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are proportional to 1, rew, re~", the required condition is that
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It can be easily verified that for a triangle
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and for a quadrilateral r + 2 cos 8 = 0.

On Me JrfeaZ Geometrical Form of Natural Oell-Structure.

By Mrs. BRYANT, D .SC.

{Read March \2tht 1885.]

Ideal natural cell-strncture is not necessarily regular, in the strict
geometrical sense of the word, as, by convention, it is used to denote
solids with identically equal faces and solid angles. A cell-structure
regular, in this conventional sense, would clearly consist of cells cubical
in form; and such structure, as we shall see, is not natural.

The form of a natural structure is a logical result of its mode of
genesis, and that form is ideal of which the mode of genesis is perfectly
regular. Moreover, the original cell is spherical in form. Hence the-
solution of our problem turns upon the double question :—

1. If space is filled with equal spheres, and this space-ful of spheres
is then crushed together symmetrically till the whole becomes a solid
mass, what shape does each sphere ultimately assume ?

2. If a homogeneous solid has equally efficient centres of excavation
or absorption distributed uniformly in it, what is the ultimate form of
the cells excavated P it being supposed that, when the excavating or
absorbing agents cease their work, the walls of the cells are uniform
in thickness, i.e., the excavation is complete.

The second qnestion is manifestly the counterpart of the first, and is
answered in the answer to the first.

Our first step must be to determine the mode of arrangement of the
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spheres which, by the terms of the question, fill space in a natural, as
well as a regular, manner. Now, there are three conceivable ways in
which the spheres can be arranged regularly. Only one of these is,
however, a natural, because a mechanically stable, arrangement, i.e.,
the one in which the conditions of maximum density and maximum
stability are fulfilled,—in which, therefore, the centres of all the Bpheres
that touch any given sphere are at the minimum mutual distance of the
common diameter.

The three geometrically possible arrangements may be conceived as
follows, for convenience in deducing the corresponding forms of the
crushed spheres:—

(1) The central sphere touches the six faces of a cube at their mid-
points, and six surrounding spheres at the same points. No two of
these six touch each other; the centres of any adjacent two are at a
distance equal to v/2 of the diameter, and they are not, therefore,
situated similarly with respect to the central Bphere and to one
another. This may be called a cubical arrangement, and, if crushed*
will yield cubes filling space without interstices.

(2) The central sphere passes through, and touches eight surround-
ing spheres at, the eight vertices of a cube. No two of these eight
surrounding spheres touch each other, and the centres of any adjacent

2
two are at a distance equal to —^ of the diameter. This arrangement

v o
is, therefore, denser than the first; but, like it, is deGcient in the mutual
support of its parts, and in the more perfect symmetry which belongs,
as we shall see, to the third. If crashed, it will yield octohedra with
tetrahedral interstices, these together filling space, as is well known ;
but, since there are interstices, the crushing cannot be complete. The
proof of this need not detain us here.

(3) The central sphere touches the twelve edges of a cube, and
twelve surrounding spheres, at the mid-points of the edges. The
radius of the spheres is in this case equal to the semi-diagonal of the
cube's face, and this is clearly equal to the distance between the points
of contact of two adjacent spheres with the central sphere. The dis-
tance between their centres is, therefore, by similar triangles twice, the
radius. Hence they touch; and thus the twelve surrounding spheres
are in contact with each other three-and-three about the eight cornel's
of the cube, while they are in contact four-and-four about the six
faces of the cube.

This arrangement is of maximum density, since the surrounding
spheres have their centres at the minimum distance of the common
diameter. I t is also the arrangement of maximum stability, because
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the mutual support of its parts is the greatest possible, as each of the
surfaces bounding intervening spaces touches all the others. This
is, therefore, the natural arrangement; and, as a matter of fact, if a
quantity of shot be thrown into a box and shaken about freely, it will
arrange itself in this way. Hence, too, the natural form of a pile of
balls is a pyramid on a regular hexagonal, or, which is the same thing,
an. equilateral triangular, base. Piles on square bases are also common;
but, as can easily be seen, the elementary arrangement is exactly the
same ; in the triangular pile, a face of the elementary tetrahedron of
adjacent centres is horizontal, and in the square pyramidal pile, an
edge.

While the mechanical instability of any but this dodecahedral
arrangement of spheres determines it as the natnral arrangement in a
space-ful of spheres, its property of maximum density is a reason for
considering it of fundamental importance in considering the natural
mode of distribution of excavators or absorbents in a solid, since by it
the maximum of excavation or absorption in a given space can be
secured. Moreover, it is, as we have seen, moro perfectly symmetrical
than any other arrangement.

1. Considering, first, the case of the spheres to be symmetrically
crushed together, let us limit our attention to the central sphere, which
touches the twelve adjacent spheres at the mid-points of the twelve
edges of a cube, its intermediate portions bulging out through the six
faces of the cube. When the spheres aro crushed together, these
twelve points of contact move inwards along the radii, and the six
intermediate portions are squeezed out into the over-arching spaces
which lie between the points of contact of the surrounding spheres.
Since there are four spheres round every face, these portions will be
squeezed into four-sided pyramids, the faces of each being evidently
conterminous with those of the adjacent pyramid, both being the
ultimate position of the original plane of contact. Each, therefore,
makes half aright angle with the face of the cube, the sum of the two
being supplementary to the angle between the cube's faces. Hence, in
the final position, we have the twelve points of contact represented by
the mid-points of the edges of a smaller cube, and the intermediate
portions heaped up into six square pyramids on the faces of the cub.o,
whose faces make half a right angle with those of the cube. The form
thus generated is a solid with twelve rhombic faces, the well-known
rhombic dodecahedron.

There will be no intervening spaces in the mass of solids when the
spheres are completely crushed together; because dodocahedra of this
kind can be packed so as to fill space without interstices. To prove
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this, it is convenient to consider the dodecahedron as built up by
dividing a cube into the six equal pyramids which have their vertices
at the intersection of its diagonals, and placing these on the faces of
an equal cube. The twenty-four faces of the figure reduce, as in the
above, to twelve; since the diagonal plane of a cube makes half a right-
angle with the cube's face, and hence two adjacent faces of any two
pyramids lie in one plane and form a rhombus.

Six of the solid angles are enclosed by four planes, perpendioular
to each other, two and two, since they were originally the diagonal
planes of a cube. Therefore, four of the solids superposed on these
faces at any vertex will just leave room for the vertex of another solid
in the remaining space.

The other eight solid angles are situated at the vertices of the
original cube, being enclosed by three plane angles, which are the ob-
tuse angles of the rhombi, and are easily seen to be equal to those be-
tween the opposite diagonals of the cube. Now, by parallels, the dia-
gonal of the dodecahedron through one of these vertices makes, with an
edge of the dodecahedron, an angle equal to that which it makes with
the opposite diagonal. Hence, the diagonal makes an exterior angle
with each of the edges equal to the obtuse angle of the faces. When,
therefore, three solids are superposed on the faces at such a vertex,
their edges, meeting in that vertex, coincide along the diagonal of the
central solid.

Space can, therefore, be filled with rhombic dodecahedra; and the
crushed spheres, consequently, form a mass without intervening
spaces.

We should expect to find this dodecahedral form in nature wherever
originally spherical cells, packed together in the most natural or in
the closest manner, have been subjected to uniform and complete
pressure. The two conditions, (1) of initial symmetrical arrangement,
and (2) of complete symmetrical pressure, are probably seldom ful-
filled simultaneously, as a matter of fact; and so, nature transgresses
her own ideal of naturalness in this as in other respects. In the
centre of a mass of soap-bubbles their chance of fulfilment is perhaps
at its best: but, in the fact that the bubbles tend to stick to one
another, there is a disturbing element, even in the centre of the mass;
and the difficulty of seeing the form within the mass is great.

2. Reverting now to our second question, it is, as before remarked,
evident that the structure produced by complete and symmetrical
pressure of spherical cells, symmetrically distributed in a space, is of
the same form as that produced by the complete and symmetrical
activity of equally efficient centres of excavation or absorption,
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symmetrically distributed in a solid. The dodecahedral form is,
therefore, the ideal natural form of cell-structure which is caused
by absorption, as organic structures often are, or by excavation as in
the case of the honey-comb cell.

In organic structure it is not likely that the ideal conditions are
ever completely fulfilled, and frequently the actual conditions are
quite different. But, as regards the honey-comb, we might reasonably
expect that the bees, who are the cell-excavators, should by natural
instinct distribute themselves as densely as possible, and with a con-
siderable degree of regularity, and that their activities should be
equal and symmetrical about the working parts of their bodies. The
facts confirm, this reasonable expectation. The bees distribute them-
selves, with apparent uniformity, at the two sides of a homogeneous
cake of wax which has been previously deposited. In it they excavate
cells, at doubtless uniform rates of work, and continue excavating till
their work is as complete as possible, and the walls of the cells there-
fore of uniform thickness. Meanwhile, the excavated wax is used to
build up higher the open cell walls. Hence, the cells ought to be
elongated rhombic semi-dodecahedra; and this is just what they are,
the axis of the cell corresponding to a diagonal of the primary cube,
and the apex being one of the trihedral vertices of the dodecahedron.
Each face at the apex fits exactly against one face of a cell in the oppo-
site system. Each cell, therefore, is in contact with three cells of the
opposite system.

It follows, from this last mentioned fact, that the bees must distri-
bute themselves with maximum density, not only on each side
separately, but on the two considered jointly. This, as a case of in-
stinct, is certainly remarkable, but the possibilities of trial and error
are sufficient to account for it. It is not unreasonable to expect that
the bees should learn how to employ the largest possible number of
themselves on a piece of wax to be excavated, this being a thing
which they would naturally try to do; though it would be strange,
in comparison, if they tried to effect those other two ends, of maximum
economy in wax, and maximum strength of structure, which, as a
matter of fact, they do effect. Whatever it is natural that they should
try to do, it is natural that they should succeed in doing. And so,
it is no less intelligible than remarkable, that our one clear example of
nature fulfilling her own ideal of a natural cell-structure, should be the
work of simple animal instinct in the construction of the honey-comb.
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