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NOTE ON A SOLUBLE DYNAMICAL PROBLEM

By L. J. Rogegs.

[Received March 10th, 1908.—Read March 12th, 1908.]

A pynamican system whose equation of emergy in 7 independent co-
ordinates x,, Ly, ..., Tn, 18

Vil Yot = P+ Pt M
where Y), Y,, ..., P;, P, are functions of =, 2, ..., is satisfied by the
equations Yii, = /P, Yyiy=4/Py .. )
provided P,, P,, ... are respectively functions of z,, z, ... only. For,
in Lagrange’s equation,
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and

=Py =12,

so that the equation is easily seen to be satisfied.
If Y,=&X—-X)&X—-X)... &X—X )X —X) .. (X—X), 3

where X,, Xj, ... are respectively functions of z;, z,, ... only, the solution
of the dynamical problem is general and complete. For, if

P, = Ftayt+a, X, +a, X2+ ...+ 0. X7+ CX7 7Y,
the equation of energy becomes

Y&t ... = 0+%+ % +o

in which the constants a,, a,, ..., @,—z do not occur.
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Moreover, equations (2) may be written

dx, dzx
+ 2 4...=0
23 V' Py
Xidz, , X;dz
4+ =22 4. =0
v P, V' Py
e e oy (4)
X~%dz, X ldzx
+ =22 24...=0
vV P, VP,
Xi~'de, X3 'dz,
+ =2 +... =dt.
VP, VP, )
The solution is therefore general, since we have 2n arbitrary constants,
viz., @y, @y, ..., Gny, C, and the n constants obtained by integrating (4).

It is also complete, as equations (4) are directly integrable.

If x,, z,, ... are the generalized elliptic coordinates of a particle moving
in n-fold space, the vis viva of the particle can be reduced to a form corre-
sponding to that in (1), subject to condition (8). If the functions F are all
zero, we shall get the conditions for a straight line. ' :

Hence the equations of a straight line in n-fold elliptic coordinates are
the algebraic solutions of the system (4) of Abelian differential equations.

We may, moreover, extend the generality of the solution by supposing

that the vis viva contains terms such as L¢? in addition to those assumed
above, L being & function of z,, z,, ..., z, only, of a form such that

1 1

- L 1
L= h@my T ot

¢2 (Xz) Y2 Sbn (Xn) Yn )

In such a case ¢ is an ignorable coordinate, leading to an integral of
the type L¢= h, and as such is subject to the ordinary laws which
modify the form of the energy-equation in which ignorable coordinates
exist. When, however, as in this case, the ignorable coordinate occurs in
one term only, through the square of its time-flux, in the kinetic energy,
it is worth noticing that we may eliminate the variables entirely before
applying the other Lagrangian equation, provided the corresponding term
be placed in the force-function.

For instance, if T+{;L¢2 = U be the equation of energy where T', L, U
are independent of ¢, and 6 any coordinate of the system, the true
Lagrangian equation for 0 is

d oT oT - oL _ U
a0 w7




1908.] A SOLUBLE DYNAM{CAL PRO3LEM. 328

. d oT oT 20 1 _0U
wen Tt B NPT T

which is the sama as if the equation hal b3sn derivel from an eascyy-
equation T
T=U—% T

If, then, L has the form assumed above, ths dyanimical system has now
a complete solution for all variables except ¢.
The last, however, is given by

6 _1_ 1 1
h L an(X) Y, + $2(X)) Y, toee
=& 4 &4
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where now P, = Ftayt+a, X,+...+CX ' —3 rYyak
As an instance of the introduction of extra terms such as %Lq&"‘ into
the kinetic energy, we may shew how Euler’s problem of the motion of a
particle attracted by Newtonian forces towards two fixed centres of force
may be fully solved, i.e., when the path of the particle is not confined to a
plane.
If the force-centres lie at the foci of the ellipse

2 oy

and p=atNetw)  o__ O+Nb+w
a—b ' Y b—a ’

then the focal distances are va+X++a+u.

Taking the coordinates of the particle as z, y in the plane containing
the particle and the force-centres, and ¢ the angle this plane makes with
a fixed plane with which it is coincident at some epoch, the energy-equation
is

3@+ 4y’ = C+ 2 + 02,
1 2

where 7,, 7, are the distances from the centres of force.
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In the elliptic coordinates this becomes

Y .
TA—uw) +1 (=N M -3 (b+;\) (0+w) !

5\2
(@+Nd+N (@+w) (b+w) —=b

=C+ (Kf‘*‘;:g) \/m + (Kcg—1xy) ~/¢b+,u )
— m—A\

Here I, the coefficient of 4;9 satisfies the relation

1_ o (1 1
I="0=Y {gTmo=n t TTREN |-

so that a complete solution of the pfoblem is obtained according to the
method above indicated.*

When 2 = 8, and X, Y, Z are elliptic coordinates, the vis viva takes
the form

1 X—-NEX-2)2"+} Y—-2)(Y—-X) y*+3Z—-X)(Z—-Y) &,
ax\* _ AYN'_ ve .
where (d—ﬁ = X4+pXitex+r, | d;’) = V4 pY'4qY4r,

2
and (Z—f) = 224pZ2+qZ+r.

Taking the equation of energy to be
X=YV(X—2)2*+(Y—-2)(Y—X) y*+(Z—X)(Z—Y) &

P Q R

=taoha—s T == T T=0E=9"

we have seen that the dynamical system is completely soluble if P, Q, B
are respectively functions of X, Y, Z.

These functions can be put into a simple general form when subjected
to the condition that the forces are due to gravitation only.

* When the attractions are zero the path is a straight line whose equations are algebraic
in A, u and circular functions of ¢. There are three equations for the solution, involving
elliptic integrals. The equation involving A and u, leads to the addition equation of elliptic
integrals of the first kind ; while the equations giving ¢ and ¢ lead to the fundamental pro-
perties of those of the second and third kind respectively. There is probably no analytical
process which yields these results so concisely.
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For it is known that if the square of the velocity of a particle be
denoted by »2 '
2 + + h2 )

where z, y, z are orthogonal coordma,tes, then Laplace’s operation is
equivalent to

bty (3 24 2 a2 4 0 ke B

ox hohy 0x ' Oy h,,hl ay hihg 0z)°
ie v—22 +z-0 +x-n (5)
€ PP 8y.2 el

80 that this operation must annihilate the function

P 0 R
tEma—z T - T=nz=1"

It will be found convenient to write X, for % , and X, for

X
T = 38X+ 2pX+q),
with corresponding meanings for Y;, Z;, Y, Z,; and to use Q for the

operation (5), which, of course, only differs from Laplace’s V2 by a factor
here unnecessary.

Now it can readily be shown that

QX
X=Y)(X—2)

_P (X X\ _ O 1 &1
_W(X—-IY X—-IZ) Xlay2 =7 TNE =2
=3{X2_X2_ X, X )
oz \X—Y X—-2Z X—Y¢ X—2y)
_x 9 Y 9 _Z
Xla1 (X—Y)"+X1 oz (X—2)°
_0 (. Y Z, 27, 27, VA
8_{X—Y X—2Z2 X—-Y X— Y)”+ +(X Z)ﬂ}
0 I
X wog th g
= 0,

(6)

so that it will be better to substitute UX, for P, since the coefficient of U .
in QUX, will then be zero.
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UXx,
Thus Q——_(X—Y) X=2)
o 1
= Ux, (X Y X—Z>+ -

=% (le X1z>aﬁg+2?3;] aazXI(JT-lT?_fl-?)’

which, if weput %g =-}I{i2, becomes
1 1 Y0 L L 9 1 1
% (X—-Y X—2Z) oz X2+2Xl R (X Y X—Z)
1 1 \oL (1 1 )
(X % X—Z)P Uz w=zp) -

Hence, if M and N be functions respectively of ¥ and z derived from @
and R, just as L is derived from P, we see that the final condition
required is that the sum of the three expressions of which (7) is the type
must be equal to zero.

The form of the relation being purely algebraic in X, Y, Z, we are
naturally led to test for what value of # the assumptions L = X", M = Y*,
N = Z" lead to the satisfying of the identity. Such values are easily
seen to be n = 0, 1, 2, 8, 4 and no other.

Finally, we see that the necessary value of P, i.e., XIJ% aX, is
1

AX*+BX*4+CX*+DX+E
(X +pX*+gX+0)
while @ and E are the same functions of Y and Z respectively. In

consequence of (6) it is ev1dent that the lower limit of these integrals may
be taken as arbitrary.

ax,

(X4+pX2+q X+ j



