On Bessel's Functions, and Relutions conn-cting thent with Hyper-Spherical and Spherical Harmonics. By E. W. Hobson, Sc.D. Received and read December 14th, 1893.

The Bessel's functions $J_{m}(r)$ of positive integral order m make their appearance in the product $\sin _{\sin }^{\cos } n \theta . J_{m}(r)$, which is a particular integral of the differential equation

$$
\begin{gathered}
\frac{\partial^{2} V}{\partial x^{4}}+\frac{\partial^{2} V}{\partial y^{2}}+V=0, \\
x=r \cos \theta, \quad y=r \sin \theta .
\end{gathered}
$$

where
The Bessel's functions $J_{m+1}(r)$ of order half an odd integer (known sometimes as spherical functions) make their appearance in the product

$$
\frac{1}{\sqrt{ } r} J_{m+i}(r) \cdot Y_{m}(\theta, \varphi),
$$

which satisfies the equation $\nabla^{2} V+V=0$,
Y_{m} denoting a surface harmonic of order m. There is, however, another mode in which both kinds ơt functions may be considered to arise; it appears that, if we consider the equation in p variables corresponding to

$$
\Gamma^{2} V+V=0
$$

the function $\frac{J_{t p-1}(r)}{r^{[p-1}}$ plays the same part in relation to this equation that $J_{0}(r)$ does in relation to the equation

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+V=0
$$

and thus that $\frac{J_{m}(r)}{r^{m}}$ may be considered to be the Bessel's function of zero order when there are $2 m+2$ variables, and also that $\frac{J_{m-i}(r)}{r^{m+1}}$ will be the Bessel's function of zero order when $2 m+3$ is the number of variables. In the present paper, various properties of the functions are developed from this point of view, the method having the advantage of dealing with both classes of functions at once. A considerable number of relations connecting the functions of vol. xxv.-NO. 478.
different orders, both amongst themselves and with the corresponding hyper-spherical harmonics, are obtained, many of which are believed to be new. Many of these theorems arise from a comparison of different ways of expressing the same solution of one of the equations

$$
\nabla^{3} V=0, \quad \nabla^{3} V+V=0,
$$

the number of variables being unrestricted. Expressions are obtained for the zonal and tesseral harmonics as definite integrals involving Bessel's functions.

A Theorem concerning a certain Differential Operator.

1. In a paper" "On a Theorem in Differentiation and its Application to Spherical Harmonics," I proved a theorem which may be stated thus :-If $f_{n}\left(x_{1}, x_{y}, \ldots x_{p}\right)$ denote a rationcl integral function of degree n of the p variables $x_{1}, x_{i}, \ldots x_{p}$, then

$$
\begin{aligned}
& \qquad f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{g}}, \ldots \frac{\partial}{\partial x_{p}}\right) \phi(r) \\
& =\left\{2^{n} \frac{d^{n} \phi}{d\left(r^{2}\right)^{n}}+\frac{2^{n-1}}{2} \frac{d^{4-1} \phi}{d\left(r^{2}\right)^{n-1}} \nabla_{p}^{2}+\frac{2^{n-2}}{2.4} \frac{d^{n-2} \phi}{d\left(r^{2}\right)^{n-2}} \nabla_{p}+\ldots\right\} f_{n}\left(x_{1}, x_{2}, \ldots x_{p}\right) \\
& \text { where } \quad r^{2}=x_{1}^{2}+x_{9}^{2}+\ldots+\ldots . . .(1), \\
& \text { and } \quad \nabla_{p}^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p}^{2}} .
\end{aligned}
$$

Now suppose that f_{a} satisfies the differential equation

$$
\nabla_{p}^{2} f_{n}=0
$$

so that f_{n} is a spherical or hyper-spherical harmonic; in the above theorem the series on the right-hand side reduces to its first term, and we have, denoting by $S_{n}\left(x_{1}, x_{2}, \ldots x_{p}\right)$ such a value of f_{n},

$$
\begin{equation*}
S_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots \frac{\partial}{\partial x_{p}}\right) \phi(r)=2^{n} \frac{d^{n} \phi(r)}{d\left(r^{2}\right)^{n}} S_{n}\left(x_{1}, x_{2}, \ldots x_{p}\right) \tag{2}
\end{equation*}
$$

In this paper, I shall make use of the theorem (2), and I give here two examples of its application to the differential equations of physics.

[^0](a) It is well known that the real part of $\frac{1}{r} e^{u r(a t-r)}$ represents the potential due to a simple sor uce of vibrations in a gas, the expression
$$
V=\frac{1}{r} e^{\cdot r(a t F r)}
$$
satisfying the differential equation
$$
\frac{\partial^{2} V}{\partial t^{2}}=a^{y}\left(\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}\right) ;
$$
it follows from the linear character of the equation that
$$
S_{n}\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)\left[\frac{1}{r} e^{\ln _{x}\left(n_{t} \mp r\right)}\right]
$$
where $S_{n}(x, y, z)$ is a solid harmonic of degree n, also satisfies the differential equation; applying the theorem (1), we see that the function
$$
S_{n}(x, y, z) \frac{d^{n}}{d\left(r^{2}\right)^{n}}\left[\frac{1}{r} e^{n\left(n r^{\prime} \mp r\right)}\right]
$$
and therefore also
$$
S_{n}(x, y, z) e^{(\alpha a c t} \frac{J_{n+1}(k r)}{(k r)^{n+i}},
$$
satisfies the differential equation. \because It has been remarked by Lord Rayleigh* that the potential of a multiple source, which is of the form
$$
\frac{\partial^{n}}{\partial h_{1} \partial h_{9} \ldots \partial h_{n}} \frac{e^{t_{\varepsilon}(a t-r)}}{r}
$$
does not in general contain a spherical harmonic $S_{n}(x, y, z)$ as a factor, as it does in the case $\kappa=0$, of the gravitation potential; the reason of this is that $\frac{\partial^{n}}{\partial h_{1} \partial h_{a} \ldots \partial h_{n}}$ differs from some operator of the form
by a multiple of
$$
S_{n}\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$
$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{9}}{\partial x^{2}}
$$
and thus
$$
S_{n}(x, y, z) e^{* \pi a t} \frac{J_{u+i}(\kappa r)}{(a r)^{n+1}}
$$

- Theory of Sound, Vol. Ix., p. 216.
is the potential due to a combination of sources of degrees $n, n-2$, \&c., whereas, in the case $k=0$, we have, since

$$
\begin{gathered}
\nabla^{\frac{1}{r}}=0 \\
\frac{\partial^{n}}{\partial h_{1} \partial h_{2} \ldots \partial h_{n}} \frac{1}{r}=S_{n}\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \frac{1}{r}=\frac{S_{n}(x, y, z)}{r^{2 n+1}},
\end{gathered}
$$

omitting numerical factors.
(b) It is well known that the equation

$$
\frac{\partial V}{\partial t}=\kappa\left(\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{q} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}\right)
$$

is satisfied by $V=\int_{0}^{1} \frac{1}{\{2 \sqrt{\pi \kappa}(t-\lambda)\}^{8}} f(\lambda) e^{-r^{2} \pi(t(t-\lambda)]} d \lambda$;
in fact this is the temperature at a point of an infinite solid of conductivity x, due to a source of intensity $f(t)$, commencing at time $t=0$. We see that

$$
S_{n}^{\prime \prime}\left(\frac{\partial}{c_{x}}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) V
$$

satisfies the differential equation; thus the expression

$$
S_{\mathrm{n}}(x, y, z) \int_{0}^{t} \frac{1}{(t-\lambda)^{n+\frac{1}{2}}} f(\lambda) e^{-r^{r} /[\operatorname{tat}(t-\alpha)]} d \lambda
$$

satisfies the differential equation; putting

$$
a^{2}=\frac{r^{2}}{4 \pi(t-\lambda)}
$$

we see that the function

$$
\frac{S_{n}(x, y, z)}{r^{2 n+1}} \int_{r i 2}^{\infty} a_{x i}^{2 n} \cdot e^{-*} \cdot f\left(t-\frac{r^{2}}{4 \times a^{2}}\right) d a
$$

satisfies the differential equation, S_{n} denoting any solid harmonic. The particular case $n=1$ gives the class of solutions which I have applied, in my paper* on "Synthetic Solutions in the Conduction of Heat," to certain problems of conduction.

[^1]
Bessel's Functions of rank p.

2. The equation $\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{9}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{\rho}^{2}}\right) V=0$.
or

$$
\nabla_{\mu}^{2} V=0
$$

has
or

$$
\begin{aligned}
& p(p+1) \ldots(p+n-1) \\
& n!
\end{aligned} \frac{p(p+1) \ldots(p+n-3)}{(n-2)!},
$$

distinct solutions which are rational integral functions of $x_{1}, x_{2}, \ldots x_{p}$ of degree n; we shall denote such a solution by $S_{n}\left(x_{1}, x_{2}, \ldots x_{p}\right)$.

Consider the equation $\quad \nabla_{p}^{2} V+V=0$ \qquad
Suppose $x_{1}, x_{9}, \ldots x_{p}$ to be expressed in terms of the usual hyper-polar system of variables $r, \theta_{1}, \theta_{2}, \ldots \theta_{p-1}$, and suppose V to be a function of r only ; the equation (3) reduces in this case to

$$
\frac{d^{2} V}{d r^{2}}+\frac{p-1}{r} \frac{d V}{d r}+V=0
$$

Now, in Bessel's equation of order m,

$$
\frac{d^{2} u}{d r^{2}}+\frac{1}{r} \frac{d u}{d r}+\left(1-\frac{m^{2}}{r^{2}}\right) u=0
$$

put

$$
u=r^{n 2} v ;
$$

then we have

$$
\frac{d^{2} v}{d r^{2}}+\frac{2 m \dddot{+} 1}{r} \frac{d v}{d r}+v=0
$$

thus we see that (4) is satisfied by

$$
V=\frac{J_{4 n-1}(r)}{r-4 p-1} \quad \text { or } \quad \frac{Y_{3 p-1}(r)}{r^{-1 p-1}}
$$

where $J_{i p-1}, Y_{i p-1}$ are the two Bessel's functions of order $\frac{1}{2} p-1$.
For simplicity we shall for the most part consider the function J only; many of the theorems will apply equally to Y.

The solutions of (4) which contain r only I shall call the Bessel's functions of zero order and rank p; thus the ordinary Bessel's functions $J_{0}(r), Y_{0}(r)$ are of rank 2. These solutions of (4) may be denoted by

$$
J_{0}(p, r), \quad Y_{0}(p, r)
$$

where

$$
\begin{equation*}
J_{0}(p, r)=\frac{J_{i p-1}(r)}{r^{4 \nu-1}}, \quad Y_{0}(p, r)=\frac{Y_{i n-1}(r)}{r^{i p-1}} . \tag{5}
\end{equation*}
$$

we thus have

$$
\begin{aligned}
& J_{0}(2, r)=J_{0}^{\prime}(r), \quad J_{0}(3, r)=\frac{J_{1}(r)}{r^{4}} \rightleftharpoons \sqrt{ } \frac{2}{\pi} \frac{\sin r}{r} \\
& J_{0}(2 m, r)=\frac{J_{m-1}(r)}{r^{m-1}}, \quad J_{0}(2 m+1, r)=\frac{J_{m-1}(r)}{r^{m-1}}
\end{aligned}
$$

it thus appears that Bessel's functions of even rank are expressible in terms of the ordinary Bessel's functions of integral order, and that those of odd rank are expressible in terms of the ordinary functions of order half an odd integer.
3. In order to obtain unsymmetrical solutions of (3), the theorem (2) may be applied; thus

$$
\begin{gathered}
S_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}, \ldots \frac{\partial}{\partial x}\right) J_{0}(p, r)=2^{n} S_{n}\left(x_{1}, x_{2}, \ldots x_{p}\right) \frac{d^{p}}{d\left(r^{2}\right)^{\mu}} J_{0}(p, r) ; \\
\text { now } \quad \frac{d^{n}}{d\left(r^{2}\right)^{n}} J_{0}(p, r)=\frac{d^{n}}{d\left(r^{2}\right)^{n}} \frac{J_{1 p-1}(r)}{r^{j p-1}}=\frac{J_{n \cdot \mid p-1}(r)}{r^{n+1 p-1}},
\end{gathered}
$$

leaving out a numerical factor, as the form only of the result is required.

We see therefore that (4) is satisfied by

$$
V=S_{n}\left(x_{1}, x_{p}, \ldots x_{p}\right) \frac{J_{n+i p-1}}{r^{n+1 p-1}}
$$

that is, a solution of (4) is obtained by multiplying a solution S_{n} of (3) by $\frac{J_{n-1+i p}(r)}{r^{n-1+1 p}}$. The cases $p=2, p=3$ of this theorem are wellknown ; thus, when $p=2$, we have

$$
(x \pm \imath y)^{n} \frac{J_{n}(r)}{r^{n}}, \text { or } \quad{ }_{\sin }^{\cos } n \varphi \cdot J_{n}(r)
$$

as a solution of the equation
where

$$
\begin{gathered}
\frac{\partial^{3} V}{\partial x^{9}}+\frac{\partial^{3} V}{\partial y^{9}}+V=0, \\
x=r \cos \varphi, \quad y=\rho \sin \phi
\end{gathered}
$$

again, when $p=3$, we have

$$
S_{n}(x, y, z) \frac{J_{n+i}(r)}{r^{n+1}}
$$

as a solution of the equation

$$
\nabla^{2} V+V=0
$$

4. We have considered only the case in which S_{n} is a rational algebraical solution of (3); it may, however, be shown that, if S_{n} is any solution of (3) of degree n in the p variables, $S_{n} \cdot \frac{J_{n+i p-1}(r)}{r^{n+i p-1}}$ is a solution of (4).

In (4), put $V=S_{n} u$; the equation then becomes, on the assumption that u is a function of r only,

$$
\frac{2}{r} \frac{\partial u}{\partial r}\left(x_{1} \frac{\partial S_{n}}{\partial x_{1}}+x_{2} \frac{\partial S_{n}}{\partial x_{z}}+\ldots+x_{p} \frac{\partial S_{n}}{\partial x_{p}}\right)+S_{n} \nabla_{p}^{2} u+S_{n} u=0 ;
$$

or, using the theorem

$$
x_{1} \frac{\partial S_{n}}{\partial x_{1}}+\ldots+x_{p} \frac{\partial S_{n}}{\partial x_{p}}=n S_{n}
$$

this becomes

$$
\frac{d^{2} u}{d r^{2}}+\frac{p+2 n-1}{r} \frac{d u}{d r}+u=0
$$

of which the solution is

$$
u=A \frac{J_{n+\lambda p-1}(r)}{r^{n+4 p-1}}+B \frac{Y_{n+4 p-1}(r)}{r^{n+4 p-1}} ;
$$

thus, whatever the nature of a function S_{n} of the $n^{\text {th }}$ degree may be, which is a solution of (2), if it be multiplied by $\frac{J_{n+1 p-1}(r)}{r^{n+1 p-1}}$, we obtain a solution of (3). It will be observed that n may be negative, so that $S_{-n} \frac{J_{-n+1 n-1}(r)}{r^{n+1 p-1}}$ satisfies (3), S_{-n} denoting a harmonic of negative degree.
5. In a paper* on "Systems of Spherical Harmonics," I have given a table of some spherical harmonics of degree zero; any one of these,
when multiplied by $\frac{\sin r}{\sqrt{ } r}$, or $\frac{\cos r}{\sqrt{ } r}$, is a solution of the equation

$$
\nabla^{2} V+V=0 ;
$$

we obtain, for example, as solutions of this equation

$$
\begin{gathered}
\frac{x}{r+z} \frac{\sin r}{\sqrt{ } r}, \quad \frac{x}{r+z} \frac{\cos r}{\sqrt{ } r}, \frac{(r \pm z)^{m}}{\left(x^{2}+y^{2}\right)^{1 m} \sin } \cos m \cdot \frac{1}{\sqrt{ } r} \sin r \\
\frac{1}{\sqrt{ } r} \log \sqrt{\frac{r-z}{r+z} \sin } r, \quad-\frac{1}{\sqrt{r}} \tan ^{-1} \frac{y}{x} \sin \cos r
\end{gathered}
$$

The most general harmonic of degree n is

$$
r^{2^{n+1}} \frac{\partial^{\prime \prime}}{\partial z^{\prime \prime}}\left\{\frac{1}{r} f\left(\frac{x \pm c y}{r+z}\right)\right\} ;
$$

we obtain therefore, as solutions of

$$
\nabla^{8} V+V=0
$$

the expressions $\quad r^{n+1} \frac{\partial^{n}}{\partial z^{n}}\left\{\frac{1}{r} f\left(\frac{x \pm 1 y}{r+z}\right)\right\} J_{n+1}(r)$,

$$
r^{n+1} \frac{\partial^{n}}{\partial z^{n}}\left\{\frac{1}{r} f\left(\frac{x \pm(y}{r+z}\right)\right\} Y_{n+1}(r)
$$

where f denotes any function.

Zonal and Tesseral Hyper-Spherical Harmonics.

6. The systems of zonal and tesseral harmonics for p variables have been discussed by various writers; as, however, some of their properties are needed below, I give what appears to me to be a simple method of investigating their forms.

The potential equation (3) is satisfied by

$$
V=\frac{1}{\left\{\left(x_{1}-a_{1}\right)^{2}+\left(x_{3}-a_{2}\right)^{2}+\ldots+\left(x_{p}-a_{p}\right)^{2}\right\}^{1 p-1}},
$$

when $p>2$; and by
when $p=2$.

$$
V=-\frac{1}{2} \log _{.}\left\{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}\right\},
$$

Denoting the zonal harmonic of rank p by $P_{n}(p, \cos \theta)$, we have, as in the case $p=3$,

$$
\left.\begin{array}{r}
\frac{1}{\left(1-2 h \cos \theta+h^{2}\right)^{4 p-1}}=\Sigma h^{n} P_{n}(p, \cos \theta) \tag{6}\\
-\frac{1}{2} \log _{.}\left(1-2 h \cos \theta+h^{2}\right)=\Sigma h^{n} P_{n}(2, \cos \theta)
\end{array}\right\}
$$

Also, as in the ordinary case $p=3$, we find, if $p \xrightarrow{\geq} 3$,

$$
P_{n}(p, \cos \theta)=\frac{(-1)^{n} r^{2 n+1}}{\Pi(n)} \frac{\partial^{n}}{\partial x_{p}^{n}} \frac{1}{\left(x_{1}^{2}+x_{9}^{2}+\ldots+x_{p}^{2}\right)^{4 p-1}}
$$

where

$$
x_{p} / r=\cos \theta=\mu
$$

Performing the differentiation by means of the theorem (1), we have at once

$$
\begin{align*}
& P_{n}(p, \mu)=2^{n} \frac{\Pi\left(n+\frac{1}{2} p-2\right)}{\Pi(n) \Pi\left(\frac{1}{2} p-2\right)} \\
& \quad \times\left\{\mu^{n}-\frac{n(n-1)}{2: 2 n+p-4} \mu^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2.4(2 n+p-4)(2 n+p-6)} \mu^{n-4}-\ldots\right\} \tag{7}
\end{align*}
$$

In the case $p=2$, we have

$$
P_{n}(2, \cos \theta)=\frac{1}{n} \cos n \theta ;
$$

thus

$$
P_{n}(2, \mu)
$$

$$
=2^{n-1}\left\{\mu^{n}-\frac{n(n-1)}{2.2 n-2} \mu^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2.4 .2 n-2.2 n-4} \mu^{n-4}-\ldots\right\} ;
$$

thus the factor of $P_{n}(2, \mu)$ in the bracket agrees with the series factor in (7).
7. The potential equation (3) may be written

$$
\frac{\partial^{2} V}{\partial x_{1}^{2}}+\frac{\partial^{2} V}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{q} V}{\partial x_{p-1}^{2}}+\left(\frac{\partial}{\partial x_{p}}\right)^{2} V=0
$$

so that when $\frac{\partial}{\partial x_{p}}$ is treated as a quantity, this equation is of the form (4) with $p-1$ variables; we see therefore that

$$
V=S_{.}\left(x_{1}, x_{3} \ldots x_{p-1}\right) \frac{J_{0+1(p-3 i}\left(\sqrt{x_{1}^{2}+x_{2}^{4}+\ldots+x_{p-1}^{2}} \frac{\partial}{\partial x_{p}}\right)}{\left(\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2}} \frac{\partial}{\partial x_{p}}\right)^{\alpha+1(p-3)}} \chi\left(x_{p}\right),
$$

where $\chi\left(x_{p}\right)$ is any function of x_{p}, and a is any integer, satisfies the above equation. Let $\chi\left(x_{p}\right)=x_{p}^{n--}$, and suppose $a \leqq n$; we thus have, as a solution of (3),
$S_{.}\left(x_{1}, x_{9}, \ldots x_{p-1}\right)\left\{x_{p}^{n--}-\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2}\right) \frac{(n-a)(n-a-1)}{2.2 a+p-1} x_{p_{-}}^{n--2}+\ldots\right\}$,
where S. denotes any solid hyper-harmonic of rank $p-1$. S. may itself be expressed as the product of a harmonic of rank $p-2$, and a series; thus, proceeding in this way, we obtain, as a solution of (3), an expression of the form of the product

$$
L\left(p, n, a, x_{p}\right) L\left(p-1, a, \beta, x_{p-1}\right) \ldots L\left(3, \kappa, \lambda, x_{\mathrm{s}}\right)\left(x_{1} \pm\left(x_{9}\right)^{\lambda} \ldots \ldots\right. \text { (8) }
$$

where $L\left(p-r, \eta, \theta, x_{p-r}\right)$ denotes the series

$$
\begin{aligned}
& x_{p-r}^{\eta-\theta}-\frac{(\eta-\theta)(\eta-\theta-1)}{2.2 \theta+p-r-1} x_{p-r}^{,-\theta-2}\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-r-1}^{2}\right) \\
& +\frac{(\eta-\theta)(\eta-\theta-1)(\eta-\theta-2)(\eta-\theta-3)}{2.4 .2 \theta+p-r-1.2 \theta+p-r+1} x_{p-r}^{0-\theta-4}\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-r-1}^{2}\right)^{2}-\ldots
\end{aligned}
$$

If different integral values are assigned to $a, \beta, \ldots \kappa, \lambda$, such that

$$
n \geq a \geq \beta \ldots \geq x \geq \lambda
$$

the form (8) expresses various hyper-spherical harmonics of degree n. It is easy to show that (8) gives a complete set of harmonics of degree n; the $p-1$ quantities $n-a, a-\beta, \ldots \kappa-\lambda, \lambda$, are capable of all positive integral values (including zero) which are such that their sum is n; corresponding to any choice of these numbers we have two harmonics given by (8), except when $\lambda=0$, in which case only one harmonic is given; the number of solutions in which $\lambda=0$ is the number of ways in which the $p-2$ numbers $n-a, a-\beta \ldots \kappa$ may be chosen so that their sum is n; it follows that the formula (8) represents

$$
2 \frac{(p-1) p(p+1) \ldots(p+n-2)}{n!}-\frac{(p-2)}{n!} \frac{(p-1) \ldots(p+n-3)}{n!}
$$

distinct harmonics; this number is equal to

$$
(p+2 n-2) \frac{(p-1) p(p+1) \ldots(p+n-3)}{n!}
$$

which, as we have seen in Section 2 , is the number of independent harmonics of degree n and rank p. It has thus been shown that all
the hyper-spherical harmonics of degree n are included in (8); these correspond to the system of zonal, tesseral, and sectorial harmonics in the ordinary case $p=3$.

Expansion of an Exponential Function.

9. The differential equation (4) is satisfied by

$$
V=e^{t x_{p}}=e^{r \cos \theta} ;
$$

it follows that $e^{i r \cos \theta}$ can be expanded in the form

$$
\sum_{0}^{\infty} a_{n} r^{n} P_{n}(p, \cos \theta) \frac{J_{n+i p-1}(r)}{r^{n+1 p-1}}
$$

since Bessel's functions of the second kind are infinite when $r=0$, and therefore cannot occur. We have therefore

$$
e^{i r \cos \theta}=\sum_{0}^{\infty} a_{n} P_{n}(p, \cos \theta) \frac{J_{n+i n-1}(r)}{r^{1 p-1}}
$$

where a_{n} are constants to be determined; substituting the value for $P_{n}(p, \cos \theta)$ given by (7), and equating the coefficients of $r^{n} \cos ^{n} \theta$ on both sides of the equation, we obtain.

$$
\frac{\frac{l}{}^{\prime \prime}}{\Pi(n)}=a_{n} \frac{1}{2^{n+1 p-1} \Pi\left(n+\frac{1}{2} p-1\right)} 2^{n} \frac{\Pi\left(n+\frac{1}{2} p-2\right)}{\Pi(n) \Pi\left(\frac{1}{2} p-2\right)}
$$

thus

$$
a_{n}=\iota^{n} \cdot 2^{p-1}\left(n+\frac{1}{2} p-1\right) \Pi\left(\frac{1}{2} p-2\right)
$$

whence we obtain the result
$e^{i r \cos \theta}=2^{\frac{j p-1}{}} \Pi\left(\frac{1}{2} p-2\right) \sum_{n=0}^{n=\infty} \iota^{n}\left(n+\frac{1}{2} p-1\right) P_{n}(p, \cos \theta) \frac{J_{n+i p-1}(r)}{d^{p-1}} \ldots$ (9).
Two cases of (9) are well known ; putting $p=3$, we have

$$
e^{r \cos \theta}=\sqrt{2 \pi} \sum_{0}^{\infty} \iota^{n}\left(n+\frac{1}{2}\right) P_{n}(\cos \theta) \frac{J_{n+1}(r)}{\sqrt{ } r} ;
$$

again, putting $p=2$, and taking account of the exceptional form of $P_{N}(2, \cos \theta)$, we have

$$
c^{r \cos \theta}=\Sigma_{l} l^{n} \cos n \theta \cdot J_{n}(r) .
$$

Addition Theorems for Bessel's Functions.

10. Since $J_{0}(p, r)$ satisfies the equation (4), it follows that

$$
J_{0}\left(p, \sqrt{r^{8}+r^{2}-2 r r^{\prime} \cos \theta}\right)
$$

satisfies the same equation, for

$$
r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta=x_{1}^{2}+x_{2}^{2}+\ldots+\left(x_{p}-r^{\prime}\right)^{2}
$$

We see that if

$$
J_{0}\left(p, \sqrt{r^{2}+r^{\prime 3}-2 r r^{\prime} \cos \theta}\right)
$$

is expanded in a series of the functions $P_{n}(p, \cos \theta)$, the coefficients must contain $\frac{J_{n+i p-1}(r)}{r^{p p-1}}$ and $\frac{J_{n+i p-1}\left(r^{\prime}\right)}{r^{2 p-1}}$ as factors; thus

$$
\begin{gathered}
J_{0}\left(p, \sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta}\right) \\
=J_{0}(p, r) J_{0}\left(p, r^{\prime}\right)+\sum_{n=1} \beta_{n} \frac{J_{n+1 p-1}(r) J_{n+i p-1}\left(r^{\prime}\right)}{\left(r r^{\prime}\right)^{p p-1}} P_{n}(p, \cos \theta),
\end{gathered}
$$

where β_{n} is a constant to be determined. Write

$$
R=\sqrt{r^{9}+r^{2}-2 r r^{\prime} \cos \theta}
$$

and differentiate both sides of the equation n times with respect to $\cos \theta$, remembering that

$$
d\left(R^{2}\right)=-2 r r^{\prime} d(\cos \theta) ;
$$

thus

$$
\left(-2 r r^{\prime}\right)^{n} \frac{d^{n}}{d\left(R^{2}\right)^{n}} \frac{J_{i p-1}(R)}{R^{p p-1}}=\beta_{n} \frac{J_{n+\mid p-1}(r) J_{n+i p-1}\left(r^{\prime}\right)}{\left(r^{\prime}\right)^{4 p-1}} \frac{d^{n} P_{n}(p, \cos \theta)}{d(\cos \theta)^{n}}+\ldots ;
$$

divide both sides of the equation by $r^{\prime n}$, and then put $r^{\prime}=0$; we get

$$
\begin{gathered}
(-2 r)^{n} \frac{d^{n}}{d\left(r^{2}\right)^{n}} \frac{J_{i p-1}(r)}{r^{\lfloor p-1}} \\
=\dot{\beta}_{n} \frac{J_{n+1 p-1}(r)}{r^{4 p-1}} \frac{1}{2^{n+1 p-1} \Pi\left(n+\frac{1}{2} p-1\right)} \frac{2^{n} \Pi\left(n+\frac{1}{2} p-2\right)}{\Pi\left(\frac{1}{2} p-2\right)} .
\end{gathered}
$$

Now

$$
(-2 r)^{n} \frac{d^{n}}{d\left(r^{2}\right)^{n}} \frac{J_{i p-1}(r)}{r^{\mid p-1}}=\frac{J_{n-1 p-1}(r)}{r^{t p-1}} ;
$$

hence we find $\quad \beta_{n}=2^{1 p-1}\left(n+\frac{1}{2} p-1\right) \Pi\left(\frac{1}{2} p-2\right)$;

This theorem has been proved by other methods by Gegenbauer and by Sonnine.

If we put, in (10), $p=2$, we obtain C. Neumann's addition theorem

$$
J_{0}(R)=J_{0}(r) J_{0}\left(r^{\prime}\right)+2 \sum_{1}^{\infty} J_{n}(r) J_{n}\left(r^{\prime}\right) \cos n \theta
$$

Putting $p=3$, we obtain the addition theorem for the spherical functions,

$$
\frac{J_{1}(R)}{R^{\sharp}}
$$

$$
=\frac{1}{\left(r r^{\prime}\right)^{4}}\left\{J_{1}(r) J_{i}\left(r^{\prime}\right)+2^{i} \Pi\left(-\frac{1}{3}\right) \sum\left(n+\frac{1}{2}\right) J_{n+1}(r) J_{n+\frac{1}{2}}\left(r^{\prime}\right) P_{n}(\cos \theta)\right\}
$$

or

$$
\frac{\sin R}{R}
$$

$=\frac{\sin r}{r} \frac{\sin r^{0}}{r^{\prime}}+\sum_{1}^{\infty}(2 n+1)\left(4 \rho \rho^{\prime}\right)^{n} \frac{d^{4}}{d\left(\rho^{3}\right)^{n}} \cdot \frac{\sin r}{r} \cdot \frac{d^{n}}{d\left(\rho^{y}\right)^{n}} \frac{\sin r^{\prime}}{r^{\prime}} \cdot P_{n}(\cos \theta)$.
It will be observed that the formula (10) is a general addition theorem for the functions $\frac{J_{m}(R)}{R^{m}}, \frac{J_{m+i}(R)}{R^{m+1}}$.

The Evaluation of a Surface Integral.

11. It can be shown by means of the differential equation (2), in the same way as in the case $p=3$, that, if S_{m}, S_{n} are hyper-spherical harmonics of degrees m and n,

$$
\int S_{w} S_{n} d \omega=0
$$

provided m and n are unequal, the integration being taken over the surface of a sphere of unit radius, the centre being at the origin. We shall have occasion to use the value of

$$
\int P_{n}(p, \cos \theta) S_{4} d v
$$

$$
\begin{aligned}
& \frac{J_{i p-1}(R)}{R^{i p-1}}=\frac{1}{\left(r r^{\prime}\right)^{i p-1}}\left\{J_{1 p-1}(r) J_{1 p-1}\left(r^{\prime}\right)\right. \\
& \left.+2^{\text {ip } p} \Pi\left(\frac{1}{2} p-2\right) \sum_{1}^{\infty}\left(n+\frac{1}{2} p-1\right) J_{n+i p-1}(r) J_{n+i p-1}\left(r^{\prime}\right) P_{n}(p, \cos \theta)\right\} \\
& \text {................(10). }
\end{aligned}
$$

which I proceed to calculate. Using the system of hyper-polar coordinates, given by

$$
\begin{aligned}
& x_{1}=r \sin \theta \sin \phi_{1} \sin \phi_{9} \ldots \sin \phi_{p-2}, \\
& x_{2}=r \sin \theta \sin \phi_{1} \sin \phi_{2} \ldots \cos \phi_{p-2} \text {, } \\
& \text {... } \\
& \text {... } \\
& x_{p-1}=r \sin \theta \cos \phi_{1} \text {, } \\
& x_{\mu}=r \cos \theta,
\end{aligned}
$$

we find, for an elementary volume, the expression

$$
r^{p-1} \sin ^{p-2} \theta \sin ^{p-3} \phi_{1} \ldots \sin \phi_{p-3} d r d \theta d \phi_{1} d \phi_{2} \ldots d \phi_{p-2},
$$

and thus $d \omega=\sin ^{p-2} \theta \sin ^{p-3} \phi_{1} \ldots \sin \phi_{p-3} d \theta d \phi_{1} d \phi_{9} \ldots d \phi_{p-2}$.
Using the equation

$$
\frac{1}{\left(1-2 h \cos \theta+h^{2}\right)^{\{(p-2)}}=\sum_{n=0} P_{n}(p, \cos \theta) h^{n},
$$

we find

$$
(p-2) \frac{1-h^{9}}{\left(1-2 h \cos \theta+h^{2}\right)^{4_{p}^{p}}}=\Sigma(2 n+p-2) P_{n}(p ; \cos \theta) h^{n} ;
$$

multiplying both sides of this equation by S_{n}, and integrating over the surface of the sphere of unit radius, we have

$$
\int P_{n}(p, \cos \theta) S_{n} d \omega=\frac{p-2}{2 n+p-2} \int \frac{1-h^{9}}{\left(1-2 h \cos \theta+h^{2}\right)^{i p}} S_{n} d \omega
$$

where, on the right-hand side, the expression has its limiting value when $h=1$; we therefore have

$$
\int P_{n}(p, \cos \theta) S_{n} d \omega=\frac{p-2}{2 n+p-2} S_{n}(1) \int \frac{1-h^{3}}{\left(1-2 h \cos \theta+h^{2}\right)^{\frac{4 p}{}}} d \omega,
$$

where $S_{n}(1)$ is the value of S_{n} at the pole of P_{n}.

$$
\text { Further, } \begin{aligned}
\int \frac{1-h^{\prime}}{\left(1-2 h \cos \theta+h^{3}\right)^{4 p}} d \omega & =\frac{1}{p-2} \int \Sigma h^{n}(2 n+p-2) P_{n} d \omega \\
& =\int d \omega=\frac{2 \pi^{\text {dp }}}{\Pi\left(\frac{p-2}{2}\right)}
\end{aligned}
$$

thas we obtain the theorem

$$
\begin{equation*}
\int P_{n}(p, \cos \theta) S_{n} d \omega=\frac{p-2}{2 n+p-2} \frac{2 \pi^{i p}}{\Pi\left(\frac{p-2}{2}\right)} S_{n}(1) \tag{11}
\end{equation*}
$$

A particular case of this theorem is

$$
\begin{align*}
& \int\left\{P_{n}(p, \cos \theta)\right\}^{2}\left(1-\mu^{2}\right)^{)^{(p-3)} d \mu} \\
& \quad=\frac{p-2}{2 n+p-2} \sqrt{ } \pi \frac{\Pi(p+n-3) \Pi\left(\frac{p-3}{2}\right)}{\Pi(n) \Pi\left(\frac{p-2}{2}\right) \Pi(p-3)} \ldots \tag{12}
\end{align*}
$$

12. Next, let us evaluate $\int e^{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{p} x_{p}} S_{n} d \omega$ over the sphere of unit radius; this integral is, by changing the variables, reducible to an integral $\int e^{\cos \cdot} S_{n} d \omega$, where

$$
\beta^{3}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2} .
$$

Substitute for $e^{g \text { coos } 0}$ its value given by putting -1β for r in the expansion (9); then, remembering that

$$
\int S_{n} P_{m}(p, \cos \theta) d \omega=0
$$

except when $n i=n$, we have

$$
\begin{aligned}
\int e^{s c o s \theta} S_{w} d \omega= & 2^{i p-1} \Pi\left(\frac{1}{2} p-2\right) \iota^{n}\left(n+\frac{1}{2} p-1\right) \frac{J_{n+4 n-1}(-\iota \beta)}{\left(-_\beta\right)^{4 p-1}} \int S_{n} P_{n} d \omega \\
= & \frac{1}{2^{n}} \frac{\Pi\left(\frac{1}{2} p-2\right)\left(n+\frac{1}{2} p-1\right)}{\Pi\left(n+\frac{1}{2} p-1\right)} \int S_{n} P_{n} d \omega \\
& \times \beta^{n}\left\{1+\frac{\beta^{2}}{2.2 n+p}+\frac{\beta^{4}}{2 \cdot 4.2 n+p \cdot 2 n+p+2}+\ldots\right\} .
\end{aligned}
$$

If $f\left(x_{1}, x_{2}, \ldots x_{p}\right)$ be a function which is finite and continuous throughout the volume of the hyper-sphere, we have

$$
f\left(x_{1}, x_{2}, \ldots x_{p}\right)=e^{x_{1} \cdot \partial / \partial \xi_{1}+x_{2} . \partial / \partial \xi_{2}+\ldots+x_{p} . \partial / \partial \xi_{p}} f\left(\xi_{1}, \xi_{3}, \ldots \xi_{p}\right)
$$

where $\xi_{1}, \xi_{2}, \ldots \xi_{p}$ are put equal to zero after the operation is performed, Let

$$
\alpha_{1}=\frac{\partial}{\partial \xi_{1}}, \quad \alpha_{2}=\frac{\partial}{\partial \xi_{3}}, \ldots \alpha_{p}=\frac{\partial}{\partial \xi_{p}}
$$

we then have

$$
\begin{align*}
& \int S_{n} \cdot f\left(x_{1}, x_{2}, \ldots x_{p}\right) d \omega=\frac{1}{2^{n}} \frac{\Pi\left(\frac{1}{b} p-2\right)}{\Pi\left(n+\frac{1}{2} p-2\right)} \cdot \frac{p-2}{2 n+p-2} \frac{2 \pi^{\mathrm{L} p}}{\Pi\left(\frac{p-2}{2}\right)} \\
& \times S_{n}\left(\frac{\partial}{\partial \xi_{1}}, \frac{\partial}{\partial \xi_{2}}, \cdots \frac{\partial}{\partial \xi_{p}}\right)\left(1+\frac{\nabla^{2}}{2.2 n+p}+\frac{\nabla^{4}}{2.4 .2 n+p .2 n+p+2}\right) \\
& f\left(\xi_{1}, \xi_{2}, \ldots \xi_{\mu}\right) \tag{13}
\end{align*}
$$

64 Dr. E. W. Hobson on Bessel's Functions, \&c. [Dec. 14, where

$$
\nabla^{s}=\frac{\partial^{2}}{\partial \xi_{1}^{2}}+\frac{\partial^{2}}{\partial \xi_{2}^{2}}+\ldots+\frac{\partial^{z}}{\partial \xi_{p}^{2}},
$$

and where $\xi_{1}, \xi_{2}, \ldots \xi_{p}$ are put equal to zero after the operations on the right-hand side are performed.
13. A large number of integrals are included as particular cases of (13); an important one for our purpose is the case in which

$$
S_{n}=P_{n}(p, \cos \theta), \quad f=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2}\right)^{k} ;
$$

we then have, supposing n even, keeping the only term which does

$$
\begin{aligned}
& \text { not vanish, } \\
& \int P_{n}(p, \cos \theta) \sin ^{2 k} \cdot \theta d \omega \\
& =\frac{2 \pi^{d p}}{2^{2 k}}(-1)^{\mathrm{Ln}} \frac{\Pi\left(\frac{p+n}{2}-2\right)}{\Pi\left(\frac{p+n}{2}+k-1\right) \Pi\left(\frac{n}{2}\right) \Pi\left(\frac{p}{2}-2\right) \Pi\left(k-\frac{n}{2}\right)} \\
& \times\left(\frac{\partial^{3}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{9}^{2}}+\ldots+\frac{\partial^{3}}{\partial x_{p-1}^{2}}\right)^{4}\left(x_{1}^{2}+x_{1}^{2}+\ldots+x_{p-1}^{2}\right)^{4} .
\end{aligned}
$$

It can easily be shown that

$$
\left(\frac{\partial^{3}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p-1}^{2}}\right)^{k}\left(x_{1}^{2}+x_{9}^{2}+\ldots+x_{p-1}^{3}\right)^{k}=\frac{4^{k} \Pi(k) \Pi\left(k+\frac{p-3}{2}\right)}{\Pi\left(\frac{p-3}{2}\right)}
$$

hence the value of the surface integral is

$$
\begin{aligned}
& (-1)^{\ln } 2 \pi^{l p} \frac{\Pi\left(\frac{p+n}{2}-2\right) \Pi(k) \Pi\left(k+\frac{p-3}{2}\right)}{\Pi\left(\frac{p+n}{2}+k-1\right) \Pi\left(\frac{n}{2}\right) \Pi\left(\frac{p}{2}-2\right) \Pi\left(k-\frac{n}{2}\right) \Pi\left(\frac{p-3}{2}\right)} ; \\
& \text { or } \quad \int_{-1}^{1} P_{n}(p, \mu)\left(1-\mu^{2}\right)^{k+1(p-3)} d \mu \\
& =(-1)^{\ln \pi^{d}} \frac{\Pi\left(\frac{p+n}{2}-2\right) \Pi(k) \Pi\left(k+\frac{p-3}{2}\right)}{\Pi\left(\frac{p+n}{2}+k-1\right) \Pi\left(\frac{n}{2}\right) \Pi\left(\frac{p}{2}-2\right) \Pi\left(k-\frac{n}{2}\right)} \ldots(14)
\end{aligned}
$$

where n is an even integer.
1893.] Dr. E. W. Hobson on Bessel's Functions, \&c.

In the particular case $p=3$, we have

$$
\begin{gather*}
\int_{-1}^{1} P_{n}(\mu)\left(1-\mu^{2}\right)^{k} d \mu \\
=(-1)^{i n} \pi^{4} \frac{\Pi\left(\frac{n-1}{2}\right) \Pi(k) \Pi(k)}{\Pi\left(\frac{n+1}{2}+k\right) \Pi\left(\frac{n}{2}\right) \sqrt{ } \pi \Pi\left(k-\frac{n}{2}\right)} \\
=(-1)^{4 n} \frac{\Pi(k) \Pi(k)}{\Pi\left(\frac{n}{2}\right) \Pi\left(k-\frac{n}{2}\right)} \frac{2^{2 k+1} \Pi(n) \Pi\left(\frac{n}{2}+k\right)}{\Pi(n+2 k+1) \Pi\left(\frac{n}{2}\right)} \\
=(-1)^{i n} 2^{2 k+1} \frac{\Pi(n) \Pi\left(k+\frac{n}{2}\right) \Pi(k) \Pi(k)}{\Pi\left(\frac{n}{2}\right) \Pi\left(\frac{n}{2}\right) \Pi\left(k-\frac{n}{2}\right) \Pi(n+2 k+1)} . \tag{15}
\end{gather*}
$$

The particular case (15) agrees with the value obtained by Mr. W. D. Niven:

Expansions in Zonal Hyper-Harnonics.

14. Since

$$
e^{ \pm x_{p}} J_{0}\left(p-1, \sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2}}\right),
$$

or

$$
\begin{gathered}
e^{ \pm r \cos \theta} J_{0}(p-1, r \sin \theta) \\
\nabla_{p}^{2} V=0
\end{gathered}
$$

satisfies the equation
it is clear that this function must be capable of being exhibited in a series of zonal hyper-harmonics of rank p of positive integral degrees; thus

$$
e^{r \cos \theta} \frac{J_{4(p-3)}(r \sin \theta)}{(r \sin \theta)^{1(p-3)}}=\sum_{n=0}^{n=\infty} a_{n} r^{n} P_{n}(p, \cos \theta) ;
$$

putting $\theta=0$, we have

$$
e^{r} \frac{1}{2^{(p-s)} \Pi\left(\frac{p-3}{2}\right)}=\sum_{n=0}^{n+\infty} a_{n} r^{n} P_{n}(p, 1) ;
$$

- Seo Phil. Trans. for 1879, p. ?si.
thus

$$
\begin{aligned}
\boldsymbol{a}_{n} & =\frac{1}{2^{4(p-3)} \Pi\left(\frac{p-3}{2}\right) \Pi(n) P_{n}(p, 1)} \\
& =\frac{\Pi(p-3)}{2^{(p-3)} \Pi\left(\frac{p-3}{2}\right) \Pi(p+n-3)}
\end{aligned}
$$

we therefore obtain the theorem
$e^{r \cos } J_{1(p-3)}(r \sin \theta)=\frac{\Pi(p-3)(r \sin \theta)^{4(p-3)}}{2^{1(p-3)} \Pi\left(\frac{p-3}{2}\right)} \sum_{n=0}^{\infty} \frac{r^{n}}{\Pi(p+n-3)} P_{n}(p, \cos \theta)$
on changing r into $-r$, we have
$\dot{e}^{-r \cos 0} J_{1(p-3)}(r \sin \theta)=\frac{\Pi(p-3)(r \sin \theta)^{1(p-3)}}{2^{1(p-3)} \Pi\left(\frac{p-3}{2}\right)} \Sigma \frac{(-1)^{n} r^{n}}{\Pi(p+11-3)} P_{n}(p, \cos \theta)$
In the particular case $p=3$, we have

$$
\begin{array}{r}
e^{r \cos \rho} J_{0}(r \sin \theta)=\sum_{n=0}^{n-\infty} \frac{r^{n}}{n!} P_{n}(\cos \theta) \quad \ldots \\
e^{-r \cos \varphi} J_{0}(r \sin \theta)=\sum_{n=0}^{n+\infty} \frac{(-1)^{n} r^{n}}{n!} P_{n}(\cos \theta) \tag{19}
\end{array}
$$

On multiplying the series (18), (19) together, we have

$$
\begin{aligned}
&\left\{J_{0}(r \sin \theta)\right\}^{2}=\left\{1+\frac{r^{3}}{2!} P_{2}(\cos \theta)+\frac{r^{4}}{4!} P_{4}(\cos \theta)+\ldots\right\}^{2} \\
&-\left\{r P_{1}(\cos \theta)+\frac{r^{3}}{3!} P_{3}(\cos \theta)+\ldots\right\}^{2}
\end{aligned}
$$

Relations connecting Bessel's Functions of Different Orders.
15. The equation

$$
\begin{equation*}
\nabla_{p}^{2} V+V=0 \tag{4}
\end{equation*}
$$

is satisfied by

$$
J_{0}\left(p-1, \sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2}}\right),
$$

which is independent of x_{p}; it is therefore clear that $J_{0}(p-1, r \sin \theta)$ can be exhibited in a series of the functions

$$
P_{u}(p, \cos \theta) \frac{J_{n+i p-1}(r)}{r^{t^{p-1}}} ;
$$

thus $\quad \frac{\boldsymbol{J}_{\frac{1}{\prime}(p-3)}(r \sin \theta)}{(r \sin \theta)^{(p-\lambda)}}=\sum_{n=0}^{\infty} \beta_{n} P_{n}(p, \cos \theta) \frac{J_{n+i p-1}(r)}{r^{+p-1}}$,
where β_{n} denotes constants which must be determined.
Multiply both sides of the equation by $P_{n}(p, \cos \theta)\left(1-\cos ^{9} \theta\right)^{3(p-3)}$, and integrate with respect to $\cos \theta$ between the limits ± 1; we have then, in virtue of (12),

$$
\begin{aligned}
& \beta_{n} \frac{p-2}{2 n+p-2} \cdot \sqrt{ } \pi \frac{\Pi(p+n-3) \Pi\left(\frac{p-3}{2}\right)}{\Pi(n) \Pi\left(\frac{p-2}{2}\right) \Pi(p-3)} \frac{J_{n+i p-1}(r)}{r^{4 p-1}} \\
& \quad=\int_{-1}^{1} \frac{J_{1(n-3)}(r \sin \theta)}{(r \sin \theta)^{1(p-3)}} P_{n}(p, \cos \theta)\left(1-\cos ^{8} \theta\right)^{1(p-3)} d(\cos \theta)
\end{aligned}
$$

equating the coefficients of r^{n} on both sides of this equation, we see that β_{n} is zero when n is odd, and that, when n is even,

$$
\begin{aligned}
& \begin{aligned}
& \beta_{n} \frac{p-2}{2 n+p-2} \frac{\sqrt{ } \pi \Pi(p+n-3) \Pi\left(\frac{p-3}{2}\right)}{\Pi(n) \Pi\left(\frac{p-2}{2}\right) \Pi(p-3)} \frac{1}{2^{n+i p-1} \Pi\left(n+\frac{1}{2} p-1\right)} \\
&=(-1)^{1 n} \frac{1}{2^{n+1(p-3)} \Pi\left(\frac{n}{2}\right) \Pi\left(\frac{p+n-3}{2}\right)} \\
& \times \int_{-1}^{1} P_{n}(p, \cos \theta)\left(1-\cos ^{2} \theta\right)^{1(p-3)+1 n} d(\cos \theta) \\
&= \frac{\sqrt{ } \pi}{2^{n+3(p+3)}} \frac{\Pi\left(\frac{p+n}{2}-2\right)}{\Pi\left(n+\frac{p-2}{2}\right) \Pi\left(\frac{n}{2}\right) \Pi\left(\frac{p-4}{2}\right)}, \text { by (14)} ; \\
& \text { hence } \quad \beta_{n}=\sqrt{ } 2 \frac{\left(n+\frac{p-2}{2}\right) \Pi(n) \Pi(p-3) \Pi\left(\frac{p+n}{2}-2\right)}{\Pi\left(\frac{p-3}{2}\right) \Pi\left(\frac{n}{2}\right) \Pi(p+n-3)} ;
\end{aligned}, l
\end{aligned}
$$

on changing n into $2 n$, we have

$$
\begin{align*}
\frac{J_{1(p-3)}(r \sin \theta)}{(r \sin \theta)^{1(p-s)}}=\sqrt{ } 2 & \frac{\Pi(p-3)}{r^{4 p-1}} \sum_{n=0}^{\infty} \frac{\left(2 n+\frac{p-2}{2}\right) \Pi(2 n) \Pi\left(n+\frac{p-4}{2}\right)}{\Pi\left(\frac{p-3}{2}\right) \Pi(n) \Pi(2 n+p-3)} \\
& \times P_{2 n}(p, \cos \theta) J_{2 n+4-1}(r) \ldots \ldots \ldots \ldots \ldots \ldots(20) . \tag{20}
\end{align*}
$$

In (20), put $p=3$; we obtain

$$
\begin{align*}
J_{0}(r \sin \theta) & =\sqrt{\frac{2}{r}} \sum_{0}^{\infty} \frac{\left(2 n+\frac{1}{2}\right) \Pi\left(n-\frac{1}{2}\right)}{\Pi(n)} P_{2 n}(\cos \theta) J_{2 n+i}(r) \\
& =\sqrt{\frac{2 \pi}{r}} \sum \frac{\left(2 n+\frac{1}{2}\right)(2 n)!}{2^{2 n+1} n!n!} P_{2 n}(\cos \theta) J_{2 n+i}(r) \ldots \ldots(\tag{21}
\end{align*}
$$

Again, put $p=4$; we have then

$$
\frac{J_{i}(r \sin \theta)}{(r \sin \theta)^{i}}=\frac{2 \sqrt{ } 2}{\pi} \frac{1}{r} \Sigma P_{2 n}(4, \cos \theta) J_{2 n+1}(r) .
$$

In the theorem (20), put $\theta=\frac{\pi}{2}$; we then have

$$
\begin{align*}
& J_{1(p-s)}(r)=\sqrt{\frac{2}{r}} \frac{\Pi(p-3)}{\Pi\left(\frac{p}{2}-2\right) \Pi\left(\frac{p-3}{2}\right)^{n=0}} \sum_{n=0}^{n}(-1)^{n} \\
& \times \frac{\left(2 n+\frac{p-2}{2}\right) \Pi(2 n) \Pi\left(n+\frac{p}{2}-2\right) \Pi\left(n+\frac{p}{2}-2\right)}{\Pi(n) \Pi(n) \Pi(2 n+p-3)} J_{z n+!p-1}(r) \ldots \tag{22}
\end{align*}
$$

this expresses a Bessel's function of integral order in a series of Bessel's functions of order half an odd integer, and conversely.

A particular case of (22) is when $p=3$;

$$
\begin{equation*}
J_{0}(r)=\sqrt{ } \frac{2}{\pi r} \sum_{n=0}^{n \infty}(-1)^{n}\left\{\frac{\Pi\left(n-\frac{1}{2}\right)}{\Pi(n)}\right\}^{2}\left(2 n+\frac{1}{1}\right) J_{2 n+1}(r) \tag{23}
\end{equation*}
$$

Again, when $p=4$, we have

$$
\sin r=2 \sum_{n=0}^{n=\infty}(-1)^{n} J_{2 n+1}(r)
$$

16. It is interesting to obtain an expansion corresponding to (23), by another method; on comparing the results obtained by the two methods, the evaluation of certain definite integrals is obtained.

We have

$$
\int_{0}^{\infty} J_{0}(u) \frac{e^{\prime(u+r)}}{u+r} d u=\int_{0}^{\infty} \int_{0}^{\infty} e^{r-6 ;(u+r)} J_{0}(u) d u d t ;
$$

on carrying out the integration with respect to u, the right hand becomes, by a known theorem, equal to

$$
\int_{0}^{\infty} \frac{e^{(t-t) r}}{\sqrt{1+(t-1)^{2}}} d t, \text { or } \quad e^{r r} \int_{0}^{\infty} \frac{e^{-t r}}{\sqrt{t^{2}-2 t i}} d t
$$

1893.] Dr. E. W. Hobson on Bessel's Functions, \&ci.
putting

$$
t-t=\Delta t^{\prime},
$$

we have $\quad \int_{0}^{\infty} J_{0}(u) \frac{e^{e^{(u+r)}}}{u+r} d u=-\int_{1}^{\infty} \frac{e^{e^{4+r}}}{\sqrt{t^{\prime 3}-1}} d t^{\prime} ;$
the integral $\int_{1}^{\infty \infty} \frac{e^{i^{\prime \cdot r}}}{\sqrt{t^{2}-1}} d t^{\prime}$ is one of a class of integrals which represent Beessel's functions, and has been considered by Hankel,* and other writers. Using a result obtained by Hankel, we have

$$
\int_{0}^{\infty} J_{0}(u) \frac{e^{c^{(u+r)}} u+r}{u+r} d u=-\frac{1}{2} Y_{0}(r)+\frac{\iota \pi}{2} J_{0}(r) ;
$$

on equating the real and imaginary parts on both sides of this equation, we obtain the formulm

$$
\begin{align*}
& J_{0}(r)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin (u+r)}{u+r} J_{0}(u) d u . . \tag{25}\\
& Y_{0}(r)=-2 \int_{0}^{\infty} \frac{\cos (u+r)}{u+r} J_{0}(u) d u \tag{26}
\end{align*}
$$

These formulæ were first obtained, by a different method, by Sonnine.

On substituting in (25), the value of $\frac{\sin (u+r)}{u+r}$, given by the addition formula of Section 10, we have

$$
\begin{gathered}
J_{0}(r)=\frac{\sin r}{r} \frac{2}{\pi} \int_{0}^{\infty} J_{0}(u) \frac{\sin u}{u} d u \\
+\sum_{n=1}^{n=\infty}(-1)^{n}(2 n+1) \frac{2}{\pi}(-2 r)^{n} \frac{d^{n}}{d\left(r^{2}\right)^{n}} \frac{\sin r}{r} \\
\quad \times \int_{0}^{\infty} J_{n}(u)(-2 u)^{n} \frac{d^{n}}{d\left(u^{2}\right)^{4}} \frac{\sin u}{u} d u,
\end{gathered}
$$

which may be written

$$
\begin{aligned}
J_{0}(r)=\frac{1}{\sqrt{ } r} & J_{0}(r) \int_{0}^{\infty} J_{0}(u) \frac{J_{h}(u)}{\sqrt{ } u} d u \\
& +\sum_{n=1}^{n=\infty}(-1)^{n}(2 n+1) \frac{J_{n+i}(r)}{\sqrt{r}} \int_{0}^{\infty} J_{0}(u) \frac{J_{n+1}(u)}{\sqrt{ } u} d u .
\end{aligned}
$$

* See Mathematische Annalen, Vol. $\mathbf{1}$.

On comparing this expansion with (23), we see that

$$
\int_{0}^{\infty} \frac{J_{0}(u) J_{n+1}(u)}{\sqrt{ } u} d u=0
$$

when n is odd; and when n is even, writing $2 n$ for n, we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{J_{0}(u) J_{2 u+1}(u)}{\sqrt{ } u} d u \equiv \sqrt{ } \frac{2}{\pi} \frac{2 n+\frac{1}{2}}{2 n+1}\left\{\frac{\Pi\left(n-\frac{1}{2}\right)}{\Pi(n)}\right\}^{2} \tag{27}
\end{equation*}
$$

It is clear that, by using the addition theorem for $\frac{\cos (u+r)}{u+r}$, the equation (26) could be applied to obtain a development of $Y_{0}(r)$ in Bessel's functions of the second kind, and of orders equal to half an odd integer.

Definite Integral Relations between Bessel's Functions.

17. Since

$$
r \sin \theta=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2}\right),
$$

we see that. $J_{\theta}(. p-1, r \sin \theta)$ satisfies the equation

$$
\nabla_{p}^{2} V+V=0,
$$

being a solution which is independent of x_{p}; it follows that the mean value of $J_{0}(p-1, r \sin \theta)$ taken over the sphere of radius r is a solution of

$$
\nabla_{p}^{2} V+V=0,
$$

which is such that it depends only on r, and is therefore, except for a constant factor, equal to $J_{0}(p, r)$, as it is clear that the Bessel's function of the second kind cannot be involved.

$$
\begin{aligned}
& \text { We have } \quad \int_{0}^{i x} J_{0}(p-1, r \sin \theta) \sin ^{p-2} \theta d \theta \\
& =\int_{0}^{1 \pi} \frac{J_{1(p-3)}(r \sin \theta)}{(r \sin \theta)^{1(p-3)}} \sin ^{p-2} \theta d \theta \\
& =\frac{1}{2^{1(p-3)} \Pi\left(\frac{p-3}{2}\right)} \int_{0}^{3 x}\left\{1-\frac{r^{2} \sin ^{2} \theta}{2 \cdot p-1}+\frac{r^{4} \sin ^{4} \theta}{2.4 \cdot p-1 \cdot p+1}-\ldots\right\} \sin ^{p-2} \theta d \theta \\
& =\frac{\sqrt{\pi}}{2^{(p-1)} \Pi\left(\frac{p-2}{2}\right)}\left\{1-\frac{r^{2}}{2 \cdot p}+\frac{r^{4}}{2 \cdot 4 \cdot p(p+2)}-\cdots\right\} \\
& =\sqrt{\frac{\pi}{2}} \frac{J_{\Delta p-2)}(r)}{r^{(p-2)}}=\sqrt{\frac{\pi}{2}} J_{0}(p, r) ;
\end{aligned}
$$

1893.] Dr. E. W. Hobson on Bessel's Functions, S'c.

it follows that

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{1 \cdot} J_{i(p-3)}(r \sin \theta) \sin ^{1(p-1)} \theta d \theta=\frac{J_{i n-1}(r)}{\sqrt{ } r} \tag{28}
\end{equation*}
$$

Putting $p=2 n+3$, we have

$$
\begin{equation*}
\sqrt{ } \frac{2}{\pi} \int_{0}^{\operatorname{ir}} J_{n}(r \sin \theta) \sin ^{n+1} \theta d \theta=\frac{J_{n+1}(r)}{\sqrt{r}} \tag{29}
\end{equation*}
$$

Again, putting $p=\dot{2} n+2$, we have

$$
\begin{equation*}
\sqrt{ } \frac{2}{\pi} \int_{0}^{1 \pi} J_{n-\frac{1}{2}}(r \sin \theta) \sin ^{n+1} \theta=\frac{J_{n}(r)}{\sqrt{ } r} . \tag{30}
\end{equation*}
$$

A particular case of (29) is

$$
\begin{equation*}
\int_{0}^{\operatorname{lr}} J_{0}(r \sin \theta) \sin \theta d \theta=\frac{\sin r}{r} \tag{31}
\end{equation*}
$$

thus we have relations connecting Bessel's functions of orders differing by $\frac{1}{2}$.

The mode of verification of (28) shows that the relation holds even when p is not restricted to be a positive integer.

Expressions for Zonal and Tesseral Harmonics as Definite Integrals involving Bessel's Functions.
18. Let

$$
\rho^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p-1}^{2} ;
$$

then we have the well known theorem

$$
\frac{1}{r}=\frac{1}{\left(\rho^{2}+x_{p}^{2}\right)^{4}}=\int_{0}^{\infty} e^{-\lambda x_{\rho}} J_{0}\left(\lambda_{\rho}\right) d \lambda .
$$

Differentiating both sides of this equation m times with respect to ρ^{2}, we have

$$
\begin{equation*}
\frac{1}{r^{2 m+1}}=\frac{1}{\left(\rho^{2}+x_{p}^{2}\right)^{m+1}}=\frac{2^{m} \Pi(m)}{\Pi(2 m)} \int_{0}^{\infty} e^{-\lambda x_{\rho}} \lambda^{m} \frac{J_{m}(\lambda \rho)}{\rho^{m}} d \lambda \ldots \tag{32}
\end{equation*}
$$

In order to find a corresponding expression for the even powers of $\frac{1}{r}$, we have

$$
\begin{aligned}
\frac{1}{r^{2}}=\frac{1}{x_{p}^{2}+\rho^{2}} & =\int_{0}^{\infty} e^{-\lambda x_{p}} \frac{\sin \lambda \rho}{\rho} d \lambda \\
& =\sqrt{\frac{\pi}{2}} \int_{0}^{\infty} e^{-\lambda x_{\rho}} \lambda \frac{-J_{b}(\lambda \rho)}{(\lambda \rho)^{i}} d \lambda ;
\end{aligned}
$$ on differentiation m times with respect to p^{2}, we have

$$
\frac{1}{r^{2 m+1}}=\frac{1}{\left(x_{p}^{2}+\rho^{2}\right)^{m+1}}=\frac{2^{m+1} \Pi\left(m+\frac{\xi}{2}\right)}{\Pi(2 m+1)} \int_{0}^{\infty} e^{-\lambda x_{\rho}} \lambda^{2^{m+1}} \frac{J_{m+1}(\lambda \rho)}{(\lambda \rho)^{m+1}} d \lambda \ldots(33) ;
$$

both the equations (32), (33) are included in the formula

$$
\begin{equation*}
\frac{1}{r^{n}}=\frac{1}{\left(x_{p}^{q}+\rho^{2}\right)^{1 n}}=\frac{2^{1(n-1)} \Pi\left(\frac{n-1}{2}\right)}{\Pi(n-1)} \int_{0}^{\infty} e^{-\lambda x_{\rho}} \lambda^{\frac{1}{(n-1)}} \frac{J_{1(n-1)}\left(\lambda_{\rho}\right)}{\rho^{1(n-1)}} d \lambda \ldots \tag{34}
\end{equation*}
$$

the most important case of this theorem is obtained by putting

$$
n=p-2
$$

in which case we have

$$
\begin{equation*}
\frac{1}{r^{\rho-2}}=\frac{2^{1(p-3)} \Pi\left(\frac{p-3}{2}\right)}{\Pi(p-3)} \int_{0}^{\infty} e^{-\lambda x_{p}} \lambda^{p-3} J_{0}(p-1, \lambda \rho) d \lambda \tag{35}
\end{equation*}
$$

From the equation (35), we find, by differentiating n times with respect to x_{p},

$$
\frac{\partial^{n}}{\partial x_{p}^{n}} \frac{1}{r^{p-2}}=\frac{2^{1(p-3)} \Pi\left(\frac{p-3}{2}\right)}{\Pi(p-3)} \int_{0}^{\infty}(-\lambda)^{n} e^{-\lambda x_{p} \lambda^{p-3}} J_{0}(p-1, \lambda \rho) d \lambda ;
$$

hence

$$
\frac{P_{n}(p, \mu)}{r^{n+p-2}}=\frac{2^{1(p-8)} \Pi\left(\frac{p-3}{2}\right)}{\Pi(p-3) \Pi(n)} \int_{0}^{\infty} \lambda^{n+p-3} e^{-\lambda x_{p}} J_{0}(p-1, \lambda \varphi) d \lambda \ldots(36) ;
$$

this is the expression for the zonal hyper-harmonic of degree $-(n+p-2)$, in terms of Bessel's functions. In particular we have

$$
\begin{equation*}
\frac{P_{n}(\mu)}{r^{n+1}}=\frac{1}{\Pi(n)} \int_{0}^{\infty} \lambda^{n} e^{-\lambda z} J_{0}\left(\lambda_{\rho}\right) d \lambda \tag{37}
\end{equation*}
$$

\qquad
19. For the ordinary system of zonal and tesseral harmonics of rank 3 , we have from the equation

$$
\frac{1}{r}=\frac{1}{\left(\tilde{\sigma}^{+}+\eta \eta\right)^{4}}=\int_{0}^{\infty} e^{-\lambda=} J_{0}(\lambda \sqrt{\bar{\xi} \eta}) d \lambda,
$$

1803.] Dr. E. W. Hobson on Bessel's Functions, \&c.
where $\quad \xi=x+1 y, \eta=x-1 y$,

$$
\begin{aligned}
\frac{\partial^{m}}{\partial \xi^{m}} \frac{\partial^{n-m}}{\partial z^{n-m}} \frac{1}{r} & =(-1)^{n-m} \int_{0}^{\infty} \lambda^{n-m} e^{-\lambda x} \frac{\partial^{m}}{\partial \xi^{m}} J_{0}\left(\lambda \sqrt{\xi_{n}}\right) d \lambda \\
& =(-1)^{n} \frac{1}{2^{m}} e^{-m \cdot \phi} \int_{0}^{-} \lambda^{n} e^{-\lambda s} J_{m}(\lambda \rho) d \lambda
\end{aligned}
$$

Now

$$
\frac{\partial^{m}}{\partial \xi^{m}} \frac{\partial^{n-m}}{\partial z^{n-m}} \frac{1}{r}=(-1)^{n} \frac{e^{-m \varphi}}{r^{n+1}} \frac{(n-m)!}{2^{m}} P_{n}^{m}(\mu) ;
$$

hence we have

$$
\begin{equation*}
\frac{P_{n}^{m}(\mu)}{r^{n+1}}=\frac{1}{(n-m)!} \int_{0}^{\infty} \lambda^{n} e^{-\lambda s} J_{m}(\lambda \rho) d \lambda . \tag{38}
\end{equation*}
$$

which gives an expression for the tesseral harmonic $\frac{P_{n}^{m}(\mu)}{r^{n+1}} \cos m \phi$ as a definite integral.

We have, putting $r=1$,

$$
\begin{gather*}
P_{n}^{m}(\mu)=\frac{1}{(n-m)!} \int_{0}^{\infty} \lambda^{n} e^{-\lambda \cos \theta} J_{m}(\lambda \sin \theta) d \lambda \tag{39}\\
P_{n}(\mu)=\frac{1}{n!} \int_{0}^{\infty} \lambda^{n} e^{-\lambda \cos \theta} J_{0}(\lambda \sin \theta) d \lambda \ldots \ldots \tag{40}
\end{gather*}
$$

Some potential problems may be solved either in terms of the system of zonal and tesseral harmonics, or in terms of Bessel's functions; the formulæ of the present section afford the means of passing from one form of solution to the other.
20. It might be expected that, corresponding to (36) and (37), there should exist expressions for the positive harmonics $r^{n} P_{n}(p, \mu)$, $r^{n} P_{n}(\mu)$, as definite integrals involving Bessel's functions. If, in (16), we write λr for r, we see, by Cauchy's theorem, that

$$
\begin{aligned}
& r^{n} P_{n}(p, \cos \theta) \frac{\Pi(p-3)}{2^{\frac{1}{(p-3)} \Pi\left(\frac{p-3}{2}\right) \Pi(n+p-3)}} \\
& =\frac{1}{2 \pi \iota} \iint e^{\frac{e^{\lambda r \cos \theta}}{\lambda^{n+1}} \frac{J_{i(p-3)}(\lambda r \sin \theta)}{(\lambda r \sin \theta)^{1(p-3)}} d \lambda,} \\
& \text { or } \quad r^{n} P_{n}(p, \cos \theta)
\end{aligned}
$$

$$
=\frac{2^{1(p-s)} \Pi\left(\frac{p-3}{2}\right) \Pi(n+p-3)}{\Pi(p-3) \pi t} \int \frac{e^{\lambda r \cos \theta}}{\lambda^{n+1}} \frac{J_{1(p-3)}(\lambda r \sin \theta)}{(\lambda r \sin \theta)^{1(p-3)}} d \lambda \ldots(41)
$$

where the integral is taken along a complex path represented by a closed curve round the origin $\lambda=0$.

In particular, we have

$$
\begin{equation*}
r^{n} P_{n}(\cos \theta)=\frac{n!}{2 \pi t} \int \frac{e^{\lambda r \cos \theta}}{\lambda^{n+1}} J_{0}(\lambda r \sin \theta) d \lambda \tag{42}
\end{equation*}
$$

It may be shown that

$$
r^{n} P_{n}^{m}(\cos \theta)=\frac{(n-m)!}{2 \pi t} \int \frac{e^{\lambda^{r c \cos \rho}}}{\lambda^{n+1}} J_{m}(\lambda r \sin \theta) d \lambda
$$

\qquad
The expressions (42), (43) correspond exactly to (37) and (38), the only difference being that in the latter the integrals are taken along a real path, and in the former along a complex path.

Expressions for the Zonal and Tesseral Harmonics of the Second Kind in Terms of Bessel's Functions.
21. Let us evaluate the definite integral

$$
\int_{0}^{\infty} e^{-\lambda z} Y_{0}(\lambda \rho) d \lambda
$$

Substituting for $Y_{0}\left(\lambda_{\rho}\right)$, the value

$$
\int_{0}^{\infty} \cos (\lambda \rho \cosh u) d u
$$

we have

$$
\left.\left.\begin{array}{rl}
\int_{0}^{\infty} e^{-\lambda:} Y_{0}(\lambda \rho) d \lambda & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-\lambda z} \cos (\lambda \rho \cosh u) d u d r \\
& =\int_{0}^{\infty} \frac{z d(2 u)}{2 z^{9}+\rho^{9}+\rho^{2} \cosh 2 u} \\
& =\frac{1}{2 \sqrt{z^{2}+\rho^{2}}}\left[\cosh ^{-1} \frac{\left(2 z^{9}+\rho^{2}\right) \cosh 2 u+\rho^{2}}{\left(2 z^{2}+\rho^{2}\right.}\right)+\rho^{2} \cosh 2 u
\end{array}\right]_{0}^{\infty}\right)
$$

1893.] On a Variable Seven-points Circle, \&c.
thus we have the theorem

$$
\begin{equation*}
\frac{1}{r} \log _{e} \sqrt{\frac{1+\mu}{1-\mu}}=\int_{0}^{\infty} e^{-\lambda z} Y_{0}(\lambda \rho) d \lambda . . \tag{44}
\end{equation*}
$$

which corresponds to the known theorem

$$
\frac{1}{r}=\int_{0}^{\infty} e^{-\lambda z} J_{0}(\lambda \rho) d \lambda .
$$

From (44), we obtain, by differentiation n times with respect to r, the formula

$$
\begin{equation*}
\frac{Q_{n}(\mu)}{r^{n+1}}=\frac{1}{n!} \int_{0}^{\infty} \lambda^{n} e^{-\lambda:} Y_{0}\left(\lambda_{\rho}\right) d \lambda \tag{45}
\end{equation*}
$$

where $Q_{n}(\mu)$ is the zonal harmonic of the second kind. As in the case of the harmonics of the first kind, we find

$$
\begin{equation*}
\frac{Q_{n}^{m}(\mu)}{r^{n+1}}=\frac{1}{(n-m)!} \int_{0}^{\infty} \lambda^{n} e^{-\lambda=} Y_{m}(\lambda \rho) d \lambda \tag{46}
\end{equation*}
$$

thus the tesseral harmonic $\frac{Q_{n}^{\prime \prime \prime}(\mu)}{r^{n+1}} \cos m \varphi$ is expressed as a definite integral involving the elements $e^{-\lambda:} Y_{m}\left(\lambda_{\rho}\right) \cos m p$.

Note on a Variable Seven-points Oircle, analogous to the Brocard Circle of a Plane Triangle. By Join Griffiths, M.A. Received December 13th, 1893. Read December 14th, 1893.

The object of this note is to show that a seven-points circle can be constructed from a variable point U taken on one of three given circles connected with a triangle $A B C$.

1. On the side $B C$ of a triangle $A B C$ describe a circular arc $B U C$ touching $A C$ in C, and let U be any point on this arc. This con-

[^0]: * See Proc. Lond. Math. Sco., Vol. xurp., p. 67.

[^1]: - See Proc. Lund. Math. Soc., Vol. xix., p. 289.

