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On the Theory of Screws in Elliptic Space.
By ARTHUR BUCHHEIM, M.A.

[Read Jan. \Qth, 1884.]

INTRODUCTION.*

[As Grassmann's methods are not as well known as they should be,
it may perhaps be convenient to the reader if I prefix a short account
of them to my paper; I have not chosen the arrangement which
would be best in itself, but that which connects itself most simply
with familiar conceptions.

Let the coordinates of a poiut P in space be (xyzw), referred to any
tetrahedron ABCD, and let the Coordinates be so chosen that

x + y+z + w = 1;
then the fundamental idea of the Ausdehnungslehre is that this can be
expressed in the form of an equation

P = xA + yB + zG+ wD (*).

If we choose, we can consider this equation as nothing more than a
brief mode of expressing the statement immediately preceding it, but
in Grassniann'8 view of the matter the equation (*) is fundamental, and
we can, if we choose, express it in words by the statement immediately
preceding it.

I now alter the notation so as to make it agree with Grassmann's :
we call the vertices of the tetrahedron of reference e,, e,, e3, et; the coor-
dinates of a point are written a;,, xa, a?.,, xt. and the point with these
coordinates is called x ; we therefore have

x = 35,0,-1- aj3 e3 + Xi e, + xt et.

In the same way, if y be any other point, we have

V = 1h *i + Vt e* + Vs es + ?/• ev
Now an essential part of the Ausdehnungslchre is the multiplication

of points. If we take the two equations just written down, and
multiply the right-hand sides and the left-hand sides together in the
most obvious way (remembering that multiplication is not to be taken
as commutative until we have proved or explicitly assumed it to be so),
we get a result which may be written

i>4 it"4

xy = S 2 Xi yk et ek;
l k l

• This introduction has been drawn up hy request of one of the referees.
a 2
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thus, for example, we have on the right-hand side a term xxytexe^ and
also a term xtyxeteXt and any reduction of the expression must depend
on the law of multiplication assumed for the four units e1e,e8e4. The
law assumed by Grassmann is that known as polar multiplication; that

is, we have etek = — eke(,

Using these equations, we get at once

ajjj/O e1e,.

But, if we consider the coefficients of e,e4, <fec., we see at once that they
are the six coordinates of the line joining xy ; and we may therefore
say that the product of two points is the line joining them.

In precisely the same way, if we take three points xf y, z, and form
their product, we find

xyz = as, x t x t

z% zs zt

z . z% zx

tC| Qja *CA e,e,e4

But, if we consider the coefficients of e, 6j 64, &c, we see at once that
they are the four coordinates of the plane through xyz, and we may
therefore say that the product of three points is the plane through them.

If we take four points, we get

zyzw = a?8

z$ zt

If we take five points, we find that their product vanishes identically.
We have just seen that a plane X can be written in the form

X= Xxeiesei + X%esexet+Xiexeiei+Xieieiex (0),

where e,e8e4, &c. are the faces of the tetrahedron of reference ; or,
denoting these by Eu Eit Eif Eit wo have

Bat now there is a difficulty. If wo take two planes given in the form
(0), and try to multiply them together, we shall fail, for the product
will vanish identically, since each term will necessarily contain at least
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one square factor; but the principle of duality obviously requires that
the product of two planes shall be their line of intersection.

Grassmann obviates this difficulty by what he calls regressive multi-
plication. Before we can define this, we must introduce another con-
ception of the greatest importance, viz., the Ergdnzung (what I call the
conjugate) of a quantity. •

Grassmann supposes that e^ et, e8, et are so chosen that

eleiete4 = 1,

or, if we please, we may say that this product is taken as the unit of
such products. . .

Now this equation can be written

6,(0,6564) = 1,

and 0*6364 is defined as the conjugate of ev and denoted by Keu* and, in
the same way, if E is any product of not more than four units, KE is

defined by E.KE = 1.

Thus Bre1e,=e8e4, Jre,e,e8=+e4,Zie4=—e,e,6,, &o.: it will be seen here-
after that this term conjugate is appropriate. We have, if X is a plane,

KX = - (X, ex+X, e,+X8 e,+X4 e4).

The definition of regressive multiplication is as follows :f—If E} E'
are two different products of three units, EE' is defined by

K (EE) = KE. KEf.

Thus, if E = ex e% e8, E'— e, e, e4, we have KE = e4, KE'= — e8,

K {EE') = - e^ =

Using this definition of regressive multiplication, we can verify that
tlie product of two planes is their line of intersection; that the product of
three planes is their point of intersection; that the product of four planes
is the determinant of their coordinates; and, lastly, that tJte product of five
planes vanishes identically.

We can also verify that the product of a point and a plane vanishes
if the plane contains the point; that the product of a point and a line
is the plane through the point and line, and vanishes if the line con-
tains the point; and that the product of a plane and a line is the point
of intersection of the plane and line, and vanishes if the line is in the
plane.

Wo must now consider the multiplication of lines. We saw, by

* Grassmann denotes it by |c,; my notation is, of course, borrowed from Hamilton,
t For the space of three dimensious wo. aro considering.
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multiplying two points, that the expression for a line was of the form

a = a1e1e4+a,ese4+a8e8e4+ a4eye,+aBe8eI+aee1es,

and it follows, from the expressions for ax, &c, that we have

0^+0,05+0,0,= 0.*

Now take two lines a, b, and multiply them together: we get, as is
easily verified,

ab = ai64

and we thus see that the equation of condition satisfied by the co-
ordinates of a line a may be written

as = 0.
But it is known that

a,64+a265+a868+a46i + a6&2 + aa6j = 0

is the condition that the two lines whose coordinates are

respectively, may intersect. We may therefore say (using Hamilton's
indispensable word scalar) that the product of two lines is a scalar,
zvhich vanishes if the lines intersect.

It may be useful to give a few illustrations of these processes.
Suppose we have three planes connected by a linear relation

a — \b+fic,

to interpret this, let D be any point, then we have

aD = \6D+/icD.

Therefore, if hi), cD both vanish, aD will also vanish; that is, any
point in b and c is in a ; that is, a, b, c pass through the same straight
line.

In exactly the same way, we can show that, if a, b, c are points such

that • a = Xb + fxc,

the three points are collinear.

Now, suppose that a, b, c are three lines, connected by this linear
relation ; then, if P is any point, and p any plane, we have

aP = XbP+ficP,

ap = Xbp+ficp.

* In a more familiar notation, this is the condition af+ bg + ch •» 0.
f f l ' ch' + a'f+b'g + c'h.
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Therefore (1) the planes joining the lines to any point, are collinear,
therefore the three lines ai'e concurrent; (2) the intersections of the
lines with any plane are collinear, therefore the three lines are com-
planar.

Again, let a, 6, c, d be four lines such that

a = Xb + pc+vd;

let a be any other line; then we have

aa = \ba + /uco + vda ;

thereforo aa vanishes if 6a, ca, da all vanish: that is, any lino cutting
b, c, d cuts a: that is, a, b, c, d are four generators of the sarno species'
of an hyperboloid of one sheet.

Lastly, suppose we have a homography,

y
on two lines a/3, a'/3', then

yy' = XW + X/x (a/3'-a'/3) f/i'/J/J';

therefore the connectors of corresponding points of two homographies
generate an hyperboloid of one sheet; for, if we write down four of
these equations we shall be able to eliminate aa', a/3'— a'/5,/S/3', so as to
get a linear relation between four lines yy'; this is necessary because
a/3'—a'fi is not a line, as its square is 2 (a/3a'/3').

We have now to extend our conceptions. An expression like
a1e1e4+&c, in which every term contains a product of two units, will
be called a form of the second degree. We have seen that such a form
represents a straight line if its square vanishes; but, if its square
does not vanish, it must obviously mean something. We can see what
it means as follows : let a be any form of the second degree, and let
a; be a line,* then

ax = â ajj + as-rj + aaffg + a ^ + aja-g + ajja-,,.

Therefore ax = 0 is a linear relation among the six coordinates of the
line x; that is, it is the equation of a linear complex, and we may
therefore say that a form of the second degree whose square does not
vanish represents a linear complex. And it is worth while to notice
that this is the only way in which we can get a definite notion of the
meaning of a linear complex in three-dimensional space; the ordinary
conceptions of it are either (1) as a locus of lines, which is too re-
stricted, or (2) as a thing with six coordinates, that is, a point in five-.

* Coordinates (A\ XZ JT3 X4 J6 X£.
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dimensional space, which is too wide. The definition I have just
given is perfectly definite and precise, and enables us to see the mean-
ing, in our space, of all operations on the linear complex.*

There are two other interpretations of the form of the second
degree, which are of equal importance.

Now, consider a system of forces acting on a rigid body. It is a
known theorem in mechanics that they may be reduced in one way to
the six forces acting along the six edges of a tetrahedron. Now we
know that the edge elei is represented by the product e1ei, and we see
that a force acting along this edge can be represented by a, el et; where
a, is a scalar proportional to the intensity of the force. Considering
the forces along all the edges, we see that any system of foroes can
be represented in the form

a = alelei+a% e, e4 + a8e8 e4 + aiei et •+• a^e , + atet e,.

But this is the general form of the second degree: therefore the
general form of the second degree represents a system of forces acting on a
rigid body.

Now we know that a system of forces can be reduced to what Prof.
Ball calls a wrench about a certain screw. We may therefore say
that the general form of the second degree represents a wrench about a
certain screw.

There is also a kinematical interpretation. Any motion of a body
can be reduced to rotations about the six edges of a given tetrahedron;
now we habitually represent a rotation about a line by a length along
the line, and we therefore see that a rotation about the edge elei can
be represented by a^e^ Proceeding as above, we see that the general
form of the second degree represents a motion of a rigid body; or,
again, introducing Prof. Ball's terminology, we can say that the
general form, of the second degree represents a twist about a certain screw.'
Now, considering the three interpretations we have found, and
attending only to what is common to the mechanical and kinematical
interpretations, we can say that the general form of the second
degree represents a linear complex or a screw. That is, the screw
and the linear complex are the same thing regarded from differ-
ent points of view. The Ausdehnungslcltre furnishes a complete
explanation of the theory of screws and the theory of the linear
complex, and shows that they are identical and not merely analogous;
this is the view on which the following paper is based.

* There is a paper by Prof. Reye in a recent number of Crelle, on systems of com-
plexes, which is rendored much less clear than it need have been by the want of a
precise definition of the linear complex as an element of space.
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I t remains to point out the connection with tho non-Euclidean
geometry.

So far, the tetrahedron of reference has been perfectly arbitrary ; wo
now suppose it real and self-con jugate with respect to the absolute,
then the point-equation to the absolute will be

The plane-equation (tangential equation) will be

The line equation (condition that a line may touch a surface)* will be
a\ + a\-\- a\ + a\ + a\ + e& = 0;

Now, if we use these forms of the equations of the absolute, tho
ordinary expressions for the distance between two points become

cosxy _

in xv=-i- V c +(xiyi-x*yiy
J +sin xv=
J

Now, it is easy to verify that these expressions can be written

x. Ky

7 S 5 I 5
sin xv =y

I now write Sxy for x.Ky, Tx for + -s/(asJTaj).f

Then we see that the above expressions can be written

Sxy . T (xy)
cos xv = 2 - . sin xv = —> * •.

y TxTy1 y TxTy
We have, of course, precisely similar expressions for the sine and
cosine of the angle between two planes, and to these can be added the
expressions for the angle between two lines or two complexes used in
the paper.]

The Theory of Screws in Elliptic Space has been considered by
Clifford and by Professor Ball,J but I venture to hope that the

* Clifford's rank-equation.
f This is not Grassmann's notation.
j Clifford—"Preliminary Sketch of Biquaternions," Mathematical Papers, pp.

180 to 200; also Fragments numbered xli., xlii., xliv.
Ball—" Certain Problems in tho Dynamics of a Rigid System moving in Elliptic

Space " (Trans. R.I.A., t. xxviii., pp. 159 to 187).
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methods employed in the following paper will be found to justify its
existence.

My special object is to show that the Ausdehnungslehre supplies all
the necessary materials for a calculus of screws in elliptic space.
Clifford was apparently led to construct his theory of biqnatornions
by the want of such a' calculus; but Grassmann's method seems to
afford a simpler and more natural means of expression than
biquaternions: thus an expression that Clifford writes

would be written ^-- ;

with the modifications of Grassmann's notation used in this paper :
and the meaning of the expression seems more obvious if we use the
second form.

Another result of the application of the Ausdehnwigslehre is, that wo
are able to make use of certain definitions given by Grassraann, and,
by so doing, to discuss the metric properties of elliptic space without
explicitly introducing the absolute.

I.
The four points of reference are denoted by e,, et, es, e4. The

"Erganzung" of any quantity a I call its conjugate and denote by
Ka. I write Sqb for the product aKb, if a, b are of the same order,
aud I write Ta? for the positive square root of Sxx.

The general expression for a form of the second order is

a =

A form of the second order represents a linear complex, or, what is
the same thing, a screw or a motor, to use Clifford's expression.*

If a represents a line (rotor), it is the product of two forms of the
first or third order, and we therefore have

0=—

If a, b are two complexes,

ab = a1

If ab vanishes, the complexes are said to be reciprocal: two lines are
reciprocal if they cut.

* As a screw (motor) and a linear complex are exactly the same, I shall use the.
.three words for the form of the second order according to the context.
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Two quantities a, 6 determine two angles defined by the equations
. r , T Tab

These angles are identical, unless a, b are both complexes (or lines)
or one is a point (or plane) and the other a complex (not a line).

If a is a point on any line and b is a point on the conjugate line,
Sab vanishes. Two lines are at right angles if either meets the con-
jugate of the other.

II.

Let a, b be any two lines : if a line c is to meet them both at right
angles, it must satisfy the four equations

0 = ac = be = Ka. c = Kb . c.

But obviously, if e satisfies these equations, Kc also satisfies them ;
but we know that in general there are only two lines satisfying the
conditions, therefore we have the theorem: there are in general two
lines meeting two given lines at right angles, and these two lines are
at right angles.

If there are more than two lines meeting a, 6 at right angles, there
is an infinite number, and a, b, Ka, Kb must be connected by a linear
relation -with scalar coefficients : in this case the lines a, b are said to
be parallel.

If we have a ==

we have also Ka = XKb+ftb +

Substituting,

but in general we shall not have a, b, Kb connected by a liucar
relation: for, if this were the case, they would be complanar and con-
current,

Therefore vs = 1, \+fn> = 0.

That is, either v = 1 , X = -r-ft, or v = — 1, X~/i. The first pair gi^cs

a-rKa — \(b—Kb).

The second pair gives a + Kq = X (b + Kb).

We thus see that there are two species of parallelism. Clifford
distinguishes them as left and right parallelism respectively.

* It must be borne in mind that the tensor of H scalar is the scalar itBclf, whether
it be positive or negative.
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,—f-f—•
\Kc

We shall now treat the subject of parallelism in a different way
leading, however, to the same results.

Let xx\ yy' be the points in which a, 6 are
cut by c,2Tc. .

Then we have
0 = 8xx'=. 8xy'= Syx = Syy\

Let xy = 0, x'y'— #'•
Take any points £ = as + aY, i; =

on a, 6 respectively.

Then * = p

S {xx. En) = a/3' FxSx'y'- a'/3 r3aj'

Now we can suppose that the tensors of all points are unity : thon
({>}) is at right angles to a if

J3_ ^_ a cos <p'
(¥ a cos <p '

But all onr expressions are homogeneous, and we may therefore uso
this equation in the form

/3 = o cos <p\ |3'= a cos <p.

NowNow cos (lri\ -

Substituting the values of /3, /3', we get

COS {It}) = COS0 COS '̂. 7-5 1 ^ r .
(a8cos*V> + a cos*^))'

This gives the perpendicular distance from 6 of any point in a. It
follows (1) that <p, <p' are one the greatest and the other the least values
of £17, and (2) that, if cos <j> = ± cos »̂', cos & = ± cos ^.

If ^ = 0', a, 6 are said to be right parallel.
If <j> + 9 = "•} a, 6 are said to be left parallel.
We have now to express these conditions in terms of the coordinates

of the lines.
We have Sab = 8{xx1.yy) = Sxy Sxy

Sx'y Sx'y'
= cos ^ cos <p',

T>ab = 8{xx'yy'.a:xyij).

lnx 0 Sxy 0
0 TV 0 Sx'y

Sxy 0 T3y 0
0 Sx'y' 0 12'V
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Therefore sin9 [a&] = sin9 0 sin1 $'.

Bat all angles are supposed less than w; we therefore have

sin [aft] = sin ^ sin p'.

And we found cos (ab) = cos 0 cos <f.

Therefore, if the lines are right parallel,

sin [a&] + cos (ab) = 1.

If they are left parallel,
sin [a&]—cos (ab) = 1.

Taking the first condition, we have

ab + aKb __ ••
. TaTb ' : : '

But
and T (a+Ka) T(b + Kb) = 2Ta Tab.

Therefore (a+KaXb+Kb) h

•T(a + Ka)T{b+Kb)
Now it is easy to see that the coordinates of (a+Ka) are of the form

(alaiasa1aiai), and that those of b + Kb are of the form (&!6,6,6^,6,).

Therefore

Therefore 0 = (6, a8—a8 ft,)
1 + (68 a% — 0^ 6,)1 -f (a, b,—a, 6,)'.

That is, if a, b are real,

ax : fl8: a8 = bx '. bt '. b6.

That is, a + Ka=\(b+Kb),
where \ is a scalar.

In precisely the same way, we get as the condition for left

parallelism* a—Ka = X (6— Kb).

III.

If a is a motor, (aa) vanishes and [aa] is called the pitch of the
motor. If a, b are two motors, [a6] is called their moment. If a is a
motor, and a—Ka = 0, a is called a right vector; if a + Ka = 0, a is
called a left vector.

Any motor can be expressed in one way only, as the sum of a right
and a left vector.

* If wo use the absolute, thcro is no difficulty in obtaining these conditions
geometrically.



04 Mr. Arthur Buchheim on [Jan. 10,

For, let a be the given motor, a, /5 the required vectors : we have

a •+• /3 = a,

and therefore % Ka + Kfi = Ka,

that is, a—/3 = Ka.

Therefore a = | (a+Ka), /3 = | (a-iiTa).

If a motor ia reduced to the form Xb+fiKb, where 6 is a line and X, /i
scalars, & is called the axis of the motor.

To find the axis of a given motor.

We are to have a = Xb+fiKb,

and therefore Ka = XKb+fib.

Therefore b = • ^a ^ a
a.

Since 5 can be multiplied by any scalar, we can take

b — Xa—fiKa,

and then a3 =

X* + u8 2TiaTherefore - = ——,

that is, A + i L = _ 2 _ j
fx X s i n <f>

if 0 is the pitch of a.

A solution of this is — = cot £ 0 ;

and then we can take X = cos ̂ 0, ft = sin \ 0.

Therefore 6 = acos^0—JTasin £0.

The other solution X / /i = tan | <f> would simply change b and Kb into
— Kb and —6.

Now let a, a' be two motors : let /?, /3' be their axes and 0, 0' their
pitches.. Then

/3 = a cos | 0 — ITa sin £ 0,

Using these expressions to calculate /3/3' and S/3/3', and then solving
for aa', and remembering that (as is easily proved)

Tp = Ta cos 0, Tff— Ta cos 0',

we get sin [on'] = sin [/3/3'] OOR i (0 — <\>') + cos (/3/?') sin \ (0 + 0').
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This equation corresponds to the expression
A sin <p + (k + &') cos <p,

for the moment of two complexes in parabolic space.

IV.

The axes of two complexes a, ft intersect at right angles if Set ft = 0,
aft = 0. Every congruence contains two complexes satisfying these
conditions. Let the congruence be referred to these complexes, so
that, if y is any complex of the congruence, we have

y = xa + yft.

Let the pitches of a, ft, 7 be A, B, T; let (ay) = a, (fty) — b. Then,
remembering that Saft = aft = 0, we get

ya = a V + t/8/}3, T*y = x'T'a + i/T'-ft ;

8ay = xTia, Sfty = yWft.
The last two equations give

_ Ty cos a _ Ty cos b
X ~ ~~~Ta~~* V ~ ~Tft~'

T*y xtT>a + yiTafi
_ cos2 a sin A + cos" b sin B

cos2 a + cos2 b

But cos* a + cos" 6 = ^ = 1.
T2y

Therefore sin F = cos2 a sin A + cos3 6 sin />'.
This answers to the expression

P = Pa cos21 -i- Pjs sin2 Z,
for the parameter of any complex of a congruence.*

V.

Since the condition that two screws may be reciprocal is linear in
the coefficients of both, and since any screw can be expressed in
terms of any six, the whole theory of reciprocal screws and of the
screw setf remains true for elliptic space. It is also possible to extend
the theory of the principal screws of inertia, if we make use of the
following definitions and of the kinetic postulate involved in them :—

"Whatever may be the nature of the constraints acting on a rigid
body, there is always a matrix a of the sixth order (called the fnnda-

* Ov for tho pitch of any snow on n eylimlroid. (Theory of Sen us, p. la.)
t 1 venture to use this word for the srutw ci>i>ii>lt:r, us the word eowplrx is usod in

Vliirlcor's sense in this paper.
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mental matrix) such that, if an impulsive wrench be applied to the
body about a screw A, the body will begin to turn about the screw
aA, which is called the instantaneous screw corresponding to the im-
pulsive screw A : aA means that the coordinates of A are transformed
by the matrix a.

" The body is said to have freedom of the wlb order if it is possible to
determine a screw set of order (6—n), such that, if B be any screw of
the set, aB = 0. The set of the n"1 order reciprocal to this set is called
the set corresponding to the freedpm of the nth order possessed by the
rigid body."

This being so, it follows at once that, if the body is free, there are
six screws satisfying the equation (a—X) A = 0, and that, if re fenced
to these six screws, the coordinates of an impulsive screw are («,, xv xsi
x*> X6> ?s)> the coordinates of the corresponding instantaneous screw
are (X^,, X8a!3, \8aj8, Xixi} \6x6, Ac*8), where Xu &c. are the roots of
D e t ( a - X ) = 0 .

And then the whole theory in §§52 to 58 of the Theory of Screws
can be at once extended to elliptic space.

VI.
It is worth while to consider the theory of the set of the third order.
Let £ = Xa+fi/3 + vy be any complex of the set: then £ is a line if

Now we may take (X/iv) as point coordinates in a plane; and then we
may say that the points of the plane answer to complexes of a three-
fold set, and that the points of a certain conic answer to the lines of
the set: two points, conjugate with respect to the conic, answer to
reciprocal complexes. We can, in precisely the same way, represent
the complexes of a fourfold set as points in space.

VII.
Clifford has applied biquaternions to the free motion of a solid in

elliptic space.* We can also employ Grassmann's methods. If the
velocity system of the body is given by a motor a, the rates of change
of the coordinates of a point x are given by the equation

x = K (ax) ;f
and then, if T is the kinetic energy,

2T = 2 T* (ax) dx

* Mathematical Papen, pp. 378 to 384.
t There scum to he Home mistakes in sign on p. 382, but they do not affect the fiuul

lt
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whei'e A is a symmetrical matrix : and Aa% denotes

(i4][aIf a3, a3, a4, aB, aj)2.

The momentum of the body is given by

M-Aa.
And the equation of motion is M = 0.

Clifford obtains the integral T=. constant; but two others can easily
be found. It can be verified without difficulty that we have

l_ a « i_ i« l_c»
i—Fs s u + i » =v + i a~r» == constant,
1 — o*—c* 1 —c—a" l—cr—b'

(1—a8) as ux + (1 — I*) 6a v^ + (1 — cs) c8 wz — constant.

VIII.

The whole theory admits of immediate extension to space of any odd
number of dimensions. Let 2n—1 be the number of dimensions : there
is a form of order n which "may be called a motor: the product of two
motors is a scalar: if the square of a motor vanishes, it is called a'
rotor: the product of n forms of the first or (2n— l) t h order is a rotor:*

2tt'
a motor has f* = —r~-t coordinates: if the product of two motors

(w!)
vanishes, they are reciprocal: there are in general two rotors reciprocal
to (fi — 2) given motors: in particular there are two rotors reciprocal
to (fi—2)/2 given motors and their conjugates; if there is an infinite
number, we have either

2X (a+Ka) = 0 or 2\ (d—Ka) = 0,
where the X are scalars and the a are the given motors. The axis of
a motor a is a rotor b, such that

a = Xb+pKb.

It is obvious that the theory of screws can now be extended to space
of 2»—1 dimensions without any change in the notation or results*

IX.

It remains to explain the connection between the methods used in >
this paper and Clifford's Biquaternions: it is not possible to work out
the correspondence between the two methods, any more than it is
possible to work out in detail the correspondence between the
Ausdehnungslehre and quaternions. The important point is, that
Clifford's operator w is the same as what i3 here denoted by K:
if a = a1i + aj+a8&, /3 = /^t + /3,i/ +/Jsfc, the motor that Clifford writes

* The converse is not true.
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a + w/3 would be written a1e1e4+a2e2e4+ase8e4+/3ie3e8-|-/38e8e1

and denoted by a single symbol.
The difficulty in the application of biquaternions to parabolic space

seems to arise from the definition of w. Clifford's definition (p. 186)
gives w8 = 0 : but there is nothing to prevent us from keeping to the
definition &> = K; that is to say, the symbol to changes rotation about
any axis into translation parallel to that axis, and translation parallel
to any vector into rotation about a rotor equal to the vector and passing
through a fixed point. The addition to Clifford's definition is con-
tained in the words " and rotation . . . . a fixed point." With this
definition we have w" = 1; we can introduce Clifford's operators

v 1 +OJ 1 —hi

and then we have I? — if, »/3 = 17, fa = 0; we can write any motor in
the form la + >//3, and we have

where q = a/y, r = /3 / S.

Using the notations of my paper " On the Application of Quaternions
to the Theory of the Linear Complex and the Linear Congruence,"*
we can write the complex (a/3) in the form a + w/3, and then
«(a,/5) = (0,n).

[I think it right to state that, when the above paper was written,
I had not seen Mr. Cox's paper in the Camb. Phil. Trans., and only
knew of it through a reference in Prof. Cayley's British Association
address.—June, 1884.]

On Contact and Isolation, a Problem in Permutations.

By Mr. H. FORTEY, M.A.

[Head Jan. 10th, 1884.]

1. Let there be n letters, and suppose a of them to bo a, b of them
to be ft, c of them to be y, and so on, where w = a + 6-fc + &c.; it is
required to find the number of permutations of these n letters, taken
all together, in which there are exactly r contacts of the a's, 9 contacts
of the /3's, t contacts of the y's, and so on.

DEF.—If a number of letters are ranged in a row, any two adjacent
are iv rnvtart.

* McxHiutjer of MuthcmaticK, t. xii., \\. 129.


