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THE INFLUENCE OF VISCOSITY ON THE OSCILLATIONS OF
SUPERPOSED FLUIDS

By W. J. HARRIBON.

[Received April 24th, 1908.—Read April 30th, 1908.]

In this paper two problems of hydrodynamics are attacked with a view
to discovering the influence of viscosity, the solutions being known for the
case of non-viscous fluids.

The first is the case of two fluids of infinite depth, where it is found
to a firsh approximation that the modulus of decay is of the order 1/4/v.

The second is the case of a fluid of finite depth superposed on a fluid
of infinite depth. There are two modes; in the first the modulus of
decay is of the order 1/v, and in the second it is of the order 1/4/v.

In the problems dealt with in this paper the fluids are at rest, except
for the wave-motion. In a subsequent paper I shall publish some results
dealing with wave-motion at the surface of a stream of viscous fluid.

Waves at the Interface between Two Viscous Fluids of Infinite Depth.

1. Take the origin in the undisturbed surface of separation, and the
axis of y vertically upwards.
For the lower fluid we have

_op_ oy
Y= o + oy’

—0¢_ oY

oy oz’
where ¢ = Aetver e,

\!, = He)\yelkx+ut’

wnd A2 = k4 Lo
v

* See Lamb's Hydrodynamics, p. 564.
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where ¢ = A'e~ Mgkt

\L" —_ Hre—Xy eikz+nt,

and =4 2
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The kinematical conditions at the interface are
w =, v=12";
these give kA4 N\H = kA" —NH',
kA—ikH = — kA'—ikH';
since | u = tkAe¥4+NHeV,

v = kdev—ikHe",

w = tkAd'e” " —\NH'e™*Y,

v =—kd'e ™ —ikH e,

We have tacitly dropped the factor e+,

The dynamical conditions are the continuity of p,, »,, across the
interface.

p__%_,
Now o ot an,

where 7 is the elevation of the interface ; and therefore
D—Z = V=0

therefore w:%m—wm=%+wm-mm.
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=ad + -_;L(+kA —ikH )+ (W24 —\H),

(B2) = a4 L(—hd'— )20 (24 D),

(5o = (5 + 5.0
= R4 4R,
(82) = 2EA N H.

o'V

Hence we obtain the remaining conditions
plad 9 e —kH)+2 (B4 —dNED |
=, {aA'-{- L (—kd'—kH)+2/ (P4’ + I\ H) } ,

and v {2024 HNHED H} = p'v' {—242A'+ (1) H'}.

After eliminating 4, A', H, H' from these four equations, we obtain
the period equation

1K (p—v'p") (k—N) (k—X")+ 4K2a (v —p"v') [p (k—N') —p' (k—N)]
+ 0% (@®+gk) (k=) +p" (@®—gk) (k—N)
—pp'[2ak2+ 2 A+AN)F gk A—A\")] = 0.

In this equation a is still implicitly contained in A and X'; after rationali-
sation the equation is found to be of the tenth degree in a.

If we take » and v to be small, and include only the most important
terms, we obtain

(X' +oN) [(o+p) a®+gk (0 —p)] =0,

2 — _ gklo—p)
pte

This is the known result for non-viscous fluids, as we should have
expected.*

or a

* See § 2.
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To proceed to a higher approximation we write

a=a0+,3,
. [gk(p—p")
where = 4+ ,C]_P_:O_’
o= tiyZE=

in the equation
4K p—v p) AN +p* (o +-gk) (k—NX)
+p%(a®—gk) (k—N)—pp' [2a¢k2+ > A+N)+gkA—=N\)] = 0.

_ _ gk (p—p')} i Qkpp'\/w' 142
Wofnd  p=—{Thmpl g o S
We see that both the change in the velocity due to viscosity and the
reciprocal of the modulus of decay depend on terms of the order 4/v to a
first approximation. When there is only one fluid the modulus of decay
of the amplitude is of the order 1/v, and the change in the velocity is of
the order »>. The difference is due to this fact. When there is wave
motion at the interface between two non-viscous fluids, the tangential
velocities at the interface are different; in the viscous moiion they must
be the same. Hence, for dynamical reasons, we should expect a change of
the nature obtained above. We have the result that, in general, wavy
motion at the interface between two fluids dies away much more rapidly
than in the cass of a single fluid. The difference is especially marked for
great wave-lengths. Nevertheless the change in the velocity is small com-
pared with the velocity.

To proceed to a still higher approximation, we write

a=a+B+y
in terms chosen suitably from the period equation.
- 2]02 (y2p3+y'2p'3)
T T R e AV
Hence to this order we have, as our final value for a,
. =+i[(gk(p—p')}*__ [gklp—=p) |} _ +/2hpp'vn
i R Uopt+p ) (p+p)oa/v+pvv)
- [,f gklp—p)\t __ &/2kpp'Vw IO YL O e AT
U oo (o Fp)pv/v+p V) (p+P) on/v+p Vi1
When p' = 0, v = 0, we have
a=+% 'l:x/gk—-ﬂvkﬂ,
which is known to be the result for a single fluid of infinite depth.

We easily find
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2. We have said above that the result, that to a first approximation the
period is the same as that for the motion of non-viscous fluids of the same
type, is according tv expectation. This was reasoned not from the nature
of the present problem, but from the known results of similar problems.
An objection might be raised to this conclusion on the ground that the
boundary conditions are totally different from those employed in the non-
viscous motion, and are apparently contradictory if v=1'=0. The
answer to the latter objection is that, even if H and H' become zero, A
and X' become infinite and the equations indeterminate. A similar objec-
tion to the first would apply to the work on page 571 of Lamb's Hydro-
dynamics, where he discusses the effect of oil on water waves, and also to
the work of Basset in treating the case of a fluid of finite depth. In both
these cases the boundary conditions are different, and yet to a first
approximation the period is the same as for non-viscous motion of the
same type. We are not questioning the physical truth of the assumption
that there is no slipping at the interface, but the correctness of the result
on this assumption. The final court of appeal is the analysis itself. But
& physical answer may perhaps be given along the following lines. In
the non-viscous motion there is a vortex sheet at the interface of strength
—2kcf cos kz (Lamb’'s Hydrodynamics, p. 354), where 8 is the amplitude
of the surface waves. This vortex sheet does not exist in the viscous
motion. Now this difference between the two motions may be made as
small as we please by sufficiently diminishing 8, without at the same
time affecting the average tangential velocity. Hence, unless the period
of the motion of the viscous fluids is to depend on the amplitude, even
when squares of the amplitude are neglected, it must be the same as the
period for the non-viscous fluids, when the viscosity is neglected,
dynamically but not kinematically. A more rigid formulation could be
given, but in a general way probably this will suffice.

It is interesting to notice that in the work mentioned above, on the
effect of oil on water waves, the modulus of decay depends on 1/4/v as in
the present case.

8. We can include the effect of capillarity at the interface by writing
g(p—p)+#T instead of g (o—p") in our results. When the wave-length
is small capillarity has a very great effect in causing the decay of the
motion. However, when the wave-length is small our approximations are
not sufficiently good, as they would, if continued, be in the form of a series
of ascending powers of k. When the wave-length is small the effect of
capillarity in causing decay of the motion would be more evident from the
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term arising from the next approximation to that which we have already
written down.

In the table given below the results are shown for the case of air over

water. The c.g.s. system of units is used, and the following data :

p=1, p="00129; v = 0109, v = '189, for water and air at 17°C.
respectively; T = T4.

Wave-length. | 1 em. 10 100 1000

Up eeerevenninn 12-48 39-46 124-79 394-62

Vo vervnesennen 24-90 4005 124-81 39462
Vo 24-89 4004 124-81 39462

Ty ceeeeenennns 1-162" | 1' 562" | 3hrs. 12'89-4"" | 321 hrs. 540" :
T 1-125” | 1'34°1” | 1 hr. 21’ 40°6" 36 hrs. 50’ 36"
Te cerriinanns 1-106" | 1'34-0"" | 1 hr. 21'40°3"' 36 hrs. 50’ 34"

vy is the wave-velocity in centimetres per second without viscosity and
capillarity, v. the velocity with capillarity only, v the velocity with both.

7o is the modulus of decay of the water alone; 7, of water and air
without capillarity ; ., of water and air with capillarity.

In the above table we notice the great influence of the air in damping
waves of great wave-length.

Fluid of Finite Depth Superposed on a Fluid of Infinite Depth.

4. We suppose the upper fluid to have a free upper surface.
For the lower fluid we assume

¢ = AVerrrel
= tHeMet+e,
where A =4 i;— .
For the upper fluid we assume
¢ = (B cosh ky+C sinh ky) e*=+,
' =i (K cosh \'y+L sinh \y) e=+,
where A% = K+ -;i,.

SER. 2. VOL. 6. 0. 1000. 2o
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From these we derive the velocities by the formulse

u =a -I—-aék,
oz oy

p= 280
oy ox

The kinematical conditions are the continuity of the component velocities
across the interface. The dynamical conditions are the continuity of
pressures and tractions across the interface and the free surface. Writing
these down, and eliminating the constants, we obtain the period equation

P op —+mpy, -, o, —1|=o,
Q g 0, —2p' kN, -\, 0
R, 7, 0, —pa—2'k?, —k, 0
S, s, —2K%p, — ng o 0, -—1
0, 0, 2%, (a+ i+ 9_".), k21
a
0, 0, A2+£D) pv, gak p+2vpkA, A, 1
where P = (\?*4+%%cosh \'i,

Q = (\?+%) sinh Nk,
R = 2k2sinh k),
S = 2k% cosh k#,

p =0 cosh Nh-+2/BN sinh X,
— kg . ' ] ] '
qg= - sinh N'A4+2v'kX' cosh N'A,
r = acosh kh+ %‘ sinh kh-+2/%* cosh kA,

s = a sinh kh—}-g?k cosh kh+4-2/%? sinh kh,

and % is the depth of the upper fluid.
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When the viscosity is small the terms of greatest importance are those
of the type A"®cosh A’h. Including only terms of this order, in which we
put tanh N’k = 1, we have the period equation

a*[p cosh kh+p' sinh k)4 a’gkp [cosh kh+sinh kh)

+¢*k* (p—p') sinh &l = 0,
as in the absence of viscosity.

Thus there are two modes, for one

o+gk =0,
and for the other

o® (p cosh kh+p' sinh k) +gk(p—p') sinh kh = 0.

In the first mode the tangential velocity is continuous across the interface.
Hence in this mode we should expect that the first approximation to the
dissipation terms in a would be of the order », and that the change in the
velocity of propagation would be of the order »*; in the second mode we
should expect both of these approximations to be of the order 4/v. This
will be seen to be the case.

The terms of next importance are those of the type A'?cosh A'h. If
we put a®*+¢gk = 0 in these, we find them vanish identically. Hence to
obtain the next approximation to the first mode we have to take the terms
of order A’ cosh A'2. We obtain

e cosh kh+2 (p'v' —pv) sinh k1

a=+iVgk—2 p cosh kh+(2p'—p) sinh kil

We notice that when p = p/, v = ', then

a=+ i gk—2k%,
as is known.
Proceeding to the next approximation in the case of the second mode,
we obtain

kvV/w' (p—p")
(pa/v+p'4/v') a}

a‘(p—p')sinh kh+gkap (sinh kh+cosh kh)+ g*k*(p cosh kh+p' sinh A7) ;
{4a3(p cosh kh+p' sinh kh) + 2gkpay (cosh kh+sinh kh) | ’

a = ag+

x|

gk(p—p') sinh k

where a pcosh kli+p' sinh Kl

2
0
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. _ v [ k=g b
ence a =t p cosh kh+ p' sinh kh

T Evw gk(e—p)lt [p cosh kh+p' sinh kh:r P
V2 (pa/v+pa/v) sinh kh

kv {gk(p—p))E [p cosh k4 p sinh kh]éx P
V2(pa/v+p V) sinh k7 ’

where

_ [p*(cosh kh—sinh k%) +4pp' sinh kh { o+ o (sinh® kh+cosh® kh)} ]

P= [—4(p—p)sinh k4 2p (cosh kh+sinh k7)] (p cosh kh+p'sinh k7)®

When 7 is infinite, we obtain our former results.

5. In the first mode when %% is small, 4.c., when the wave-length is
large compared with the depth of the upper fluid, we have

a=+ivgk—2kh.
The modulus of decay is thus the same as that of the lower fluid alone.
When &7 is large, a =+ ivgk—2k%.

The modulus of decay is thus the same as that of the upper fluid alone.

In the second mode, when k7% is small, the modulus of decay depends
on sinh? kh/k*, or on Ahi/k%; and thereforve it increases much less rapidly
with the wave-length than in general.

When %/ is large we obtain our former results for two fluids of infinite
depth.

6. In the second mode the upper surface will in general be disturbed
less than the common interface, and the waves set up by any disturbance
will be of this type to & predominating extent, particularly if the difference
between p and p' be small. Such waves as these are those referred to by
Ekman in the Scientific Results of the Norwegian North Polar Expedition.
He remarks that a ship moving in the Norwegian Fiords experiences great
resistance owing to considerable waves being set up at the common inter-
face of the layer of fresh water and the sea-water. Such waves would be
very quickly damped, and would therefore drain a great amount of energy
from the ship.

We append some numerical results illustrating the case of fresh water
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over sea-water of infinite depth. We take p'/p = 8%, and v =». The

fact that we take v = v makes no important difference.

Wave-length. | £ 1 10 100 1000 cms.
T o 013" [ 1-27" 127" | 8 hrs, 831' 2" | 351 hrs. 43’ 36"
L ‘083" | 1-5" 26" 7' 46" 2 hrs. 18'15"
T e ‘083" | 14" 16" 1/18" 6' 28"
Tl ceeeeeee. | °0837)1°5" 26" 4'48" 23'15"
TIoN ceeeerees ‘088" | 1'5" 26" 7' 45" 1 br. 25' 12"

7 18 the modulus of decay for the first mode,

T, that for the second mode when k% is large,

T1 2] ”» D) h=1 cm.,
Tio ” " ’ h =10 cms.,
T100 ”» 1) 9 h = 100 cms.

The very rapid decay when %% is small is very striking, even for the large
wave-lengths.



