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On the Theory of Screws in Elliptic Space.
By Arraur Bucumerw, M.A.

[Read Jan. 10th, 1884.]

INTRODUCTION ¥

[As Grassmann’s methods are not as well known as they should be,
it may perhaps be convenient to the reader if I prefix a short account
of them to my paper; I have not chosen the arrangement which
would be best in itself, but that which connects itself most simply
with familiar conceptions.

Let the coordinates of a point P in spa,ce be (zyzw), referred to any
tetrahedron ABCD, and let the coordinates be so chosen that

e+yt+ztw=1;

then the fandamental idea of the Ausdehnungslehre is that this can be
expressed in the form of an equation

=aA+yB+204+wD (*).

If we choose, we can consuier this equation as nothing more than a
brief mode of expresqma the statement immediately preceding it, but
in Grassmann’s view of the matter the equation (*) is fundamental, and
we can, if we choose, express it in words by the statement immediately
preceding it.

I now alter the notation so as to make it agree with Grassmann’s:
we call the vertices of the tetrahedron of referencee,, &, ey, ¢,; the coor-
dinates of a point are written z,, 5, 2y, #,. and the point with these
coordinates is called z; we therefore have

® = @, 0+ e+ w05+ 7,0
In the same way, if y be any other point, we have
. y= 3/,e,+y,e,+y3e,+'g/‘e4.

Now an essential part of the Ausdehnungslehre is the multiplication
of points. 1f we take the two equations just written down, and
multiply the right-hand sides and the left-hand sides together in the’
most obvious way (remembering that multiplication is not to be taken
as commutative until we have proved or explicitly assamed it to be so),
we get a result which may be written

ind knd

2y =3 Zwiyseien;

t=l kel

* This introduction has been drawn up by reqnest of one of the referces.
G2
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thus, for example, we have on the right-hand side a term 2,7,6,¢,, and
also a term 2.y, ¢,¢,, and any reduction of the expression must depend
on the law of multiplication assumed for the four units e,e4ese,. The
law assumed by Grassmann is that known as polar multiplication ; that

18, we have €6 = — €6y
e =0.
Using these equations, we get at once
Ty = (“’1?/4"’”43/1) a6t (29— 2s) exeit (2a00—2Ys) €54
+ (2393 —7375) €36y + (2391 —219s) &6+ (2195 — 2311) & 5.
But, if we consider the coefficients of ¢,¢,, &c., we see at once that they
are the six coordinates of the line joining zy; and we may therefore
say that the product of two points is the line joining them.

In precisely the same way, if we take three points =, y, z, and form
their product, we find

zyz = |2y @32, | 656, + | 242, 7| 506, + | T2y 7 | €1 656,
Ys¥s Y YY1 Y Y Y
By Zy 2 %5 % %4 2, 2,24
+ | 2322 | 65096
%
7y % %,

But, if we consider the coefficients of e, 6,6,, &c., we see at once that
they are the four coordinates of the plane through 2yz, and we may
therefore say that the product of three points is the plane through them.

If we take four points, we get
zysw = | @, i, @y T | €16 €504
Y1 Y2 ¥s Y
%) 23 23 3,
W, Wy Wy Wy
If we take five points, we find that their product vanishes identically.
We have just seen that a plane X can be written in the form
X=X eeet X 006+ X6 60+X 6560 (o),
where e,ee,, &c. are the faces of the tetrahedron of reference; or,
denoting these by I, F,, E,, E,, wo have
X=X,E\+X,E;+ X, E,+ X, E,.
But now there is a difficulty. If wo take two planes given in the form

(0), and try to multiply them together, we shall fail, for the product
will vanish identically, since each term will necessarily contain at least
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one square factor; but the principle of duality obviously requires that
the product of two planes shall be their line of intersection.
Grassmann obviates this difficulty by what he calls regressive multi-
plication. Before we can define this, we must introduce another con-
ception of the greatest importance, viz., the Erginzung (what I call the
conjugate) of a quantity.
Grassmann supposes that e, e,, e, e, are so chosen that

eegee, =1,
or, if we please, we may say that this product is taken as the unit of
such products.
Now this equation can be written

& (a6e) =1,
and e, ¢, ¢, is defined as the conjugaté of e,, and denoted by Ke,,* and, in
the same way, if F is any product of not more than four units, KF is
defined by E.KE=1.

Thus Ke,e,=¢e,, Ke, ,65= +¢,, Ke,= —e¢, ¢, ¢, &c.: it will be seen here-
after that this term conjugate is appropriate. We have, if X is a plane,

KX = — (X151+X|9:+X333+X¢ €.

The definition of regressive multiplication is as follows :+—If E, I
are two different products of three units, EE’ is defined by

K (EE) = KE .KFE.
Thus, if E = ¢,¢,6,, E'= ¢, ¢,¢,, we have KE = ¢,, KE'= — ¢,,
K (EE) = —e,e5= g6,
EE =¢,e,

Using this definition of regressive multiplication, we can verify that
the product of two planes is their line of intersection ; that the product of
three planes is their point of intersection ; that the product of four planes
18 the determinant of their coordinates; and, lastly, that the product of five
planes vanishes identically.

‘We can also verify that the product of a point and a plane vanishes
if the plane contains the point; that the product of a point and a line
is the plane through the point and line, and vanishes if the line con-
tains the point; and that the product of a plane and a line is the point
of intersection of the plane and line, and vanishes if the line is in the
plane.

We must now consider the multiplication of lines. We saw, by

* Grassmann denotes it by [e, ; my notation is, of course, borrowed from Ilamilton.
t For tho space of thrce dimensious we aro considering. )
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multiplying two points, that the expression for a line was of the form
a = a6+ a.6,6,+ayese,+ a, 6565 +age6, + 05065,
and it follows, from the expressions for a,, &c., that we have
a0+ a0+ aya, = 0.*

Now take two lines a, b, and multiply them together: we get, as is
easily verified,
ab = a,b,+ a, by + ay by + b,a,+ by 5+ by g, t

and we thus see that the equation of condition satisfied by the co-
ordinates of a line @ may be written

at = 0.
But it is known that
a, b+ a3 b+ ayby+ agby + aghy + a,by = 0
is the condition that the two lines whose coordinates are

(2,05050,a504), (b bybsbybybs),

respectively, may intersect. We may therefore say (using Hamilton’s
indispensable word scalar) that the product of two lines is a scalar,
which vanishes if the lines tntorsect.

It may be useful to give a few illustrations of these processes.
Suppose we have three planes connected by a linear relation

a = Ab+4puc;
to interpret this, let D be any point, then we have
aD = AbD+ pcD.

Therefore, if 4D, cD both vanish, aD will also vanish; that is, any
point in b and ¢ is in @ ; that is, a, b, ¢ pass through the same straight
line.

In exactly the same way, we can show that, if a, b, ¢ are points such

that - a = Ab+pc,
the three points are collinear.

Now, suppose that a, b, ¢ are three lines, connected by this linear
relation ; then, if P is any point, and p any plane, we have

aP = NbP+pucP,
ap = Abp + pcp.

# In a more familiar notation, this is the condition af'+ég +cA = 0.
taf+b 4 b +af+bg+ch,
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Therefore (1) the planes joining the lines to any point are collinear,
therefore the three lines ave concurrent; (2) the intersections of the
lines with any plane are collinear, therefore the three lincs are com-
planar.

Again, let a, b, ¢, d be four lines such that

a=Ab+pct+vd;
let a be any other line; then we have
aa = Aba+pca+vda;

therefore aa vanishes if ba, ca, da all vanish : that is, any line cutting
b, ¢, d cutsa: that is, a, b, ¢, d are four gencrators of the samo species’
of an hyperboloid of one sheet.

Lastly, suppose we have a homography,

Y= A“+Pﬁl
Y= Aa'+pf,
on two lines af, «'3, then
vY = Nuad' +Ap (aff' —a'B) +p°30';

therefore the connectors of corresponding points of two homographies
generate an hyperboloid of one sheet; for, if we write down four of
these equations we shall be able to eliminate aa’, «3’'—a’3,63’, soas to
get a linear relation between four lines yy’; this is necessary because
af¥ —a’B is not a line, as its square is 2 (aSa’f’).

We have now to extend our conceptions. An expression like
a,e,¢,+ &c., in which every term contains a product of two units, will
be called a form of the second degree. We have seen that such a form
represents a straight line if its square vanishes; but, if its square
does not vanish, it must obviously mean something. We can see what
it means as follows: let ¢ be any form of the second degree, and let
z be a line,* then

az = o, + ay Tyt ay ¥yt a, T+ ag 75+ ay 7,

Therefore az = 0 is a linear relation among the six coordinates of the
line @ ; that is, it is the equation of a linear complez, and we may
therefore say that a form of the second degree whose square does not
vanish represents a linear complez. And it is worth while to notice
that this is the only way in which we can get a definite notion of the
meaning of a linear complex in three-dimensional space; the ordinary
conceptions of it are either (1) as a locus of lines, which is too re-
stricted, or (2) as a thing with six coordinatcs, that is, a point in five-.

* Coordinates (g g3y 25 7
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dimensional space, which is too wide. The definition I have just
given i perfectly definite and precise, and enables us to see the mean-
ing, in our space, of all operations on the linear complex.*

There are two other interpretations of the form of the second
degree, which are of equal importance.

Now, consider a system of forces acting on & rigid body. It is a
known theorem in mechanics that they may be reduced in one way to
the six forces acting along the six edges of a tetrahedron. Now we
know that the edge e,¢, is represented by the product e,e,, and we see
that a force acting along this edge can be represented by a,¢,¢,; where
a, is a scalar proportional to the intensity of the force. Considering
the forces along all the edges, we see that any system of forces can
be represented in the form

a = a,66,+a366,1a66,+a,66+ 066+ a0 6.

But this is the general form of the second degree: therefore the
general form of the second degree represents a system of forces acting on a
rigid body.

Now we know that a system of forces can be reduced to what Prof.
Ball calls a wrench about a certain screw. We may therefore say
that the general form of the second degree represents a wrench about a
certain screw.

There is also a kinematical interpretation. Any motion of a body
can be reduced to rotations about the six edges of a given tetrahedron;
now we habitually represent a rotation about a line by a length along
the line, and we therefore see that a rotation about the edge e¢, can
be represented by a,e,¢,. Proceeding as above, we see that the general
form of the second degree represents a motion of a rigid body; or,
again, introducing Prof. Ball’s terminology, we can say that the
general form of the second degree represents a twist about a certain screw.:
Now, considering the three interpretations we have found, and
attending only to what is common to the mechanical and kinematical
interpretations, we can say that the gemeral form of the second
degree represents a linear complex or a screw. That is, the screw
and the linear complex are the same thing regarded from differ-
ent points of view. The Ausdehnungslehre furnishes a complete
explanation of the theory of screws and the theory of the linear
complex, and shows that they are identical and not merely analogous ;
this is the view on which the following paper is based.

* There is a paper by Prof. Reye in a recent number of Crelle, on systems of com-
plexes, which is rendered much less clear than it need have been by tho want of a
precise definition of the lincar complex as an element of space.
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It remains to point out the connection with the non-Euclidean
geometry.

So far, the tetrahedron of reference has been perfectly arbitrary ; wo
now suppose it real and self-conjugate with respect to the absolute,
then the point-equation to the absolute will be

o +aj+oy+2; = 0.
The plane-equation (tangential equation) will be
X+ X+ X+ X =0.
The line equation (condition that a line may touch a surface)* will be
dtar+adtaidattas=0;

Now, if we use these forms of the equations of the absolute, the
ordinary expressions for the distance between two points become

2,9+ By + Y5+ 2,V
V(@ + 5+ 2+2) V(G Yy )

3/ { (”:'.'/a_zay:)"i' (‘”a?ll";”lya):'*' (293 —2, )" }
+ (2 Y= 2,9) + (@Y= 2Ys)* + (Y —2,7s)"
V(@42 o +a) V(Y +Hy+yy )

Now, it is easy to verify that these expressions can be written

cosxy =

sinzy =+

_ . Ky
(R = T Er) . / (yKy)’
sin gy = V/ (zy . Ky)

v (zKz) . v/ (3Ky)’
I now write Szy for z. Ky, Tz for + +(z2K=).}

Then we see that the above expressions can be written

We have, of course, precisely similar expressions for the sine and
cosine of the angle between two planes, and to these can be added the
expressions for the angle between two lines or two complexes used in
the paper.]

The Theory of Screws in Elliptic Space has been considered by
Clifford and by Professor Ball,} but I venture to hope that the

¢ Clifford’s rank-equation.

1 This is not Grassmann’s notation,

1 Clifford— Preliminary Sketch of Biquaternions,” Mathematical Papers, pp.
180 to 200; also Fragments numbered xli., xli., xliv.

Ball—** Certain Problems in the Dynamics of a Rigid System moving in Elliptic:
Space ”’ (Traps. R.I.A., t. xxviii., pp. 1569 to 187),
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methods employed in the following paper will be found to justify its
existence.

My special object is to show that the Ausdehnungslehre supplies all
the necessary materials for a calculus of screws in elliptic space.
Clifford was apparently led to construct his theory of biguaternions
by the want of such & calculus; but Grassmann’s method seems to
afford a simpler and more natural means of expression than
biquaternions: thus an expression that Clifford writes

a—fB+wVaf
1-8q¢3 °’

; aff
would be written Saf’
with the modifications of Grassmann’s notation used in this paper:
and the meaning of tho expression seems more obvious if we use the
second form. '

Another result of the application of the Ausdehnungslehre is, that we
are able to'make use of certain definitions given by Grassmann, and,
by so doing, to discuss the metric properties of elliptic space without
cxplicitly introducing the absolute.

I

The four points of reference are denoted by e, e, e, ¢, The
“ Erginzung ” of any quantity a I call its conjugate and denote by
Kn. I write Sqb for the product aKb, if a, b are of the same order,

aud I write Tz for the positive square root of Szz.
The general expression for a form of the second order is

a4 = 0,66+ 03658, + aye50,+ 0585+ ey, + a0 65,

A form of the second order represents a linear complex, or, what is
the same thing, a screw or a motor, to use Clifford’s expression.*

If a represents a line (rotor), it is the product of two forms of the
first or third order, and we therefore have

o
=_—z = qa,+azay+ aza,.

If a, b are two complexes,
ab = a,by+asbs+aby+ab+ aghy +a,b,.

If ab vanishes, the complexes are said to bé reciprocal : two lines are
reciprocal if they cut.

* As a screw (motor) and a linear complex are exactly the same, I shall use the
three words for the form of the second order according to the context.
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Two quantitjes a, b determine two angles defined by the equations

Tabd
sinlab] = 7
cos (ab) = Z'—(,‘:i,l,(—:—) Rl

These angles are identical, unless a, b are both complexzes (or lines)
or one is a point (or plane) and the other a complex (not a line).

If a is a point on any line and b is a point on the conjugate line,
Sab vanishes. Two lines are at right angles if either meets the con-
jugate of the other.

II.

Let a, b be any two lines : 'if a line ¢ is to meet them both at right
angles, it must satisfy the four equations

=ac=bc=Ka.c=Kb.c.

But obviously, if ¢ satisfies these equations, Kc also satisfies them ;
but we know that in general there are only two lines satisfying the
conditions, therefore we have the theorem: there are in general two
lines meeting two given lines at right angles, and these two lines are
at right angles.

If there are more than two lines meeting a, b at right angles, there
is an infinite number, and «a, b, Ka, Kb must be connected by a linear
relation with scalar coefficients : in this case the lines @, b are said to
be parallel.

If we have a=A+puKb+vKa,
we have also Kag = AKb+pub+va.
Substituting,

a=bA+pur)+Kb(p4+rv)+ar* =0;

but in general we shall not have a, b, Kb connected by a liucar
relation: for, if this were the case, they would be complanar and con-
current,

Therefore =1 A+4ur=0.

That is, either » =1, A =+~p, or v =—1, A=p. The first pair giyes
a—Ka = X\ (b—Kb).

The second pair gives  a+Ka = X (b+ Kb).

We thus see that there are two species of parallelism, Clifford
distinguishes them as left and right parallelism respectively.

* It must be borne in mind that the tenbor of a scalur is the scalar itsclf, whether
it be positive or nogative,



92 . Mr. Arthur Buchheim on ~ [Jan. 10,

We shall now treat the subject of parallelism in a different way
leading, however, to the same results,
Let 2, yy’ be the points in which q, b are
cut by ¢, Ke.
Then we have
0 = Sza'= Say’'= Sya'= Syy'.
Let zy = ¢, ¢y'=¢".
Take any points { =az+a'?, n = By+L0y’
on a, b respectively.
Then §= afzy+afzy’ +dPa’y+a By,
' 8 (22".&0) = a8’ T*z82"y'— '3 T?a’ Szy.
Now we can suppose that the tensors of all points are unity : thon
(én) is at right angles to a if
B _acosy
8 o cosg’

But all our expreqsions are homogeneous, and we may therefore use
this equa.tmn in the form

=acos¢, [=a cosg.
af3 cos ¢ + a3’ cos ¢’
@+ FHEY
Substituting the values of 3, #', we get

Now cos (En) =

(a*+a")
' 5?9’ +a” cos? )V

This gives the perpendicular distance from b of any point in a. It
follows (1) that ¢, ¢’ are one the greatest and the other the least va.lnes
of &, and (2) that, if cos ¢ = = cos ¢’, cos &y = =+ cos ¢.

If ¢ = ¢, a,baresaid to be right parallel.

If g+¢'=m, a,bare said to be left parallel.

We have now to express these conditions in terms of tho coordinates
of the lines,

We have Sab = S (2. yy') =

cos (&) = cos¢ cosg’. (oo

Szy | Sy’
Sz'y Sz'y
= coS ¢ COs ¢,

Tab = 8 (a2’ yy'. ¢ yy').
| T% 0 Szy O

0 T 0 Sy
Ssy 0 Ty O

0 Sxy 0 1%
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Therefore sin’ [ab] = sin’ ¢ sin’¢”.

But all angles are supposed less than x; we therefore have
sin [ab] = sin ¢ sing”.

And we found cos (ab) = cos ¢ cos ¢'.

Therefore, if the lines are right parallel,

. ' sin [ab] + cos (ab) = 1.

If they are left parallel,
sin [ab]—cos (ab) = 1.

Taking the first condition, we have A

ab+aKb _ 1. ..
TaTb ~
But (a+Ka)(b+Kbd) =2 (ab+aKD),
and T (a+Ka) T(b+Kb) = 2Ta Tab.
_ (a+EKa)(b+Kb) __
Therefore T(a+Ka) TO+ED) 1.

Now it is easy to see that the coordinates of (a+Ka) are of tho form
(a,05050,0,a,), and that those of b+ Kb are of the form (b,b,b,5,b,b,).

a,b,+a;b,+a,b, =1.
(a1 + a3 + ag)d (b + by +by)
Therefore 0 = (bya;—ayby)* + (by0, —a, b,)* + (@, by—a,b,)*
That is, if a, b are real,
a, i mgiay=>b, by b
That is, a+ Ka = X (b+ Kb),

where A is a scalar.
In precisely the same way, we 'get as the condition for left

parallelism* a—Ka =\ (b—Kb)."

Therefore

IIT.

" If a is a motor, (aa) vanishes and [aa] is called the pitch of the
"motor. If a, b are two motors, [ab] is called their moment. Ifais a
motor, and a—Ka = 0, a is called a right vector; if a+Ka =0, ais
called a left vector. : i
Any motor can be expressed in one way only, as the sum of a right
and a left vector.

*1f wo use tho absolute, there is no difficulty in obtaining these conditions
geometrically.
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For, let a he the giveﬁ motor, a, 3 the required vectors: we have

a+f3=a,
and therefore . Ka+EKp = Ka,
that is, a—j3 = Ka.
Therefore a=}(a+Ka), =1} (a—Ka).

If a motor is reduced to the form Ab+u Kb, where b is a lineand A, u
scalars, b is called the axis of the motor.

To find the axis of a given motor.

We are to have a = \b+uKb,
and therefore - Ka=\Kb+pb.
Therefore b= )u;%;;l,(a.
Since b can be multiplied by any scalar, we can take
b=2Aa— pKa,
and then ' = 2u T,

T'a = (\*+u?) T.

MNiut 2T

Therefore A a5
that is, —)‘—+i= .2 y
. B A s1n ¢
if ¢ is the pitch of a.
A solution of this is A =cot}¢;
m

and then we can take A=cos}¢, u =sini¢.
Therefore b = acos }¢—Kasin }¢.

The other solution A /4 = tan } ¢ would simply change b and Kb into
— Kb and —0.

Now let a, a’ be two motors : let 3, 8’ be their axes and ¢, ¢’ their
pitches. Then
: B =acos}o—Kasin ¢,

f'= a’cos}¢’'—Ka'sin } ¢".
‘U'sing these expressions to calculate 33" and SB3’, and then solving
for ad’, and remembering that (as is easily proved)
TB = Tacos ¢, Ti¥= Ta’cos ¢,
we get sin [ac’] = sin [33] cor } (p—¢") + cos () sin } (¢ + ).
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This equation corresponds to the expression
Asin ¢+ (k+K") cos ¢,
for the moment of two complexes in parabolic space.

Iv.

The axes of two complexes a, 3 intersect at right angles if Se3=0,
a5 = 0. Every congruence contains two complexes satisfying these
conditions. Let the congruence be referred to these complexes, so
that, if y is any complex of the congruence, we have

v=zzatyp.
Let the pitches of a, 8, ¥ be A, B, T; let (ay) = a, (By):b. Then,
remembering that So8 = afs = 0, we get
.y'l - m‘laﬁ_*_yﬂﬁﬁ’ T’Y = mﬂTla_*_y‘lTEl; ;
_ Say = 21%, SBy = yT?3.
The last two equations give
_Tycosa __Tycosd
PET, y—,’l‘,d ’
2 2 9, 270
sinl = L= TOHB
"y  21%a+y*17p3

_cos’asinA+costbsin B

cos®a + cos?d
.3 7n3 e 2
Bnut cos’a+cos’h = qf?—_'-"q—ﬂ—@ =1.
T2y
Therefore sin ' = cos*u sin 4 +cos® b sin B.

This answers to the expression
P = P, cos’l-i P, sin*l,
for the parumeter of any complex of & congrnence.*

V.

Since the condition that two screws may be reciprocal is linear in
the coefficients of both, and since any screw can be expressed in
terms of any six, the whole theory of reciprocal screws and of the
screw sett remains truc for elliptic space. 1t is also possible to ex'tend
the theory of the principal screws of inertia, if we make use of the
following definitions and of the kinetic postulate involved in them :—

“ Whatever may be the nature of the constraints acting on a rigid
body, there is always a matrix a of the sixth order (called the funda-

% Or for the pitch of any serew on a evlindrotd.  (Z%heory of Sercies, p. 15.)
+ 1 venture to use this word for the sciew compler, as the word ecomplex is used in
Pliicker's seuse in this paper.



96 Mr. Arthur Buchheim on [Jan. 10,

mental matrix) such that, if an impulsive wrench be applicd to the
body about a screw 4, the body will begin to turn about the screw
ad, which is called the instantaneous screw corresponding to the im-
pulsive screw A4 : ad means that the coordinates of 4 are transformed
by the matrix a. ' .

“The body- is said to have freedom of the n'* order if it is possible to
determine a screw set of order (6—n), such that, if B be any screw of
the set, aB=0. The set of the 2™ order reciprocal to this set is called
the set corresponding to the freedom of the n™ order possessed by the
rigid body.”

This being so, it follows at once that, if the body is free, there are
six screws satisfying the equation (a—A) A =0, and that, if referred
to these six screws, the coordinates of an impulsive screw are (x,, 2, oy,
2, Z;, %), the coordinates of the corresponding instantaneous screw
are (A, A%y, ATy AZ, AgZs A%,), where A, &c. are the roots of
Det (a—A) = 0.

And then the whole theory in §§ 52 to 58 of the Theory of Screws
can be at once extended to elliptic space.

VI

It is worth while to consider the theory of the set of the third order.

Let £ = Aa+pB+vy be any complex of the set: then £is a line if
(a’: B’s 7’: GY. ra, aﬁ}p«pv)’ =0,

Now we may take (Ap») as point coordinates in a plane; and then we

may say that the points of the plane answer to complexes of a three-

fold set, and that the points of a certain conic answer to the lines of
the sct: two points, conjugate with respect to the conic, answer to

reciprocal complexes. We can, in precisely the same way, represent
the complexes of a fourfold set as points in space.

VII

Clifford has applied biguaternions to the free motion of a solid in
elliptic space.* We can also employ Grassmann’s methods. If the
velocity system of the body is given by a motor a, the rates of change
of the coordinates of a point  are given by the equation

2 = K (a);t
and then, if 7' is the kinetic energy,
2T = 3 T* (az) d»
=A (a’),

* Mathematical Papers, pp. 378 to 384.
+ ‘I'here scem to be some mistakes in sign on p. 382, but they do not affect the finul
1esult.
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where 4 is a symmetrical matrix: and Aa® denotes
(A a, ay, ay, a, a, ap)*.
The momentum of the body is given by
M= Aa.
And the equation of motion is M = 0.

Clifford obtains the integral T'= constant ; but two others can easily

be found. It can be verified without difficulty that we have
1-at 1—18 1—¢
1-p—¢ w'+ 1——a* vt P constant,

(1—a*)duz+ (1—-0°) b*vy + (1 —¢*) ¢ wz = constant.

VIII.

The whole theory admits of immediate extension to space of any odd
number of dimensions. Let 21 —1 be the number of dimensions: there
is a form of order » which ‘may be called a motor: the product of two
motors is a scalar : if the square of a motor vanishes, itis called &’
rotor : the product of n forms of the first or (2n.—1)™ order is a rotor:*
2nl
(n])?
vanishes, they are reciprocal : there are in general two rotors reciprocal
to (p—2) given motors: in particular there are two rotors reciprocal
to (u—2) /2 given motorsand their conjugates; if there is an infinite
number, we have either '

3\ (e+Ka) =0 or 3A(i—Ka) =0,
where the A are scalars and the a are the givén motors. The axis of
a motor a 18 a rotor b, such that
a = b+ uKl.

It is obvious that the theory of screws can now be extended to space
of 2n—1 dimensions without any change in the notation or resuits’

a motor has u=

coordinates: if the product of two motors

IX.

It remains to explain the connection between the methods used in
this paper and Clifford’s Biquaternions: it is not possible to work out
the correspondence between the twao methods, any more than it is
possible to work out in detail the correspondence between the
Ausdehnungslehre and quaternions. The impovtant point is, that
Clifford’s operator w is the sume as what i3 here denoted by K:
ifa = ai+ag+ayk, B=p,14 3,5+ Bk, the motor that Clifford writes

* The converse is not true.
VOL. XV.—No. 221, u
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a+wB would be written a,e ,e,+ayee,+asese,+ B e85+ Byese,+ By
and denoted by a single symbol.

The difficulty in the application of biquaternions to parabolic space
seems to arise from the definition of w. Clifford’s definition (p. 186)
gives v’ =0 : but there is nothing to prevent us from keeping to the
definition w = K ; that is to say, the symbol v changes rotation about
any axis into translation parallel to that axis, and translation parallel
to any vector into rotation about a rotor equal to the vector and passing
through a fixed point. The addition to Clifford’s definition is con-

tained in the words ‘“‘and rotation....a fixed point.” With this
definition we have v’ = 1; we can introduce Clifford’s operators
f=1te o _1-w

2 ’ n 2 ’
and then we have &= ¢, n® = n, &y = 0; we can write any motor in
the form éa 453, and we have
ta+nfB _
Ey+nd
where g =afy, r=p/0.

&g+,

Using the notations of my paper “ On the Application of Quaternions
to the Theory of the Linear Complex and the Linear Congruence,”*
we can write the complex (af) in the form a+w@, and then
w (a, B) = (B, a).

[I think it right to state that, when the above paper was written,
I had not seen Mr. Cox’s paper in the Camb. Phil. Trans., and only
knew of it through a reference in Prof. Cayley’s British Association
address.—June, 1884.]

On Oontact and Isolation, a Problem in Permutations.
By Mr. H. Forrey, M.A.
[Read Jan. 10¢k, 1884.]

1. Let there be n letters, and suppose a of them to be a, b of them
to be 3,¢c of them to be y, and so on, where n=a+b+c+ &c.; it is
required to find the number of permutations of these n letters, taken
all togcther, in which there are exactly » contacts of the a's, g contacts
of the f3's, ¢ contacts of the y’s, and so on.

Der.—If a number of lctters are ranged in a row, any two adjacent
letters are @n contact, )

¥ Messeuger of Mathematics, t. xii., p. 129,



