, as will be shown in the next article, it will happen also wheu-
cver o contnins no prime factor which = 4, mod. 12,

" % «QOn tho Function which denotes tho differenco between the numbor of -
(4m +1)-divisors, and the number of (4m +3)-divisors of a Number,”’ read
February 14th, 1884.
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The function F (n) satisfies the condition that, if p and » are prime
to each other, E (pr) = E (p) E (r); and, in general, if

— % 8118
n=a'a, ... b’ ...,

where - @y gy ... are primes = 3, mod. 4,

and by, by, oee » = 1, mod. 4,

then E (n) = O unless a,, a,, ... are all even (including zero as an even
number), and if these exponents are all even,

E(n) = (B+1)(B:+1)....

16. In the calculation, therefore, of F and G, in cases in which they
do not both vanish, prime factors which are = 11 or 7, mod. 12, give
rise to the factor unity, that is to say, they produce no effect; prime
factors which are = 1, mod. 12, give rise to the same factors in E and
G, though they may differ in sign. But in the case of prime factors
which are = 5, mod. 12, there is a difference of numerical value; for,
if b be a prime of this form, the factor b occurring in » gives rise to
the factor 8+1 in E, but in G'it gives rise to the factors —1 or 0,
according as 3 is even or uneven.

Thus (supposing =z, as always, to be =1, mod. 12) the numerical
values of G (n) and E (n) are the same whenever n contains no prime
factor = 5, mod. 12. If any such factor occurs raised to an uneven
power, it reduces G to zero; if raised to an even power, it merely
produces a change of sign. In E,it gives rise in each case to a finite
factor greater than unity.

The greater number of zero values of G (n) than of E (a) is due to
the presence of uneven powers of primes = 5, mod. 12; viz., any one
of the factors 5, 5%, 5%, ...,17, 17, ... 29, 293, ... &c. reduces G to zero.
For non-vanishing values of G (n), we have seen that the only case
in which a difference of numerical value occurs is when these factors
present themselves with even exponents, and if by, b,, ... denote the

prime factors of this form,and §3,, B, ... are their exponents (supposed
to be all even), then

L EM
0= EInE .

17. In Table I. (p. 190) the values of F (n) wero given in an addi-
tional column for the sake of comparison. Within the limits of that

table there are seventeen arguments for which E remains finite while
VOL. XXI.—N0. 382. 0



194 Dr. J. W. L. Glaisher on [June 18,

@ voanishes. These are—

85= 517, 505= 5101, 901 = 17-53,
145 = 529, 565= 5113, 985 = 5197,
205 = 541, 685= 51387, 1105= 51317,
265 = 553, 097 =1741,  1165= 5283,
445 = 589, 745= 5149, 1189 = 29-41.
493 =1729, 865 = 5173,

For the argument 1105 the value of I/ is 8; in all the other cases it
is 4.*

There are six cascs in which G docs not vanish, but in which its
numerical value differs from E. These are—

Valuo of @. Value of E.
25 = &3, -1, 3,
289 = 173, -1, 3,
325 = 5%.13, 2, 0,
625 = 54, ‘ 1, 5,
841 = 29%, -1, 3,
925 = 5%, 37, -2, 6.

Tt will be noticed that the corresponding values of G and I are con-
nected by tho relation given at the end of the preceding article.

18. Tho values of @ (%), in Tabloe I., were originally calculated by
finding the partitions of 24n+ 2 into two unevon squares (§ 4), before
I had obtained the method described in §§ 6-10. Tho corresponding
values of I (n) woro taken from the paper in Vol. xv. of the
Proccedings, already cited in the note to §15. The table of E (n)
contained in that paper gives the values of E (u) for all values of »
up to # = 1000 for which I (») does not vanish.t ‘

The Function x (n), §19.
19. In Vol. xx. (1884) of the Quarterly Journal} I have considered

* It is evident that, when @ vanishes and E docs not, the value of & must
necessarily be an evenly even number, for there must be an equal number of posi-
tive and negative compositions, cach of which counts in E as +2.

+ The definition of E (n) applics to all positive integral values of n. The defini-
tion of @ (n) only applies to numbers = 1, mod. 12.

1 ¢ On the Function x (1),’’ pp. 97-167.
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the function x (n), which is defined as the sum of the primary num-
bers having n as their norm.

If # be a prime = 1, mod. 12, then either
n = (6r+1)"+6s
or n = (6r+3)'+ (6s+2)%
In the former cage the value of x (n) is

(=1)%+2 {127 42),
and in the latter (—1)*9 (127 46).

Therefore, when the character of a prime is positive, x (#) is not
divisible by 3; and when the character.is negative, y (n) is divisible
by 3. .

In the paper on x (#) to which reference has just been made, I
have given a table of the values of x (n) for all primes =1, mod. 4,
up to = 12377. Table II. was derived from this table by selecting
from it the primes =1, mod. 12, and affixing the sign — or +
according as x (») was, or was not, divisible by 3.

Analytical Formulse connected with the Functions E and @, §§ 20-27.

20. It can be shown by elliptic functions that, if # denote any
number (and therefore 2z any even number), and m any uneven
number,

(3L P =11 E@m ¢,
3o @M X3, ¢ =23 E (4n+1) g™,
{ETQ qm’}i - 423’ E (4’n+1) q8n+2.
The second formula shows that the number of represcntations of
4n+1 as the sum of an even and an uneven square is equal to
4F (4n+1), and the third formula shows that the number of ropre-
sentations of 8242 as a sum of two uncven squares is also cqual to
4F (4n+1). It follows, therefore, that if n = 1, mod. 4, the number
of representations of 2n ag a sum of two squares is equal to the
number of representations of n as a sum of two squmares.- This

theorem, of which it is easy to give an arithmetical proof, has been
referred to in § 5. o

21. Evidently (6r+1)°+(6s)) =1, mod. 12,
(6r+3)*+(65+2)* =1, mod. 12,
(6r+1)*+ (65+2)* = 5, mod. 12,
(6743)*+ (65)? . =9, mod. 36.
(o}
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By separating the terms whose exponents are =1 from those which
are = 5, mod. 12, in the second formula of the preceding article, we
obtain the following results :—

320 qUr X 32, 4 32, gEn I X 32, gCr4D = 35 B (120+1) ¢,
37, ¢ X 5T, g = 457 B (12045) g+,

We find also
37, g X E", g = 7 I (36n+9) ¢

but this formula is equivalent to the original eq-ua,tion, for, by
replacing ¢ by g3, it becomes

2’_’0 q(Znﬂ)- % sz q(2n)- =2 E: B (36n+9) q(nﬂ.
It is easy to see that, for all values of #,
B (36n+9) = F (du+1);

for, if the highest power of 3 which occurs in 4n+1 as a factor be
uneven, & vanishes for both arguments, and if the highest power is
even, = 3% (including the case a = 0), then

E@n+l)=FE {8 4r+1)} = E(3) E (4r+1) = F (4r+1);
and, similarly, '
E (36n+9) = B {3*7 (4r+1)} = E (4r+1).
22. Treating in the same manner the third formula of § 20, by
means of the congruences
(6r+1)'+(6s+1)* =2, mod. 24,
(6r+1)*+(6543)? = 10, mod. 24,
(6r+3)'+ (65s+3)* = 18, mod. 36,
we obtain the formule
{320 g1} = 35 E (1204 1) g2,
3. g X 32, @O+ = 35 B (1204 5) g,
We find also
{27, g5} = 435 B (36n+9) ¢,

which is, however, only a repetition of the original formula,
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23. It is worth while to notice the identical relations to which. the
formulm in the two preceding articles give rise, viz,,

2’;‘” q(Gu-H)’ X 2“_"” q(ﬁu)'_l_z"-’w q(61043)’ X 2“_"“ q(ﬂu+2)' —_ {2";‘” qi(ﬂnél)'}!,
2‘:,, q(mnl)' X 2:5 q(enn)- — %ztm qi(ﬂnﬂ)' X 2«_’@ ql(cnd)'.
The original formulw in § 20 give rise to the identity
b q(2n+l)" x3° g(zn)- = {Eu_’., qmnu)ﬂ}a’

from which, of course, the two preceding identities might be directly
obtained by the method employed in the two preceding articles.

24. Passing now to the function @, we have, from § 4,
{2‘:’@ (__1)nq(en+l)'}9 — 2;’ Q (12,3_*_ 1) qunn’-
_ and from § 5 it follows that
E‘_’m q(enﬂ)- x 22@ q(en)-_zﬂjm q(6u+8)n X E?w q(smﬂ)- - 2: G (12n+ 1) qlzru-l.
These formule correspond to

{22, """} =37 E(12n+1) g+
and )

E‘:a q(cnol)' X E":m q(en)’_}_z“.’m q(GlHS)'x 2“:“ q(8n+2)‘ — 2‘: ¥ (12n+1) ql2n+l’
which were given in §§ 22 and 21.

25. Combining, by addition' and subtraction, the first and third
formulm, we find

{32, g" P {32, P = 150 { B (120 +1) + G (1204 1) } g***
Ec:co q(lzn+1)- X E*:m qazmw — ;}E: {E’ (12n+1)—G (12n+1)} q?¢n+’.

These equations express the theorems:

(i.) The number of compositions of a number p (necessarily =2,
mod. 24) as the sum of two squarcs, which are both of the form
(12 +1)% or both of the form (12rn+-5)% is equal to

H{EW+e®}

(ii.) The number of compositions of a number p (necessarily =2,
mod. 24) as the sum of two squares, of which onc is of the form
- (12n+1)? and the other of the form (12n+ 5)? is equal to

1H{E ()4 ()}
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26. Combining in the same manner the secoﬁd and foarth formule
of §24, we find
32, g x 32, ¢ =157 {F(12n+1)+ G (122+1)} g™+,
30, X ST, g0 =157 (B (1204+1)— G (120+1) } ™,
which express the theorems:

(i.) The number of representations of a number p (necessarily =1,
mod. 12) by the form (6r+1)*+ (6s)?® is equal to

2{B(p)+6G(n)}

(ii.) The number of representations of o number p (necessarily =1,
mod. 12) by tho form (6r+3)*+ (6s+2)* is equal to

2{E(p)—G(p)}*

27. It will be noticed that the formulm in the last two articles lead
to the identities
Etm q(Glu-l)’ X zvfmrq(s..)! — {E?w q;(mul)!}e + {sz q}(lznq-s)’}s,

2?0 q(6u+3)’ X Et’m q(6n+2)’ o 22_‘” qi(12u+l)’ X 2"2” q; (12u+5)’.

The Function H (n), §§ 28, 29.

28. It can be shown by the Theory of Numbers that the number of
representations of any uneven number m by the form '+ 3y* is equal
to four times the excess of the number of divisors of m which =1,
mod. 3, over the number of divisors which = 2, mod. 3.

Let H (n) denote the excess of the number of divisors of # which
=1, mod. 3, over those which = 2, mod. 3.

If an uncven number be represented by the form z'+ 3y’ either @
or y must be even and the other uneven ; observing that

(2r+1)*+3 (25)’=1, mod. 4,
(2r)*+38 (2s+1)?=3, mod. 4,
we thus obtain the analytical theorems,
3%, ¢ X 30, ¢ = 955 H (4n+1) ¢,
3. ¢ x 32, " = 255 H (4n+3) ¢,

where # denotes any number, and m any uneven number.

*In (13 the number p is cxpressed as & sum of two squares, of which the even
squnre is divisible by 3, and tho unevon square is not; in (ii.) p is expressed as a
sum of two squares, of which the uneven square is divisible by 3, and the even
square is not.



1889.] the Square of Euler’s Series. 199

Taking the first formula, since
(6r4+1)’+3 (25)* =1, mod. 12,
(67+3)*+38 (25)! = 9, mod. 12,
we find, by similar reasoning to that employed in §21,
3 g x 37, ¢ =37 H(12n+1) g™+

29. The function H (n) possesses the property that, if p and g are
prime to each other,

H (pg) = H (p) H ()

This may be proved by exactly the same methods as in the case of the
corresponding theorem

E(p)=E(p) E(9);
i.e., analytically, asin Proc. Lond. Math. Soc., Vol. xv., pp. 104, 105, or
by genceral reasoning, as in the note to § 8 of the present paper.

The former method shows that H (n) vanishes unless every prime
divisor of » which =2, mod. 3, is raised to an even power, and that if,
in general, n = 3"uv?, where all the prime factors of » are =1, mod. 2,
and all the prime factors of v are = 2, mod. 3, then

H (n) = H (u) = v (u),

v (u) denoting the number of divisors of u.

The Functions G, E, H, §§ 30-32.

30. Wo may obtain an equation similarin form to the last equation
in §28, but in which @ is involved instcad of H, by the following

method. ] . '
37 P.q" =1 (1—¢")°

=17 (1= 11 (175)

= 2’;@ (_l)n qu(:hnl) X zﬂjw (_1),, q,.n.
Putting ¢ for g, this equation becomes
. 2;, P"qlzn — 2’:0 (_l)n quu (:_|u+l) X 2:, (_l)n qm,.-;

whence, replacing P, by G (122+1), and multiplying throughout by
g, we find

2':., (_l)n q(auol') X 2‘_"“ (_l)n qlzn‘ — z:: (_l)n (2] (1213-}- 1) qmul'
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81. It was found, in §§ 22 and 24, that
{3%.¢" "} =3 B (12n+1) ¢,
{3°, (=1)rg® "} = 35 G (120+1) g,
and, in §§ 28 and 30, that
37, O % 37, ¢ =35 H (12n+1) ¢,
3o (mL)ngeeV x 32, (~1) ¢ =3 G (12n+1) g,
Writing these formulm at full length, they become
E(1) ¢'+E (18) ¢*+E (25) ¢+ B (37) ¢"*+&o.
= (g+¢°+¢°+¢"+¢"+ &.),
§(1) ¢+ (13) ¢*+ G (25) ¢+ G (37) g"+ be.

—_— (q_qﬂﬁ_q19+ql21+9159_&c‘)3’
and

H(1) g+ H (13) ¢+ H (25) ¢*+ H (37) ¢" + &e.
— (q+q1ﬂ+q49+q'lﬂ+q189+&°‘)(1 +.2q'li+2qﬂ+ 2q108+2q10!+ &c.)’

G (1) g+ G (18) ¢+ G (25) ¢*+ G (37) ¢ + &e. _
= (q_qﬂ_qﬂ_’_qﬂl+q189_&c')(1_2912+2q4s_2q1oa+2q1g,_&c').

" The first pair of formuls show that G (12n+1) must vanish when
F (12n+1) vanishes ; for 4F (12rn+1) is equal to the total number of
representations of 12n+1 as a sum of two squares neither of which is
divisible by 3, so that, when E (12n+1) vanishes, 12n+1 does not
admit of being so expressed.

Similarly, from the second pair of formulm we see that G (12n+1)
must vanish when H (12n+1) vanishes; for 4H (12rn+1) is equal to
the total number of representations of 12n+1 as the sum of an uneven
square not divisible by 3 and of the triple of an even square.

Now E (n) vanishes unlessall the prime factors of » which are =3,
mod. 4, are raised to even powers; and H (n) vanishes unless all the
prime factors of » which are = 2, mod. 8, are raised to even powers.

Thus either E (n) or H (n) vanishes (or both vanish) unless all the
prime factors of » which are = 3, 5, 7, or 11, mod. 12, are raised to
even powers. It follows, therefore, that G (1224 1) vanishes, unless
all the prime factors of 12n4-1 which are =3, 5, 7, or 11, mod. 12,
are raised to even powers. This result is included in the arith-
metical investigation of § 9.
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32. Five years ago (in 1884) I found, by the analytical process of’

the preceding article, that P, was always zero uunless all the prime
factors of 122+ 1 which were =3, 5, 7, or 11, mod. 12, were raised to
even powers. The process did not show, however, that it might not
happen that P, should vanish, even when this condition was satisfied,
and I did not then attempt an arithmetical investigation. It appears
from § 9, however, that P, can never vanish when all the prime factors
of the above forms occur with even exponents. I have thought the
results contained in the four preceding articles worth giving, partly
because of the analytical proof which we thus obtain of the theorem
that P, vanishes unless the prime factors of 12n+1 which are of a
certain form oceur with even exponents, and partly for the sake of
introducing the function H, which belongs to the same class of
coefficients as F and G.

Linear relations connecting the values of P,, §§ 33-44.
33. When Euler had obtained the formula

(A—-9)(1-gH(A—¢") ... =1—g—g'+¢*+¢—&c,

he applied it in the following manner to obtain results connected with
the Theory of Numbers :—

(i.) If P (n) denote the number of partitions of the number = into
the parts 1, 2, 3, ..., repetitions not excluded, we have

1 _ \ ;
A—0—-)A—g) .. 14+P (1) g+P(2) ¢'+P (3) ¢"+ &e.,

whence it follows that ,
{1+P (1) g+P (2)P+P(3) ¢*+&e.} {l—g—q'+¢*+¢ —&e.} = 1.
Equating the coefficients of ¢”, we find, for all values of =,
P(n)—P(n—1)—P (n—2)+P (n—5)+P (n—T)—&e. = 0,

the series being continued so long as the arguments remain positive.*
The valne of P (0), when it occurs, is supposed to be unity.

(ii.) By taking logarithms and differentiating, we deduce from
Euler's series the equation :

o .q 2q° 3¢ & _ q+2¢"—5¢"—74 + &c.
1—q+ q+1 p &0 = 1—g— q+q;i-q——&c

* Commentationes Arithmetice Collscte, Vol. 1., p. 91.
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Denoting by o (n) the sum of the divisors of =, this equation may
be written

{eM gt @) g+ (@) g'+&e} {l~g—¢'+¢'+g—&e.}
=q+2¢"—5¢"—7¢"+ &c.;
whence, by equating coefficients, we obtain the relation
o(n)—o(n—1)—0c (n—2)+oc (n—"5)+c (n—7)—&c. = 0,*
if we adopt the convention that o (0), <.e., o (n —n), when it occurs, is
to have assigned to it the value .
34. It may be remarked that, by writing the equation obtained in
the preceding section in the form
q+2¢'—5¢"—7q" + &e.
(1-9)(1-g)1=¢") ...
we find, by equating the coefficients of ¢" on each side,
P(n—1)42P (n—2)—5P (n—5)—7P (n—7) + &c. = o (n).1

This result, combined with Euler’s second theorem, shows that the
values of

o (n—1)+0o(n—2)~0c (n—5)—0 (n—7)+&c.
P (n—1)42P (n—2)—5P (n—5)—7P (n—7) + &e.

are equal.

=oc(1)g+c(2) q’-{-cr (3) q"‘+&c.,

and

35. We may apply Euler's second method to deduce from Jacobi's

formula,

{A-9)A-g)(A—g¢)...}* =1-8¢+5¢8"—7¢"+9¢"°—&c.,
a corresponding property of the function o (n).
For we thus find
l—q TL + —L +é& lquq{-;;‘fgg%?gqo:&;c ‘
from which, by equating coeﬂiclents, we have
o (n)—3¢ (n—1) + 50 (n—38)—7¢ (n—6) + 90 (1 —=10) —&c. = 0,
if we agssign to o (0), i.e. to o (n—n), the meaning in.

® Ibid., pp. 161-164.

t Messenger of Mathematics, Vol. xir., p. 170. This paper also contains other
theorems connecting partitions and sums of divisors.

1 Quarterly Journal, Vol. xix,, p. 220. Itiseo obvious, however, that Euler's
method is exactly apphcnble to Jacobi's formula, that the result must have been
noticed before. See also Proc. Camb. Phil. Soc., Vol. v., p. 109.
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36. Passing now to the formula
{—9Q-HA—¢)...}' = 14+ Pg+ Py + Py + &c.,

I proceed to consider the properties of the coefficient P, that can be
obtained by methods of a similar character to those employed in the
three preceding sections.

(i.) Applying Euler’s first process (§ 33), we have
{14 P,g+Pyg’+ Pyg*+ &c.} {1+ P (1) g+ P (2) ¢*+ P (8) ¢*+ &o.}
=1—g—g'+g°+q'—&c.;
whence it follows that :
P+PQ1)P,y+P (2)Pyst...+P (n=1) P(1)+P (n)
=0 or (-1),
according as » is not of the form 1r (3rx1), or isequal to i» (3r£1).

(ii.) Applying Euler’s second method, we have

2{_q_+£g’_ +_§g:_ +&c.}=— P,q+2P,q’+3Pagf+&c._,
l1—¢g 1—¢ "1-¢ 14+P g+ P,¢*+ Pyqg* + &e.

which gives the relation
—inP, =0 (1) Pasy+0 (2) Pus+...+0 (s—1) P+ (n).

87. Since
{1+P (1) g+P ()¢ +P (8) ¢ +&c.} {1—-8¢+59"—7g*+ 99" — &e. }
B = 14 P,g+P,¢*+Pyg* + &c.,
and {1+P,q+P,q‘+PBq°+&c.} {1-—q-—q’+q5+q7—&c.}
= 1-3q+5¢°~ 7¢°+9¢"°— &c.,
we find, by equating coefficients,
P(n)—8P(n—1)+5P (n—3)—7P (n—6) +&o. = P,
and P,—P,,—P,;+P, s+ P, ,—&o.
=0 or (—=1)"(2r+1),

according as # is not of the form ir (r+1), or is equal to 37 (r+1).
The value of P, is supposed to be unity.

38. Since
(A—=g—¢'+q*+¢'— &e.)* = 1—-3¢+5¢’—79°+ 99" — &e.,
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we find, by differentiating,
(1+Pig+ Pyg'+ Pyg+ &e.) (9 +2¢'—5¢°— 79" + &o.)
= g—5¢°+14¢°—309" + &o.

whence, by equating coefficients,

P,,+2P, ,—5P, y—7P,+&. =0 or (-1)'-!’(7“)62’“),

according a8 % is not of the form §r (r+1), or is equal to 4r (r+1).¥

In §§ 34, 35, and 36, three fractional formule have been obtained
for the series 27 o (n) ¢". We do not obtain new formulm by equating
these fractional expressions. Tor example, from §§ 35 and 36 we
have

—1 (P,g+2P,g* +3Psg*+ &c.) (1 —q—g* +¢* +q'— &e.)
= q—5¢"+149°—304"+ &ec.,
giving
wP,—(n=1)P,.,—(n—2) P34+ (n=5) P,.;+ (n—T) P,_;—&e.
=0 or (_ 1)" M’%gﬂ ,

according as n is not of the form ir (r+1), or is equal to 3= (r-+1).

This formula, however, is easily deducible from the expressions
for P,_.,+2P,_;—5P, ;—&c., and P,—P,_,—P,.,— &c., which have
been already obtained.

In the six following articles, various formulw involving the func-
tions P,, and connecting them with other functions, are obtained by
equating coefficients,

39. From § 30 we have
14 P, g+ Pyg* + Pyg* + &e.
= (1—¢'—q'+¢"+¢"— &e.) (1 ~ 29 +24' - 29" + 29" —&c.),
whence

1+ Pyq+P,g+ Pygit do. _ 1-29+2" =2 +29"—&e.
1-Pg+Pg?—Pyg*+&c.  1+2¢+2¢'+2¢°+2¢"+ &e.

® In the case of the function P (n), we bave the theorsm
P(n=1)+2P(n—2)~6P(n—56)—TP(n—17) + &c. = o (n),
which, however, only holds good when n is uneven (Meszenger, Vol. x11,, p. 170).
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Multiplying up and equating the coefficients of ¢°, we find that, if n

be any uneven number,

P+ 2P, +2P, (+2P, o+ 2P, o+ &0. = 0.%

40. By multiplying the first equation in the preceding article by
1—-¢)(1-¢)(A—g")..., we have

(1+P,g+Pyg'+ Pag’+ &0 ) (1 ¢~ ¢* +¢"+¢"~&e.)
= (1+P,¢*+P,q*+ Pyg°+ &c.) (1 — 29 + 2¢*— 2¢°+ 2¢" — &c.) ;
whence, by equating coefficients, we find, for all values of n,
Po— Popog—Popot+ Pay 1o+ Pog -u—&e.
= P,+2P, 4+2P,s+2P,_ s+ &ec.,

and  Pn—Pp.g—Pocet Pt Poci— .

= —2P,—2P,_(—2P,_,—2P,_y—&o.,
where, in the second formula, m denotes 2xn+1.

In the right-hand member of the first formula the suffix in the
general term is n—27%, and in the second formula it is n—27'—2r,

41. If we denote by @ (») the number of partitions of = into the
elements 1, 2, 3,... in which no part is repeated in the same partition,
8o that ' .

A+ +¢)A+9)... ‘
v =1+Q (M) g+ () '+Q () ¢'+Q (4) ¢'+ée,
then we have '
(A +Pig+P,g'+ Pyg’ + &0.)(1—¢g*— g+ ¢+ ¢ —&o.)
= {1+Q(1)g+Q(2)g*+ Q(8) ¢*+ &c.) } (1 -3¢+ 58 —7¢°+ 9g"°— &e.) ;
whence, by equating coefficients,
P,—P, ;—P, ¢+ P15+ Puor— &e.
= Q(n)—3Q (n—1)+5Q (n—3)~7Q (n—6) + &c.,
for all values of = ; the vp.]ue‘of Q (0) being supposed to be unity. .

¢ Similar formul® relating to the functions x, B, and o are givenin the Quarterly
Journal, Vol. xx., pp. 120, 121. A formula of the same kind for H is given
in § 48,
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By combining this result with those of the preceding article, we
see that
P21|—P2n-2_P2n—t+P21|-10+P2n-ll— &c')

P,+2P, 3 +2P, s+2P,_15+2P, 5 +&e,
Q (2n)—3Q (2n—1)+5Q (2n—3) —7Q (2n—6) + &e.
are all three equal ; and that
P,—P,2—=Pn_ s+ Po-rot Pm-nu—&e.,
—2P,—-2P,_—2P,.3—2P, 54— 2P,_,—&c.,
Q(m)—3Q(m—1)+5Q (m—3)—7Q (m—6) + &e.,

where m =21+ 1, are all three equal.

42, From the equation
(14 P,g+P,¢*+ Py + &) (L + g+ ¢+ ¢ + ¢+ &c.)
= (1+Pyg'+ Pyg*+ Pyg*+ &e.) (1 =g —¢*+ ¢’ +9'— &c.)
we may deduce the formulw
Pyt Pypr+ Poyos+ Piyg+ &ic.
=P,—~P,.,.—P, ¢+ P,.u+P,.3—P..n—&c.
and P,+Pn.1+Pus+Pn,.ot+&ec.
=—=P,+P, 3+ P, 3— P, 1—P,_yy+ P,_s5+&c.,

where n = 2n+1.

The numbers 1, 6, 11, ... which occur in the first formula are the
halves of the even pentagonal numbers. The corresponding numbers
2, 3, 7, ... in the second formula are the halves of the uneven penta-
gonal numbers diminished by unity.

Similarly, from the equation
{1+Q (1) ¢+ Q (2) £+ Q (3) ¢+ &o.} (1—3¢* +5¢° —7g"*+ 99" — &eo.)
= (1+P, "+ Pyq*+ Pyg® + &c.) 1 + g +¢* +¢°+ ¢ + &c.),
we find
Q (23)—3Q (2n—2) +5Q (20—6)—7Q (2n—12) + &e.
= Py+ Py 3+ Pyst Poset PucstPoogs+ &c.
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and Q(m)—3Q (m—2)+5Q (m—6)—7Q (m—12)+ &e.
=P+ P+ Pyt Poyot Poonn+ Pop+ &0,

‘where m = 2n+1.

The numbers 3, 5, 14, ... which occur in the first formula are the
halves of the even triangular numbers. The corresponding numbers
1,7,10,... in the second formula are the halves of the uneven
triangular numbers diminished by unity.

43. It can be shown that
A+Pg+ P+ Py +&c) {14+ P (1) ¢*+ P (2) ¢*+ P (3) ¢*+ &e.}

= 1—29+2¢*—2¢°+2¢"— &eo.,
and

(A+P,¢*+Pyg*+ Pyg®+ &e.) {14+ P (1) ¢+ P (2) ¢+ P (3) ¢*+ &o. }
=1+g9+¢"+¢"+¢"+&e. _
By equating the coefficients of ¢" in these equations, we find that
P,+P(1)P,.,+P(2) Pooy+ P (3) Pogt&e. =0, +2, or—2,

according as % is not a square, is an even square, Oor is an uneven.
square; and that

P (1) +P,P (n—2)+P,P (n—4) + P,P (n—6) +&c. = 0 or 1,

according as % is8 not, or is, a triangular number.*

44. We havo also the formula
(A+P,q+ Py’ + Pyg*+ &c.) (1 + P, + P,g* + Py g°+ &ec.)
=14+x(5) ¢+x (9) ¢ +x (13) "+ &e,,
where x () is the function considered in § 19.

By equating coefficients, we find
P1|+P1P15—2+P2Pn-4+PaPn-ﬂ+&c' = x (4n+1)-

¢ The value of the exprossion _
P+ P(1) Py + P (2) Ppagt vu + P(n=1) P+ P
was given in § 36.
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Elliptic Function Ezpressions for Series involving the Function G,
§§ 45-47.

45. Denoting 2K by p, we have, in Elliptic Functions, the following
T

formule giving the values of the series which have been principally
-considered in this paper :—

BE ot = 2bgh (1—g*—g*+ "+ g —&e.),
KEipt = 28gt (14 P,g* + Pyg* + Py g’ + &e.),
Kot = 2¢t (1—8¢° +5¢°—7¢" + 9" —&c.).
These formul® may be also written
Wil = 2 (g—gli—g"+ g% + ¥ &),
Bilp =2t (¢ +Pg¥ + Pyg¥+ Pyg¥ + &c.),
Kot = 2 (gt —8g 4 5¢™ —7¢% 4+ 9¢% —&e.) ; -

-or, by expressing only the general term of the series and using .

G(121n+1) in place of P, in the second formula,
kiktp =2ty ( : )9“"",

‘m
Bty = 2137 G (12n4-1) gty
ne o [—1 m?
kyk¥pr = 23 (g)mq‘ v
where n represents any number, and m any uneven number. The
. 3 =1\ )
.coefficients (;) and (F) are Legendre’s symbols (as extended

by Jacobi) exproessing the quadratic character of 3 and of —1 with
~1\ _ (—1)itm-n
respect to m, so that (W) =(-1) .

46. By substituting in this group of formulw ¢%, ¢} and —g} for g,
we obtain also the following groups :—

At b — otyge (8 ) ime
HEmpt =25 (m)q !
Bty = 2030 G (120+41) g0+,

kKot = 4327 (_Ez_l.) mg™*;
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kb gtpt = 2837 ( ~ ) gt

k*k"p = 2.* 2;' qQ (12n+1) qﬁ(uuu),
1 t —ots® -1 {m' .
KEe 2 ( m ) !

R ph = 94 3 (% ) gt

2] k'iP =237 (—-1)* G(12n+1) ghomen,

Bitpt =23y (m )mqw

The symbol ( ) is equal to (— l)“"‘ -Dedin*=h  The gymbols ( 1—3—)

and (% ) are supposed to be zero whenever m is not prime to 3 or
6 respectively. _

It may be remarked that (-7% ) = (—1)*"”": Y, where in the exponent
" that sign is to be taken which makes m=1 divisible by 6; m being

supposed not to be a multiple of 3, as in that case (%) is zero.

Thus, also, . (ﬁ) = (_3~ ) (.% ) = (_.1)#(".*1)»5'(:"--1).

\m m m

47. The following formule may also bo added :i—
| H(3K)=383 ( ) ¢,
0 (3K) =38 30 G(12n+1)ghMnen,
H*(3K) =83 ( )mqg...-,

where the function H is the same a8 in the Fundamenta Nova.

Linear Relations involving H (n), and connecting H (n) and E (n),
§§ 48, 49

48. We may obtain various formule, of the kind considered in

§§ 8344, relating to the function H (n) which was defined in §28
VOL. XXI.—No. 383. P
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as the excess of the number of divisors of # which = 1, mod. 3, over
those which = 2, mod. 3. We obtain also, by the same methods,
relations involving both H (n) and I ().

From § 28,
2”’ qm" X 2 ql'«‘u' — 22;’ H(4n+1) qlnql,
21_’,. qdm X Eﬂ;m q:lm‘ . 22: 11'(471_*_3) q4n+s,

where % and m denote, as before, any number and any uneven number
respectively.

From these formnln we may deduce

H)+I () @+ (A7) g +&e. . _ 142"+ 205+ 20+ &o.

H(5)q+10 (13) 4 10(21) ¢ ¥ &o. g F27 52+ &o.

OB+ T (1) F+ 11 (19) ¢+ &e. _ 1+2q_+2q'°+2q~‘"+&o
IL(7) g+ I (15) * + 11 (23) ¢° + &c, 2q+20°+2¢* + &, ’

whence, by cquating cocflicients, we find that, if » = 5, mod. 8,
I (n) =21 (n—12) +21T (n— 48) —2II (n—108) + &c. = O,
and that, if =7, mod. 8,
I1 () =24 (n—4) + 21 (n—16) — 2FF (n— 36) + de. = 0.

49. Trom §20,
32X 52, " = 237 I (4n+1) g"*,
(3%, ¢"} = 437 B (dn+1) g2,
{37, 4"} = 14457 B (1) ¢

and by combining these identities with thoso involving IT in the pro-
ceding article, and cquating coclhcwnts, we muy obtain the four
following formulw :—

(i) M a=1, mod. 4,
I (n) + 211 (n—4) +2H (n—16) + 21 (n—36) + &e.
= I (n) +2E (n—12) + 2 (n—48) + 2F (n—108) + &e.

1In the first lino the numbors 4 16, 86, ... are tho even squares; the
corresponding numbus in the second line are the triples of theso -
squares.
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(i) If p=4dn+1, s=8n+1,

where i3 any number, then
H (s)+ H (s—8) + H (3—24) + I (s—48) + &e.
= E (p)+2F (p—24) +2F (p—96) + 21 (p—216) +&e.
Tho numbers 8, 24, 48, ... are the unoven squares diminished by
unity. The numbers 24, 96, 216, ... are the squares multiplied
by 24.
(i) If l=4n—38, t=8u+5,
. where n is any number, then
- JT(8) + T (¢ —8) + H (t—24) + T (t—48) + &e.
= 2T (1) +2F (1—48) +2F (I—144) +2T (1—288) + &e.

The numbers 8, 24, 48, ... are as above. The numbers 48, 144, 288
are theso numbers multiplied by 6.

(iv.) If U= dn+3,
H (r) +2H (r—4) +2H (r—16) +2H (r—36) + &e.
= 4F (n) +4F (n—6) +4F (n—18) +4F (n—36) + &e.

The numbers 6, 18, 36, ... dre the triangular numbers multiplied
by 6. The quantity J7 (0), when it occurs, is to have the valuo }.

It may be remarked that wo find also that, if p =4n+1,
I (p)+2F (p—4)+2F (p—16) +2E (p—36) + &e.
= 4T (n) 44T (n—2) +-4I (n—6) + 4T (n—12) + &e.,
where, as in (iv.), F (0) is to have the value }.

The Functions G and H, §§ 50-56.

50. Taking tho sccond pair of formulw in § 31, and chungmg the
sign of q" in the second of them, we have

E- q(auﬂ)‘ X z—w qlln’ —_ 20 II (12"'_*_ 1) qlﬁn-o-l’
Ee_ﬂm (—1)" q(an)nx Etm qum — 2;’ (_l)n G (lzn_*_l)quuol.
Thesc equations express the theorems :—

(i.) If a® denote an even square, and b* an unoven square not
divisible by 8, then the number of representations of a number p

(necessarily =1, mod. 12) by the form 3u®+b? is equal to 4H (p).
r2
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(ii.) If o’ denote an even square, ¢’ a square of the form (12241)%,
and d’ & square of the form (12rn45)% then the excess of the number
of representations of & number p (necessarily = 1, mod. 12) by the
form 3a*+¢* over the number of representations by the form 84+ d?

is equal to 4 (—1)%-V @ (p).

Combining these two theorems, we see that (a', b% ¢* having the
same meanings a8 above) the number of representations of p
(necessarily =1, mod. 12) by the form 3a’+¢ is equal to

2 {H(p)+(—1)**"@(p)},

and by the form 3a’+4d’ is equal to
2 {H (p)-(-1)**" @ (p)}.
51. From the formulsm in the preceding section, it follows that

E:@_q(ﬂnﬂ)- _ So H(12n+1) g™
ET@ (_l)u qlanﬂ)i - 2;3 (_l)u G (12n+1) qu,..,,l ]

_whence

1+ H(13) g+11(25) ¢'+ 7T (37) g*+ &c. _ 1+q°+¢*+¢"°+4"+ &e.
1-G(13)g+ @ (25) @' =G (37) ¢*+&c.  1—g*—g*+¢°+g"—é&e.’

Equating coefficients, we find that, if »=1, mod. 12,
@ (n)+ @ (n—24)+ G (n—48) + G (n—120) + G (n—168) + &c.
= (=1)¥0=) {H (n) ~ H (n—24) ~ H (n—48) + H (n—120)
. +H(n—168)—&ec.)}.
The numbers 24, 48, 120, ... are the unéven squares which are not
divisible by 3 diminished by unity.
52, It can be shown that
14 P ¢*+ Pyq* + Pyg° + &c.

= (—g—g+¢'+7 — &) (L hg+g +o'+¢" + &),
whence we deduce

30 (=1)"g®* ' x 32, ¢ = 237 G (12n+1) ¢+,
where m denotes any uneven number.

This equation expresses the theorem :
If m? denote an uneven squnare, ¢! & square of the form (12n+1)?,
and d* a square of the form (12n+5)%, then the excess of the number
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of representations of any number p (necessarily == 2, mod. 24) by the
form 3m’+¢* over the number of representations by the form 3m*+d*
is equal to zero, if p = 2, mod. 48, and is equal to 8G (}p) if p=4,
mod. 48.
53. From the formulm,

E‘:’m (__ l)n q(a.nl)' X zﬂlﬂ qam' — 2;’ G (12n+1) qisnu’

E'.,q, (_l)n q(enﬂ)a X E’;m qun' — 2;!(_1)" Q (12n+1) qﬂnol’
we obtain, by division,

14+P g + Py’ + Pyg®+&c. _ 14+ +¢"+q%+¢"+ &e.

1—P g+ Py’ ~Pyg® + &e. 1+29+2¢*+2¢°+ 29" + &e.’

whence, by equating coefficients, we find that
P,+P, s+ P, ¢+ P, 3+ &c.
s equal to zero, if n =2 or 3, mod. 4; is equal to
P,+2P, 1+2P,.+ 2P, +&o,
if » =0, mod. 4, where 4 = {n; and is equal to
—2P,—2P,.,—2P,.—2P,.;,— &e,,
if n=1, mod. 4, where v =} (n—1).
54. The second of the above results shows that, for all values of n,
Py 42P,1+2P, i+2P, g+ &c. = Pyy+ Py g+ Pinog+ Prnoa+ &,
Now, in § 89 it was shown that |
P,+2P,+2P, +2P, o+ &e.
i8 equal to zero for all uneven valnes of n. It follows, therefore, that

P16+Pn-2+P'|-u+Pn;la+&C.

is cqual to zero whenever » is the quadruple of an uneven number,
that is to say, whenever n = 4, mod. 8.

The third result shows that, if p = 4n+1, then, for all values of »,

Pyt Pyt Pyot Pyt &o. = — 2 Pyt Py + P,y + P+ &0.}.
Similarly, if » = 16n+5, '

P+ P, g+ Py g+ Pt &e. =4 {Pot Poyt Pogt Paopt &0} 5
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and in general, if
w=4n+3}(4'-1),

-Pu+-Pw-3-+Pu-s+P -H+ &0. = (—2)‘ {Pn+Pn-2+Pn-e+Pn-n+&c.}.
As s particular case, putting » = 0, we see that, if ¢ = } (4/—1),

Pyt Pocat Poost P+ &e. = (—2).

55. It has been shown in the two preceding articles that
P+ P, 2+ Py o+ P, 1+ &e.

is equal to zero, if n=2 or 3, mod. 4, or =4, mod. 8; and it follows,
therefore, from the theorem just proved, that it isalso equal to zero, if

n=4c+} (4-1),

where ¢ is any number = 2 or 3, mod. 4, or =4, mod. 8; or, which
is the same thing, =2, 3, 4, 6, or 7, mod. 8. For example, putting.
s=1, and ¢=2 or 3, mod. 4, we see that it is equal to zcro when
n =9 or 13, mod. 16.

We bhave found, therefore, that the expression
P"+Pn-’A+Pn-6+ Pﬂ-lz + &C.

is equal to zero, if n =2, 3, 4,6, 0r 7, mod. 8; orif n=2,8,4,6, 7,
9,10, 11, 12, 13, 14, or 15, mod. 16; and so on. In other words, if
the expression does not vanish, » must necessarily =0, 1, or 5, mod.
8; or =0, 1, 5, 8 mod. 16; and so on.

56. The class of functions to which @ (n) belongs posscsses two
distinct kinds of propertics, both of which are available for their
calculation. The one kind, depending upon the divisors of =, is
practically contained in the theorem

¢ (pg) = ¢ (p) ¢ (9),

where p and g are relatively prime ; the other consists of the various
recurring formuls (such as those considered in §§ 38-44) in which
¢ (n) is expressed as a finite series of ¢’s of arguments less than », and
separated from n by numbers of special forms, such as squares, ponta-
gonal numbers, &c. Properties of the former kind depend, as it wers,
on the arithmetical structure of the function ¢ (»), and cannot, so far
as I see, be directly derived from tho scrics in which the functions
¢ (n) appear as coefficients. On the other hand, the recurring formulo
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connecting the values of ¢ (#) are readily obtained by equating co-
efficients ; but the kind of consideration by which such a theorem as

¢ (pg) = ¢ (p) 9 (9)

is proved, appears to afford no clue to the discovery of these formulm,
nor to their demonstration when found. Amongst functions of this
class [1.e.,which possess the property ¢ (pq) = ¢ (p) ¢ (¢), and satisfy
also various recurring formule] may be mentioned the functions E,
xs H, o, referred to in this paper, and ¢, N (Proc. Lond. Math. Soc.,
Vol. 3v., p. 109, and Quart. Journ., Vol. xx., p. 145).

Complex: Multiplication Moduli of Elliptic Functions for the
Delerminants — 53 and —61. DBy Professor G. B. MaTaEWS.

(Read Dec. 12th, 1889.]

The following note contains the solution of two cases of complex
multiplication referred to by Mr. Greenhill in his papor on the sub-
jeet (Proceedings, Vol. xix.) as being hitherto unsolved : viz., thoso in
which A = 53, 61, respectively. -

As my results are merely supplomentary to the paper just quoted,
and the method of procedure (which is essentially Hermite’s) is there
sufficiently explained and illustrated (sec, for instance, pp. 326-328),
I have not thought it necessary to do more than give the actual
algebraical work. '

Applying Hermite’s method to the modular equation for » = 31,

the values of
2n—p' (p=1,8,57)

‘are 61, 53, 37, 13.

We have to put A=w! \'= ziw’,

and then in Russell’s notation
P=w+v(1A+i) w+l,
Q=wv(1+i)w+vV(Q+i) wtw,
B=wv({1+5) w.




