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Datasets and Containers

Using Sims to dissect trajectories

Groups are for aggregation

Using Sims and Groups to answer scientific questions quickly
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Studies using molecular dynamics simulations can routinely generate many terabytes of data, perhaps 
spread over hundreds of individual run trajectories. Oftentimes these trajectories are not just repeats, but 
instead sample a wide range of different starting configurations, forcefield parameters, macromolecule 
conformations, mutations, protonation states, etc., which can make data management difficult. 
Furthermore, because of their size and cost to calculate, it is often necessary to store intermediate data 
for collective variables of interest. This adds to the complexity of managing data, and serves as a barrier 
to answering scientific questions.

To address this problem, our lab has developed MDSynthesis, a Python package that handles the tedious 
and time-consuming logistics of intermediate data storage and retrieval. MDSynthesis makes working 
with data from many simulations relatively easy – especially important for interactive data exploration. 
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Figure 7. Example of a typical directory hierarchy for simulation work. As more variables are tested, the tree becomes more complex and data 
management becomes difficult. Sims and Groups may exist anywhere in a directory tree, but they are shown here near where their source data would 
probably reside. Dashed borders indicate all members included in each Group.
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Much of the functionality of MDSynthesis is condensed into two objects, collectively referred to as 
Containers: the Sim and Group objects. 

Where to find it

A Sim is designed to manage and give access to data corresponding to a single simulation, including the 
raw trajectory(s) and analysis results. A Group gives access to any number of Sims or Groups that it has 
as members, and it can store analysis results that pertain to these members collectively. Both types of 
Container store their underlying data persistently to disk on the fly. This allows multiple unrelated 

processes to make use of these objects simultaneously. For example, making a new Sim named 

marklar is as simple as:

Data storage is the primary function of these Containers. A Container can be thought of as an 
organizational bin for data that might take a long time to obtain so that it can be easily retrieved later.

>>> import mdsynthesis as mds
>>> s = mds.Sim('marklar')

>>> s.data['something_wicked'] = data

Pandas and Numpy data structures are serialized to disk in the high-performance HDF5 file format, 
allowing fast out-of-core operations over data sets that may be too large to fit in memory. Objects that 
can't be serialized into HDF5 are pickled. The data can be retrieved from disk with:

Containers and their stored data sets exist as a directory tree on disk. This allows the storage of other 
files, e.g. figures, with the data. Our example Sim looks like this in the filesystem:

marklar/

├── Sim.bc5c5c78-83d5-4164-85b9-e069367ae00a.h5
└── something_wicked
    └── npData.h5

>>> data = s.data['something_wicked']

Sims can do more than store data. They can also store definitions for MDAnalysis1 
Universes, which give an interface to the raw simulation data by way of trajectories 
on disk. Adding a Universe definition with:

>>> s.universes.add('main', topology, trajectory) 

lets us generate a Universe from the Sim:

>>> s.universe
<Universe with 47681 atoms>

>>> s.selections['ions'] = 'name NA or name CL'
>>> s.selections['ions']
<<AtomGroup with 178 atoms>

Groups of atoms can be selected from a Universe with selection strings. These can 
be stored by the Sim. We might select all ions in a given simulation with:

This is useful for situations in which many simulations are performed with different 
forcefields. The selection string needed for a particular group of atoms may differ, 
but the key used to obtain the stored selection can be the same across them all. 
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Groups can store data in the same way as Sims, but they also give a convenient 
interface to working with multiple Sims or Groups at once.

>>> g = mds.Group('gruffy', members=[s1, s2, g3])
>>> g
<Group: 'gruffy' | 3 Members: 3 Sims>
>>> g.members[1:]
<Bundle([<Sim: 'fluffy'>, <Group: 'gorp'>])>

name -> human-readable identifier
uuid -> unique identifier
location -> path to Container in filesystem
tags -> set of strings describing Container
categories -> key-value pairs describing Container
data -> interface to stored data sets

Container
Figure 2. The Container API contains 
the elements common to both Sims 
and Groups. These include tags and 
categories, which can be used to 
differentiate Containers from each 
other. It also features the data 
interface.

universes -> interface to stored universes
universe -> currently active universe
selections -> stored selections for active universe
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Figure 4. The Sim API contains machinery for managing Universe definitions and stored atom selections. A 
single Sim can store any number of Universe definitions, with different stored selections for each.

members -> interface to group members
members.tags -> member tags in aggregate
members.categories -> member categories in aggregate
members.data -> member data in aggregate

Group (Container)

Figure 6. The Group API includes an interface for managing members. The Group keeps track of where its 
members live in the filesystem, and features convenience methods for applying functions in parallel to its 
members and automatically building aggregates of member data sets.

The package is actively developed and freely available under the GNU General Public 
License at   https://github.com/Becksteinlab/MDSynthesis

Pandas objects (such as Series and DataFrames), Numpy arrays, and other Python data structures can be 
stored with as little as:
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Figure 1. A Container is a receptacle for data sets. In addition to storing data, Containers can also be differentied with a name, tags, 
and categories. Containers exist in the filesystem as a directory structure with individual directories for each data set.

Name: 'marklar'
Tags(['DIMS', 'gbsw', 'dimer'])
Categories({'forcefield': 'CHARMM36',
            'transition': 'in to out',
            'protein': 'NhaA'})

top_nowater.psf traj_nowater.dcd

top.gro traj_centered.xtc

top.psf traj.part01.dcd, traj.part02.dcd

Sim

Figure 3. A Sim stores the locations of topologies and trajectories for easy Universe recall. A Sim can store 
multiple Universe definitions, which are useful when different versions of the same trajectory are needed 
for different analyses.

Members of a Group can be accessed directly:

Group Sim Another Sim Some Group

Figure 5. A Group remembers the locations of its members in the filesystem so they can be accessed on 
demand. A Group has mechanisms to find members that have moved, and will soon be able to retrieve 
subsets of its members through queries on their attributes, such as tags and categories.

As an example of effective use of Sims and Groups in practice, say we have 50 biased MD simulations sampling the 
conformational change of the ion transport protein NhaA2 from inward-open to outward-open. We want to know how 
many hydrogen bonds exist at any given time between the two domains as they move past each other.  

import mdsynthesis as mds
from MDAnalysis.analysis.hbonds import HydrogenBondAnalysis
import pandas as pd
import seaborn as sns
g = mds.Group('NhaA_i2o_transitions')

def get_hbonds(sim):
    dimerization = sim.selections.define('dimerization')
    core = sim.selections.define('core') 
    hb = HydrogenBondAnalysis(sim.universe, dimerization, core)
    hb.run()
    hb.generate_table()
    sim.data.add('hbonds', pd.DataFrame(hb.table))

g.members.map(get_hbonds, processes=16) 

Once we've collected the data for each Sim, we can aggregate it, apply a 
groupby to get the number of bonds present at each time, and then plot the 
frequency of each number across all simulations in the Group. 

df = g.members.data.retrieve('hbonds')
counts = df['distance'].groupby(df.index).count()
counts.index = pd.MultiIndex.from_tuples(counts.index)
counts.index = counts.index.droplevel(0)
sns.jointplot(counts.index, counts, kind='hexbin')

Figure 8. (C) The number of hydrogen bonds 
between the core (cyan) and dimerization domain 
(green) during a conformational transition from 
(B) inward-open to (A) outward-open.   
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