
MDSynthesis: a Python package enabling data-driven molecular dynamics research

D. L. Dotson*, O. Beckstein† *david.dotson@asu.edu, †oliver.beckstein@asu.edu

Datasets and Containers

Using Sims to dissect trajectories

Groups are for aggregation

Using Sims and Groups to answer scientific questions quickly

Center for
Biological Physics

at Arizona State University

Studies using molecular dynamics simulations can routinely generate many terabytes of data, perhaps
spread over hundreds of individual run trajectories. Oftentimes these trajectories are not just repeats, but
instead sample a wide range of different starting configurations, forcefield parameters, macromolecule
conformations, mutations, protonation states, etc., which can make data management difficult.
Furthermore, because of their size and cost to calculate, it is often necessary to store intermediate data
for collective variables of interest. This adds to the complexity of managing data, and serves as a barrier
to answering scientific questions.

To address this problem, our lab has developed MDSynthesis, a Python package that handles the tedious
and time-consuming logistics of intermediate data storage and retrieval. MDSynthesis makes working
with data from many simulations relatively easy – especially important for interactive data exploration.

NapA

in-struct

NhaA

out-struct

out-model

in-model

CHARMM36

OPLS

CHARMM36

OPLS

CHARMM36

OPLS

CHARMM36

Sim 1

Sim 2

Sim 3

Ions

Salt Bridges

DSSP

NapA Sims

Sim 1

Sim 2

Sim 1

Sim 2

Sim 1

Sim 2

Sim 1

Sim 2

Sim 3

Sim 1

Sim 2

Sim 1

Sim 2

NhaA Sims

NhaAo C36

Figure 7. Example of a typical directory hierarchy for simulation work. As more variables are tested, the tree becomes more complex and data
management becomes difficult. Sims and Groups may exist anywhere in a directory tree, but they are shown here near where their source data would
probably reside. Dashed borders indicate all members included in each Group.

ΔRMSF

Binding Rates

Much of the functionality of MDSynthesis is condensed into two objects, collectively referred to as
Containers: the Sim and Group objects.

Where to find it

A Sim is designed to manage and give access to data corresponding to a single simulation, including the
raw trajectory(s) and analysis results. A Group gives access to any number of Sims or Groups that it has
as members, and it can store analysis results that pertain to these members collectively. Both types of
Container store their underlying data persistently to disk on the fly. This allows multiple unrelated

processes to make use of these objects simultaneously. For example, making a new Sim named

marklar is as simple as:

Data storage is the primary function of these Containers. A Container can be thought of as an
organizational bin for data that might take a long time to obtain so that it can be easily retrieved later.

>>> import mdsynthesis as mds
>>> s = mds.Sim('marklar')

>>> s.data['something_wicked'] = data

Pandas and Numpy data structures are serialized to disk in the high-performance HDF5 file format,
allowing fast out-of-core operations over data sets that may be too large to fit in memory. Objects that
can't be serialized into HDF5 are pickled. The data can be retrieved from disk with:

Containers and their stored data sets exist as a directory tree on disk. This allows the storage of other
files, e.g. figures, with the data. Our example Sim looks like this in the filesystem:

marklar/

├── Sim.bc5c5c78-83d5-4164-85b9-e069367ae00a.h5
└── something_wicked
 └── npData.h5

>>> data = s.data['something_wicked']

Sims can do more than store data. They can also store definitions for MDAnalysis1
Universes, which give an interface to the raw simulation data by way of trajectories
on disk. Adding a Universe definition with:

>>> s.universes.add('main', topology, trajectory)

lets us generate a Universe from the Sim:

>>> s.universe
<Universe with 47681 atoms>

>>> s.selections['ions'] = 'name NA or name CL'
>>> s.selections['ions']
<<AtomGroup with 178 atoms>

Groups of atoms can be selected from a Universe with selection strings. These can
be stored by the Sim. We might select all ions in a given simulation with:

This is useful for situations in which many simulations are performed with different
forcefields. The selection string needed for a particular group of atoms may differ,
but the key used to obtain the stored selection can be the same across them all.

Key

Sim

Group

Data

Directory

Fork m
e on GitHub

Groups can store data in the same way as Sims, but they also give a convenient
interface to working with multiple Sims or Groups at once.

>>> g = mds.Group('gruffy', members=[s1, s2, g3])
>>> g
<Group: 'gruffy' | 3 Members: 3 Sims>
>>> g.members[1:]
<Bundle([<Sim: 'fluffy'>, <Group: 'gorp'>])>

name -> human-readable identifier
uuid -> unique identifier
location -> path to Container in filesystem
tags -> set of strings describing Container
categories -> key-value pairs describing Container
data -> interface to stored data sets

Container
Figure 2. The Container API contains
the elements common to both Sims
and Groups. These include tags and
categories, which can be used to
differentiate Containers from each
other. It also features the data
interface.

universes -> interface to stored universes
universe -> currently active universe
selections -> stored selections for active universe

Sim (Container)

Figure 4. The Sim API contains machinery for managing Universe definitions and stored atom selections. A
single Sim can store any number of Universe definitions, with different stored selections for each.

members -> interface to group members
members.tags -> member tags in aggregate
members.categories -> member categories in aggregate
members.data -> member data in aggregate

Group (Container)

Figure 6. The Group API includes an interface for managing members. The Group keeps track of where its
members live in the filesystem, and features convenience methods for applying functions in parallel to its
members and automatically building aggregates of member data sets.

The package is actively developed and freely available under the GNU General Public
License at https://github.com/Becksteinlab/MDSynthesis

Pandas objects (such as Series and DataFrames), Numpy arrays, and other Python data structures can be
stored with as little as:

Container

Data A Data B Data C

Figure 1. A Container is a receptacle for data sets. In addition to storing data, Containers can also be differentied with a name, tags,
and categories. Containers exist in the filesystem as a directory structure with individual directories for each data set.

Name: 'marklar'
Tags(['DIMS', 'gbsw', 'dimer'])
Categories({'forcefield': 'CHARMM36',
 'transition': 'in to out',
 'protein': 'NhaA'})

top_nowater.psf traj_nowater.dcd

top.gro traj_centered.xtc

top.psf traj.part01.dcd, traj.part02.dcd

Sim

Figure 3. A Sim stores the locations of topologies and trajectories for easy Universe recall. A Sim can store
multiple Universe definitions, which are useful when different versions of the same trajectory are needed
for different analyses.

Members of a Group can be accessed directly:

Group Sim Another Sim Some Group

Figure 5. A Group remembers the locations of its members in the filesystem so they can be accessed on
demand. A Group has mechanisms to find members that have moved, and will soon be able to retrieve
subsets of its members through queries on their attributes, such as tags and categories.

As an example of effective use of Sims and Groups in practice, say we have 50 biased MD simulations sampling the
conformational change of the ion transport protein NhaA2 from inward-open to outward-open. We want to know how
many hydrogen bonds exist at any given time between the two domains as they move past each other.

import mdsynthesis as mds
from MDAnalysis.analysis.hbonds import HydrogenBondAnalysis
import pandas as pd
import seaborn as sns
g = mds.Group('NhaA_i2o_transitions')

def get_hbonds(sim):
 dimerization = sim.selections.define('dimerization')
 core = sim.selections.define('core')
 hb = HydrogenBondAnalysis(sim.universe, dimerization, core)
 hb.run()
 hb.generate_table()
 sim.data.add('hbonds', pd.DataFrame(hb.table))

g.members.map(get_hbonds, processes=16)

Once we've collected the data for each Sim, we can aggregate it, apply a
groupby to get the number of bonds present at each time, and then plot the
frequency of each number across all simulations in the Group.

df = g.members.data.retrieve('hbonds')
counts = df['distance'].groupby(df.index).count()
counts.index = pd.MultiIndex.from_tuples(counts.index)
counts.index = counts.index.droplevel(0)
sns.jointplot(counts.index, counts, kind='hexbin')

Figure 8. (C) The number of hydrogen bonds
between the core (cyan) and dimerization domain
(green) during a conformational transition from
(B) inward-open to (A) outward-open.

A

B

C

MD
SYNTHESIS
built with

References Acknowledgements

A R I Z O N A S T A T E U N I V E R S I T Y

Computing
Advanced

Center

We wish to acknowledge the Arizona State Advanced Computing Center
and XSEDE for the use of supercomputing resources.

[1] Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., and Beckstein, O. (2011). MDAnalysis: A toolkit for the
analysis of molecular dynamics simulations. Journal of Computational Chemistry 32, 2319–2327.
http://www.mdanalysis.org

[2] Lee, C., Yashiro, S., Dotson, D.L., Uzdavinys, P., Iwata, S., Sansom, M.S.P., Ballmoos, C. von, Beckstein,
O., Drew, D., and Cameron, A.D. (2014). Crystal structure of the sodium-proton antiporter NhaA dimer and
new mechanistic insights. J Gen Physiol 144, 529–544.

0 100 200 300 400 500

time (ps)

0

1

2

3

4

5

6

#
 o

f
h

y
d

ro
g

e
n

 b
o

n
d

s

