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carefully revised the original draft, but also for many important suggestions
embodicd in the puper.

1. The object of the present puper is to give a graphical process
for obtaining solutions satisfying a system of linear congruences
within a given limit. The process is adapted to the factorization of
large composites, or the determination of large primes and other
problems in the theory of numbers, such, for instance, as the repre-
sentation of high numbers in binary quadratic forms, &ec.

Incidentally some properties of a system of linear congruences are
given that are believed to be new. . -

The scope of the paper consists in proving and explaining four
simple rules to be employed in the application of the process, together
with an example showing its working.
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2. Let a quantity H be such that

H=q, ay ay .., a, (modP)
> A (A)

=8, By By oy Bu (mod Q)

Sph b f o 8 (modp)

=p', pis pis ..oy py  (mod p”)
=p" 0" p"s o i (mod p”) }, (B)

=pl, Pl p, oy P (mod p)
where P and () are prime or composite moduli, but prime to each
other, p', p", ", ..., p'* different odd primes, not contained in P or Q;
Qg gy @y oony @05 By Bay oooy By <oy Py and the p's least residues for
the corresponding moduli.  Our object then is to obtain integral
solutions or values of H simultaneously satistying these o+2 con-
gruences under & given limit of H.

3. We shall first combine the congruences (A) and give results on
which the subsequent work depends. Now we know that on com-
bination there arise mn cases with the modulus P}, but, as will
presently appear, we need only solve the n congruences

—Pk“l"“] Eﬁ): B:H ﬂ.‘h' ceey :Bn (nlOd Q)a

and the m—1 congruences
P’\+a~11 gy ovy @, = ﬁl (and (z))

altogether m+n—1 instead of mn. The result of combining is, of
tourse, that we may take H = «P@+», where » has mn values less
than Q. Hence we may denote any one of these me values of » by
To, o Since it is capable of representing mn values as @ ranges from
1 to m, and « from 1 to « independently. Fuvther, we may restrict
T, « 10 that case arising out of :

Prta_=p, (mod Q), €))

observing that = always refers to the subscript of one of the a's, and
x to that of one of the 3's. It will also be useful to denote the corre-
spouding value of A by A, .

We have then H= a'PQ+PAw, «tag (2)
- 3

or T e = P'\w. Ha
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since H=a,, (mod P)=g, (mod Q) by (1) and (2); so we may
tak 8 i

ake our solution to be H o= 2PQtry, . “

4. We now proceed to express (4) in another form. Let « be an
integral solution (which is always possible) of

Qv—Py = 1. (3)
Then, multiplyingi)y ag—B,, we have
Pu (agp—B,) =B, —ay (mod Q). (6)
Hence, by (2), we see that '
Ag, =n(ap—p3,) (mod Q); (7
so that AL e =0 (e—5,) .

Aw1 = uw(ag—1) (mod Q).
A, = (u,—/:‘;,)
Therefore Ag 1t A 1 = (ag—F) =4y, (mod Q)
or /\.w, = A 1t Ay (mod Q); o ®)

so that, on multiplying (8) by P and adding a, we have
P’\w, 3 + Uy = (PAW, 1 +“w) + (P)‘l, x +al)_(PA1, 1 +al) (n10d PQ)

or, by (3), T e ="g,117,— 71,1 (mod PQ). ()
Hence, tinally, we may take our solution to he
H=aPQ+7r, 147, ,—7 - 10)

On this equation the whole process is based.

5. If we assign any value to & Detween 1 and m inclusive, and
ranges from 1 to », we obtain the » quantities

7'1,1+("'w.1‘”"'1,1)’ "'1,2+("'w,1—"1,1)v 7'1,3+(7'w,1"‘"1,1)a ey

Tl-,n"‘("'w,l_”],])a
together with a multiple of P@Q by (10). We shall speak of these
n quantities as belonging to the w-th arrangement. The first arrange-
ment consists simply of 7, 1, 7y o, 71 3 .-y 77,4 together with the
multiple of P(). Hence it is important to observe that the w-th
arrangement is obtained from the first arrangement by the merc
addition of the known quantity (rg, 1—,1)-
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6. The first step then in the application ot the process which gives
rise to Rule I. is to solve the » congruences

Phta,=3,, By, By, ..., B, (mod Q)

and the m—1 congruences
PAr+ay, ay, ..., «, =0, (mod (),

giving the cases 79,1, 71,5 71,4 «oos 71, 20 29 4 7y 4y vy Ty respectively,
which values are easily found by applying (3), (5) and (7).

We next tabulate the least residues (6) of these quantities for the
prime moduli p', p”, p", ..., ', and also the least residues (t) of PQ
for the same moduli as follows:— :

Modulus  #y,y 71,2 7,3 "I 79,1 73,1 Pt PQ
’ ’ / / ’ ’ 7
Y 0,0 | 6,2 | O, 01, n X 8,1 t
" . 2 ’” ’” Y ’ ,
P Bi,1 | 6,2 | 61,a O, | 620 | Ea O } 17
" 111 177 10! 1"’ 17 11 117
»" 611 612 | 61,3 On | 20 ) B30 B |
(o) (o) (o (o |i gled (e ) (
me e 6. 9, 208 I 6,1 6::,1 UM I o)

1t will be useful to speak of this table as the elements table. The
object of this table will be best understood when considered in con-
jnuction with what follows and what has been already stated.

- 7. We shall now confine our attention for the moment to the first
arrangement (= = 1) which gives us

H==aPQ+nr ,,

v ranging from 1 to » inclnsive (since these numbers » form the same
set, viz,, 1, 2, 3, ..., » in each arrangement, we shall speak of them
as set numbers, and they will be denoted by «), and we now proceed
to show how values of & may be graphically obtained where

H= :uPQ+‘r1, «=ps (mod p'),
d ranging from 1 to f (¢f. §2). Now, from the elements table, we

h /
e H=af +8,=p, (mod p).
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Let 0, «=zt' (mod p')
and pa=wt (mod p');
so that H=¢ (a42)=wt (mod p’) or 2=w—z. - (11)

It is, however, quite needless in practice to solve these congruences,
for, if we take a sheet of paper with vertical rules at equal horizontal
spacing, and write down the least residues ¢, of the successive
multiples of ¢ for the modulus p as follows with

tv=pt'  (mod p'),

BASE LINE
pn=0 1 2 3 H w
plole el [ 'z'
w
& (4
BHe o] e |4 |erneory [ ¥ SET ROW K ‘1
5 < l (
% plll 0 tun l;“ ’:"” JARRANGEMENT RO W] /‘
[} i e e eenaeees e e fr—) s
(o (o)
P | 0| g [ A & ¢

we obtain what we will call the p'-line of the base sheet. Then, since
every integer less than p’ will occur among the #.'s, and if we put a
dot over ¢, = p; (z.e., f dots since d ranges from 1 to f), we have only
to take & narrow strip of paper spaced as the base sheet and divided
into two rows (the upper row called the set row, as it contains the
set numbers x, and the lower row or arrangement row containing, as
we shall see presently, the arrangement numbers &). We denote it by
7, and we write 1 in the arrangement row to give the initial division
of the first arrangement. Then, if we place the strip with this
division at ¢, (= 6},,) of the p'-line, and write the values of « in the
divisions of the set-row, under the dotted figures (i.e., £,), we obtain
the values of & by simply placing the strip under the base lLine* so
that the initial division marked 1 is at the O (or any multiple of p’)
of the base line, and read off the integers in the base line that are
over the «’s, since, if we compare the preceding figure with the

* The base linc is the top line of the base shect, and consists merely of successive
integers in each division ; its use is to give the value of # as explained above.
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following, we see at once that the number over x is w—z, which is
the required value for = by (11).

BASE LINE

4 : ' I ;
STRIP OF p’ J e e e e —,——

=
I
=)
—
@
>
<
|
"

8. In applying the principle just described, it is evident that us we
placed the initial division of the strip at ¢, (= 6] ), and wrote x under
each dotted figure, so we first place the initial division at ¢ (= 6;,),
* and write 1 in the set row under each dotted figure ; then it is placed
at ¢, (= 6;,), and 2 is written in the same row under each dotted
figure and so on till ¢, (= 6;,,) has been dealt with and » written.

In filling up the divisions in this manner, it is necessary that each
number should always occupy & fixed relative position with respect

to the other set numbers: e.g., if » =9, then we should follow the
scheme

so that 3, for instance, should always occupy the right-hand top
corner in those divisions in which it is to appear.

9. In the last paragraph we have shown how the strip for the
prime p’ is to be drawn up, and in a precisely similar manner strvips
are drawn up for the primes p”, p’”, ..., p. All the least residues
(¢.) of the successive multiples of P@Q are arranged in the base sheet
as shown in the first figure, § 7, and dots are placed over the #’s of
each line that equal the p’s of the corresponding congruence of the
system (B). It should be noticed that the residues # recur nt
intervals of p’, ¢, at intervals of p”, and so on. Hence the base
sheet may be of any convenient length so long as the number of
divisions in it exceeds p), the highest prime. A similar remark
applies to the strips.

10. So far we have been dealing only with the first arrangement,
and the gunestion that now arises is whether the strips already drawn
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up for this arrangement suit for the other arrangements. We will
now show that they do suit.

Taking the w-th arrangement and attending to the remark in § 5,
we have, by (10),

H=2aPQ+r + (g —r,1) =py (modp). (12)
Now, let (", 1=, 1) =yt"  (mod p’).

Then, by definition, y is constant for this arrangement and inde-
pendent of w and z. Hence, as in §7, we have

(e+z4+y) ¥ =wt (mod p’),
or ' X = w—s—; (13)

but w—z is the distance between the initial division and x in the
first arrangement, and, by (13), we see that for the w-th arrange-
ment the effect of adding the quantity (v, ,—7; ;) is only to shorten
or lengthen the distance between the initial division of the first
arrangement and that containing « by y divisions, and further, since
~ stands successively for the set-of numbers 1, 2,3, ..., n (¢f- §8), we
see that all these numbers are affected in the same manner by the
addition of (r4, ,—7,,) to the first arrangement ; hence we have only
to find a new initial division for each arrangement.

11. It is here, then, that we make use of the second portion of the
elements table, § 6, namely, the residues (6) of #, 1, 751y ...y 7w, For, °
if we were to draw up a slip for the »-th arrangement for the prime
»’, we should place its initial division (¢.e., the division having w in
the arrangement row of the strip) at the number #, (=6, ,) of the
base sheet, and write 1 in the set row under each dotted figure; but
it is quite clear that, if we take the strip of »’ already drawn up, the
same result is obtained by placing the initial division (marked 1 in
the arrangement row) at ¢ (= 6),;) and writing w in the arrange-
ment row of that division, that is nuder ¢, (= 6, ,), since 1 of the set
row is under each dotted figure. In fact, if we refer to the following
figure, it is clear that the distance (¢) between w and « is equal to

¢ n
- ~
t ‘ i
’ e e — (
» l ko J
1 ‘m‘ l l




330 Rev. J. Cullen on the [March 13,

the distance (b) between 1 and « less the distance (c) between 1 and
@ ; but
h=w—z,
by (11), and c=n—{=y,
since, by § 10,
T 1~ 7,1 =yt (mod p') =60, 1—6, =t (n—0);

therefore a=w—z—y;

so that, if the strip of p’ be placed with the division containing w at
the O of the base line, the number in the base line over « would be
(w—z—y) which, by (13), is the value of @ in

H=2PQ+r (g 1 —ry,1) =pi (mod ).

Thus we obtain our general solutions.

Hence the new initial divisions for the other arrangements are
obtained by placing the strip p’ so that the division containing 1 in
the arrangement row is under ¢, (= #],) of the p’ line of the base
sheet, and writing 2, 3, ..., m in the arrangement row of the strip
under the divisions (of the p’ line of the base sheet) containing the
numbers ty (= 634, b5 1, ..., 6;, | of the elements table).

12. Similarly the initial divisions for the different arrangements
for the strips p", p’”, ..., p’ are obtained from their respective rows
in the elements table and the base sheet.

13. We are now in a position to obtain values of « in (10) simul-
taneously satisfying the o+2 congruences (A) and (B), supposing
the o strips to have been completed; also the values of & and « can
now be found, and hence, by (10), and the top row of the elements
table, our solutions can be obtained. For, if we place all the strips
one under the other under the base line, so that the initial divisions
containing w in the arrangement rows form a column under 0,* and
if we search the columuns for a number « appearing in the set
rows of all the strips in a particular column, and read off the number

* Any strip for p( (say) may be placed so that the divisior with @ in its
arrangement row is under any multiple of p\7) in the base line.



1902.]  Solutions of a System of Linear Congruences. 331

2 in the base line over this column, a solution is
«"'PQ"?‘?'W,]-*""I.K—"‘].],

while, if « fails to appear in any strip, this cannot be a solution, as is
clear from § 7. :

Thas, in practice, we begin by placing all the strips so that the
initial divisions containing 1 in the arrangement row of each are at
the O of the base line ; we then search up to the required limit of H;
then we place the divisions containing 2 in the arrangement row of
each strip at O of the base line, and continue the search ; and so on
till m has been dealt with.

If L be the upper limit of H, then a » L/PQ; yet we should
search to the (L/P@Q+1)-th column, since (ry +7 ,—, ) may be
negative, but <PQ ; also this quantity may be > PQ, but <2PQ.
Therefore & may =-—1, and yield a positive solution. Thus the
column of the strips to the left of the O of-the base line should be
searched.

14. Runes.—Rule I.—Apply (3), (5), and (7) to solve the » cou-

gruences .
Prtaq Eﬁln /321 ﬁm cvy B, (mod Q),

and the m —1 congruences
PA+ay, ay, ..., a,=f, (mod Q),

giving the cases vy ,, 71,2 Ti,u «ooy 1,0 ANA 75 4, 75 4, .0y T, YESPectively.
Then form the elements table, § 6.

Rule II—Form- the base sheet, § 7, and in the line p’ place dots
over the numbers ¢, =pj, pi, ..., p;, and so in like manner treat the
lines p”, p'”, ..., p; then place the initial division (marked 1 in
the arrangement row) of the strip p" at ¢, (of the base sheet) = 6],
(of the elements table), and write 1 under each dotted figure;
then place the same division at #,, = 6}, and write 2 under each
dotted figure; and so on till m has been written in the set row of
the strip. Thus, in a similar manner, complete the strips for

'’ (o)

’
P IP 3 "‘)P

Bule III. — Now place the initial division (with 1 in the
arrangement row) at ¢, =#6;,,, as in Rule IL, but mnow write
2,3, ..., m in the arrangement row in the divisions under

-~

g ’ ,
tw_é‘l,l’ 3, “'!am,l‘
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Thus also find the initial divisions of the different arrangements for
the strips p”, p’”", ..., p!o.*

Rule IV.—Place all the strips one under the other so that the
initial divisions (marked 1 in the arrangement rows) form a column
under the 0 of the base line, and search for a number appearing in
the set row of every strip throughout a particular column; having thus
searched throughout (L/PQ+2) columns (z = — 1 to 2 = L/PQ+1),
we place the strips with 2 of the arrangement rows under the 0 of
the base line and continue the search, and so on till m of all the
arrangement rows has been placed under the 0, and all the columns
searched. If, then, when o of the arrangement rows is nnder the 0
(or any multiple of p™ for the strip p) of the base line, and the
number « appears throughout the divisions of the set rows which
form a column under x of the base line, then aPQ+r_ 47, ,—7

is a solution.

15. We now give an example showing the working of the process.
Let N =1,886,601,653, and, if we wish to determine whether N be
prime or composite, we may seek the partition N = H*+ (¥, since
N = 4k+1: if this partition be unique, N is prime, while, if there is
no partition or else two or more partitions, then N is composite.
Taking H to be odd, we have H* = N—G*. Now
© N=2(mod 3)=3 (mod 5) =6 (mod 7) =53 (mod 64);
therefore

H=+1 (moa 3N=x2(mod3) = £24+3 (mod 7) = £7+9 (mod 32).
We combine  I/{=+1 (mod 3)= £2+3 (mod 7),

giving H=4+24+4++5+10 (mod 21),
and also H= 42 (mod 5)==x7 %9 (mod 32),
giving H=474+23x57+73 (mod 160).

# Tu the application of Rule II. for finding the set numbers «, and of Rule I1L.
for finding the mirangement numbers @, it <hould be noticed that the (¢7) may be
to the left of the initial division, but, if a secoud 1 be written in the arrangement.
row of the strip p'+ at a distance of p 9 divisious from the initial division, we have
ouly to move the strip =o that the latter division occupies the place of the former to
give us a division in which x or w is to be written.
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Hence, taking P = 160 and @ = 21, we have

H=aq, a,, a3, a;, a;, «g a
(mod 160)
7, 23, 57, 73, 87, 103, 137, 153

=By By By Ba By Bo B Bs
2, 4, 5,10,11,16,17,19
=123,89, 10 (mod 11)

} (mod 21)

333

(A)

since N=2 (mod 11))

=0,1,2,6,7,11, 12 (mod 13) =1 (wod 13)
=1,4,78,9,10, 13, 16 (mod 17) =14 (mod 17)
=0,3,4,7,8,9, 10, 11, 12, 15, 16 (mod 19) =16 (mod 19)

=1,4,6,7, 8,11, 12, 15, 16, 17, 19, 22 (mod 23) =1Y (mod 23)

4, 5, 6, 8, 10, 11, 12, 17, 18, 19, 21, 23,

24, 25 (mod 29) =12 (mod 29)

=145, 17,9, 10, 14, 15, 16, 17, 21, 22,

24, 26, 27, 30 (mod 31) =26 (mod 31)

=2,4,5,6,9,12, 13, 14, 18, 19, 23, 24,

25, 28, 31, 32, 33, 35 (mod 37) = 32 (mod 37).
(B)
. Now 210—160¢ = 1 gives « = 8; heuce, applying (7) and then (3),

we find

L1 T2 ML P L TLe T4 The TR Taa T4 75 76 ' rwy PQ

Modulus.{3047 | 487 [2567 | 2887 | 1607{ 1927 | 647 |1447 II 23 | 3257 2?3 1867 [ 17031577 | 111813340
1m |o|ls|s)lsl1]z2]o GJ 11239 +]wo]s
13 |sle|le|1]s|sjwlsfwo]r|uel2fo]ls]|2]s
17 |4 nfoju]ofefr|2fle]wjuzf7fsfu]e|n
1 [ {22 lwslualsasll+]ss(ws]iz]o|ws]ie
23 {11 4 {wfr2f2ofas] s [aaffolaefs o]l |)s]2
29 L2 Lozl {s o faslas|o 1|+ 2] |2s]2s
31 | o |aal2s| o (26| 5 {27 |oaffos] 26| 32027 |22]12
37 {6 et {as| 3 as| ¢ flos|afrn]ss] 1 |as]ae]a0

This is the elements table of § 6 and application of Rule L
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On the accompanying diagram we have the base sheet and the
strips drawn up by Rules II. and III. They are in position for the
first arrangement = = 1, and we search the set rows in each column
for a number appearing throughout up to the fourteenth columa.
Since H » +/N 3 43435 and PQ = 3360, which is the application
of Rule IV., we find

g 6 [ 1w [ 12| ]| 6 0
w| 1 1 1 2 5 | 5 6
x| 6 3 3 | 8 5 3

Il =] 22087 | 36167 | 42887 | 42263 3127 [20087 | 1223

The first three results w =1 are shown on the strips, viz., 6 appears
in set rows in the column under 6, of the base line, and 3 in the
columns under 10 and 12. " On actual trial we have

N =1,886,601,653 = 42887°+ 6878° = 42263* + 10022*
= 17837 .105769. ) :

The other five solutions would soon fail to conform to subsequent
modnuli if we used strips for 41, 43, &e.

Note (3.).—In searching any pavticular column we compare the
numbers of any two adjacent set rows in the column and mentully
carry the numbers common to the two rows into a third, and then
those common to the three rows into a fourth, and so on. Thus, for
instance, in the column under 7 of the base line the two top strips
give 5 and 8 common, while 5 is only common to the third; so we
need only look for 5 in the remaining set rows of the columu, and,
since  does not appear in strip 29, we pass on to the next columu, 8.

Note (ii.).—1t is well to observe the #dvantage of the graphical
work over purely arithmetical, for each column deals with eight
cases (in the example). Thus the column under 4 of the base line
gives the eight cases of the first part of the elements table + 4.3360.
Then in arithmetical work we should have to find their residues to
(mod 11), then those of the five cases 1, 71,5 7,a 7,6 "1a+ 4. 3360
o0 (mod 13), then 7, ,, r;++.3360 to (mod 17), and, finally, =, to
(mod 19), in order to exclude these eight cases, in all8+4+5+2+1=16
residues; but in graphical work a glance at the column gives this
information.



2,7

123

3

BASE SHEET.

s ° L
°
8 - =
-
£ *= 3
=
3 & 3
™
8 R ]
™
8 3 8
- w N - .
@ < | @
o
S 2 [o 8
=1 =
B o ] 2
@ ©
& &
. =
s 1
< ©
8 8
w =]
E - ]
~
2 -
@ @
8 8
= [
8 R R |7 |*= s
- =] @ |e -
= o2 =
o~
o |~ R = 2
o <
=) Ol Iho - . |e
5 oo
- wn |~ o
=
o leg S
) e | |2 o3 | & < |= o
B -
@»n
“lezl=al2 . -
=~ o|lo g 2|2 I w |- ©
=3 o o3 o -
< © [e o log 8 < e o
S “ e
- s
a S e fo- | K| R fo - "o
N -
- = s
= o Joz [0 | e | 2 lo= = o e aw - <0
o - o S
@ e
2 o~ | 2| | = 2 - 3 =8 ™ o
-~ - s ~
- - = - Fvs
L] o [ [om 2| R & gl « o [ ] o
.~ - S
< - < -
o |- -
= w|wfe Bl glow |~ o o] we
~ RS ~ -
' = o = o
@ foxs
=1 oo | & |02 |*& Sl = & oo o |« oo
- ~ e
et )
w |~ »
o [tz |2 |ala] = ol 202l olels | |ow
S - M e
= o < o
o | B el | &~ |R @ | & we o e w| o
< PERS - e ~
5 - -
oo | = | |~ [o& |o8 o] e |w] we w fe] v
- ~ S <
o 0 < o
B |~ o e [62 (o83 © oo w |2 aw oo
- B Al ~ -
5 o =
e | S | | & |o= o o | w w w © no
- = o o
o | 2 o (o= wfon o] v « o e
- < - ~
- = -
0 o2 |2 [eo o |eo | B - o|efow |o]|one o]«
.~ e < -
o S -
et | o | oz o [o B B o] w |e]lo ofe -
-~ < - -
oo [l |=er || =) o o “nio
- e - -
e S
ec |o e lo]lole|e ofsw |=]- - ] e
alo[slolo|lea]a|s - © )
Al3ls|Rla|s]|® (e - - ~

1

3,6

6
8

1
4

3
78

2
8

T
To fuse p. 334.

314560456
456{4s

12
78
123
78

23







1902.7  On the Errors in certain Quadrature Formule, 836

The Errors in certain Quadrature Formulee. By J. Bucwanan,
M.A., F.T.A. Received March 5th, 1902. Read March
13th, 1902. Received, in revised form,* May 18th, 1902.

1. In a recent papert Mr. Sheppard has derived from the
Maclaurin summation theorem many of the best known quadrature
formules, with expressions for the errors in terms of differential
coefficients. The use of differential coefficients, however, is incon-
venient in cases where we do not know the form of the function, but
only its value at stated intervals; and these are cases where the
formule are of great practical value. Prof. liverctt has recently
given a new interpolation formulal involving only even cential
differences ; and from it similar quadrature formulw can be obtained
by direct integration with expressions for the errors in terms of
central differences.

Denoting by p the distance of the ordinate u, in front of w, and by
q its distance behind u,, so that p+¢ = 1, he writes
= [+ 1D sy @D g

» 0
S s w(i— .
o2 E D e POEZD=Y 50 o, )
9. .
where§ Suy, = wy—u_y,

so that &, &, ... are the eveu central differences.
If we integrate with respect to p between limits O und 1, we have,
since dy = ~ dp,

1 wr (o — . P ,J‘:_.
j w,dp = { [P'*'"P'“([;, 1) 81’.*.»[’_(,./’___](;.))'_(/_....4). 8*-}-,,,] {uy+u,) dy

1
0 - i)
=4 [1—&8 + 258 —s33308 + 5ddho® — . ] (et )
=3 [1 +A,8+A8+A 8+ ] (g +y),

where A, A, ... ave written for shortness for the numerical coeflicients.

¢ [The title of the paper was changed in vevision: ¢f. I'voceedings, supra,
p. 322.—8rc.]

t Procecdings, Vol. xxxi11., p. 258.

+ Jowrnal of the Institute of Actuaries, Vol. Xxxv., p. 452,

§ Cf. Proccedings, Vol. xxx1., pp. 459-60.
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" 1 e "
Hence [ n,dp =[ w,dp +[ u,,dp+...+J' w,dp
0 1

-0 1 [

= (L+ B+ B4+ T |: wydp
= g+ 10+ .+ 3u,
BN+ ) (=), 2)
Where® oty = § (1),

so that u8. w8, ... are the odd central differences.

2. Let a, b, ¢, ... be the factors, inclnding nnity, of 2; and let 3,

1,05, ... be the odd central differences of the series of functions
© Tty Uoany Mgy Tany Maapy <20 3 thCl'l

ik

wode = ah | 3w+ o+ o+ .. +%u,,,,]
B + ah [)\33‘, +A, 83+ ... ] o (e —1,).
Now p& ' = cosh $LD (2sinh $LD)* -1,
pa 827" = cosh Juh D (2 sinh $ah D)™,

and sincet

- 2
. . w—1 .
2 sinh ap cosh ap = wcosh ¢ L‘.’. sinh g+ - - (2sinh ¢)?

3!
+ (,,1—1%(!0'“’—4) (2 sinh¢)?

+ .(’4’_1)(ﬂ'37—'_fL;L(L“’_T_Q)_ (2sinh ¢)? + ]

(2 sinh ag)? cosh g = * cosh g [(2 sinh ¢)*+ "—I—] (2 sinh ¢)?
+ (”’2—1)_(3?:_—7)(2 sinh ¢)"+ J
4.5.6

. 5 5 r . 5, i*—1 , . -
2 sinh ap)® cosh ugp =« cosh ¢ I (2sinhg)'+ " - Zsinhg) 4 ],

* Procecdings, Vol Xxx1., pp. 459-60.
t 1bid., Vol. xxx1., p. 434,
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we have at once

pabdy = ap [a+ ‘!’"3‘! Loy (""—1?,)(!""-—‘“ &+ ("'2_1“’”{77! RO -
= | gy OT70 ey (ODOEEDay
s = m,;[ o+ ""’;‘ 74 ]
P&l = alu [ i+,

I we make these snbstitutions for g,8,, g, 8, ..., awd veplace A, N, L.
hy their nmmerical values, equation (8) rednces to

nh 2 +4 ?
A =I wpdie = A= " [65_(”;-'+m) 5*+(" + ”‘.+z) &

. 730 42" 4
_ T o« 703 3\ o :, _ R
(o 16+ i 7 ) ] Cemi )
where A, =ul [é—un + %+ N+ T éu,,,,].

An approximate expression, together with an cxprcésinn for the

error in terms of differences, will he got by writing

(p+a+r+.)Ad =pd, +qA+r4,+ ...
where p, ¢, 7, ... are chosen to make the coeflicients of the snccessive
differences vanish,

The formulie which can be got in this way are identical with those
of Mr. Sheppard’s paper,® as might be expected if we observe that
the principal equation (2) obtained ahove is the central difference
cquivalent of the Maclwnrin summation theorcm.  The method is,
however, capable of extension.

3. The group of formnke obtained by putting « = G is of special
hiterest, us it includes a large nnmber of those best known, and it is
proposed to discuss it here in some detail.  In what follows the letter
f is for convenience omitted from the suflix of .

If we choose p and ¢ so that pa*+¢b* =0, and put « =1, b =2,
we ot

A= /; [td, =] = {; Crotug+d (gt us) +2 (abug) |, (L)

# Lroceedings, Vol. XXXIL, pp. 262-65.
VOL. XXXIV,.—X0, 783, ‘
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which is Simpson’s rule, with an error

h €t %3
~ 180 = F38+ S — o T b ().

Putting e =1, b =3, sothat p:g::9:—1, we have
A= % [94,—A,] = %}ﬁ (o4 205+ 3 (2 + vy +1eg+205) + 205}, (i)

which is Simpson’s second rule, with an error

I
— oo P8P+ T~ Tk (o).

Put a=1:b=06; then p:q::36:—1, and
A= 5"5 [364,—A,] = %[15 (tty+ 1) + 36 (ay 4 g .. +10)], (i)
with an ecror  — ;6 [ —258°+ 83238 — ... (aeg—11y).

Other formulwe involving only five terms can be obtained from
the above by elimination. Tlus the elimination of «, and u; between
(i.) and (3i.) gives

A = 1[34,—34,+ 4;] = 3% [, +ug— (ny+ 1) + 2uy], @av.)
with an error 276 [B—810°+ 131157 — . u (uy—,).
The elimination of #, and 1, between the same two formulwe gives

=2 104,-44) = Pl bt 6 (utw)—dn], (v

with an error — zh—O[B’ 415 4+12185— Y (ug—1,).
The result of eliminating », and », between (i.) and (ii.) is

= [ (184,94, +24,) = z’l‘ [t 1+ 6 (1 +05) +8u), (vi)
with an error ;ﬁo (=74t + 259787 — ... ] 1 (rg—ny),
while the elimination of u; gives

= ?‘[6/1, +34,—24,] = 37]' (2o + 15+ 2 (y 4 2g) +4 (uy +2,)], (vil)

with an ervor — 1—{-10 [86°—1335" 43311 30" — .. 1 (ng—1p).
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Several of the above will be found to give very good results con-
sidering the small number of terms used and the simplicity of the
coefficients.

4. From the above we can get other formule which are true to
fifth differences. Thus, if we eliminate &® between (i.) and (ii.), we
get

h 3n

=15 [154,—64,+ 4,]= 10 [+ 23+ 16y + 25+ 5 (25, +25) + 6115 ], (viii.)

which is Weddle's rule, with &n error

- giLO [O—&59+ ... ] (wg—1).

The elimination of & between (i.) and (iii.) gives

A= 2—86[38~LA —1054,+ A,]
= ]40 (45 (1,4 ug) +192 (u1+u.,+ 1) +87 (ny+1,)],  (ix.)
with an error — 2’11'0 [8°—18307+ ... ] n (g—y),

while the elimination of & between (ii.) and (iii.) gives

4= 210 [2434,—354,+24,]
= 7"(-) [25 (ny+205) + 8L (14 10,4 10+ 115) + 460s,], (x.)
9h

with an error 84-6[5 —8918 4 ] (reg—1sy).

As before, we cun, by elimination, get other formulw involving ouly
five terms: thus, if we eliminate w, and u, between (viii.) and (ix.),
we get h
=255 [664,—754,+304;—4,]

= i”f B L1 (ot )= 14 (s ) + 260, (xi.)

with an error h [0 — BR8] (ug—).

% 2
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The elimination of %, and #; between the same two formule gives

L ooy 9Q
A= 150 [2434,—128.:4,+ 54,]
= 276 (11 (rty + 105) + 81 (134 11,) — 6y, (xii.)
with an evror  —% [$&6°— 5858+ ... ] ¢ (ug—1,),

s
while the elimination of #, and »; gives

.
D

h
= - = ‘S A, —247 a iy 4
A = o5 [486.4,— 2434, + 584, 4]

= .5% (14 (otg+ 1) +S1 (o, + ) + 1100, )% (i)

with an error 1550 —5340 + ... ] 1 (atg=—1¢,).

By eliminating &® between auy two of these fifth difference formulrwe,
we geb

A= 810[1296_I1—:367AE+112A,—AO]

= 1{;0 [41 (o +103) +216 (0, +15) +27 (gt 1,) +2720,],  (xiv.)
with an ervor — 23& R (=) + ... .

5. Of the preceding formule some err in excess, and others in
defect, of the true valne, and by combining them in various ways the
error can often be comsiderably reduced. For example, by taking
the mean of (iv.) and (v.), both of which show a relatively large
" error, we get Weddle's rule. If we take the mean of (i.) and (vi.),
we get

; K
4= 353-[49Al—19.~12+ 34,]

= ?%'3 {10 (ato+ 125) +49 (2 +25) + 11 (2 1) -+ 58u4], (xv.)

with an error — hﬂ_ [P+ 420° + 852307 — ... Tn (1p—1p),
1980

* Journal of the Institute of Actuaries, Vol, xx1v., p. 107, where the formula is
derived from Gauss’s theorem. It has been pointed out by thereferee that this is a
particular case of formula (42) of Mr. Sheppard’s paper (Proceedings, Vol. XXXiI.,
P- 270); but with this exception the formule given on pp. 269-70 appear to be
distinot from those of this paper.
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while the mean of (xi.) and (xii.) gives

41 = 3961, —
= 240[961 207 A3+ 524, — 4]

= 4{6 (11 e, +760) + 66 (o4 205) —3 (g4 104) + 920e,], (xvi.)

with an errov k[ 3350 — 1806050 + -+ ) & (tg=11).

Again, if to (iv.) we add twice (vii.) and take the mean, we get

A= .;”-[nA, —54,+ 4,
= %— [2 (gt ug) + 11 (20 4 205) + 26,4 10,4+ 14n5], (xvii.)
with an error [*— 338"+ 23275 — ... ] p (reg—y).

1f we double (viii.) and add it to (xvi.), we get

11 —d
A 720 [11164,—4954,41004,— A;]

120 (35 (aty+ ug) + 186 (20, + ;) + 21 (21, 4 10,) + 23612¢,], (xviii.)
with an error [—22207+ ... ) p (g—1np),

5040

while the result of donbling (viii.) and adding it to (xiii.) is

A= 900[1*}8()4 —6034,+118.4,—A4,]
150 (44 (g4 115) + 231 (2 + 165) + 30 (29 +26) +290u,], (xix.)
with an etror  — 12200 [6° + 35207+ ... 0 p (ug—12y).

Fovmulwe of this kind can easily be extended.

6. By giving to n other values such as 8, 9,10, ..., we get other
groups; but in all these formulie the earlier differences are got rid
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of at the expense of increasing the coeflicients of the later ones, and
the larger the factors of » the greater is the increase in these co-
efficients. Thus, taking three factors a, b, ¢ and p, q, r to satisfy the

enuations pat 4 qbi4ret =0,
pat+gh* et = 0,
wa have
P““:'lbf:'” — &, 1Eiﬂ:_i’“:_"9’f = — VP (P44 ),
ptq+r prqre

Pglo_*_qblo_*_,rcli\ e 21 e
—p+q+"' ab(‘ (a* + b4+ 4+ 1P+ *a’ 4 a%h?),

and so on ; and these arve elements of the coefticients in the expression
for the error. The success of many of the formule involving six
intervals appears to be due to some extent to the fact that siz has as
factors the first three natural numbers. If weput # = 12, we should
get all the preceding formule duplicated, and a large number of
others due to the introduction of the other factors. The degree of
approximation is incrensed, but in practical applications the calcula-
tion of the ordinates often involves considerable numerical work, and
it is desirable to combine n good degree of approximation with facility
of computation. It is well known too that these differences run with
great irregularity ; they often change sign, and after first decreasing
nnmerically they often increase rapidly in proceeding to the higher
orders ; so that aformula which is true to third differences only may
give a better result than one which is true to the fifth or higher
orders. A preliminary examination of the differences may guide us
as to which set of formulseis the best to use. This point is illnstrated
by the numerical examples given at the end of this paper.

7. If we take the ordinary central difference interpolation formula
1, = g+ _;" pdrg+ 5710+ z (1 ),uB"n,\ @ (a? ;:_ =&+, (4)

and integrate with vespect to a, between limits —% and +3, we get

+3 o
I tod = [1+ 38— 520" + 58fdgod— -1 o
-4

h
or j 'uzdﬂ" =h [1+§1z62—'5%7€684+9—6§%,§'6 N :] e
[}
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nh
Hence I w.de = h[1+E"+ B+ +E<"""']J' u dz
0
= [u,,,+'u§,,+ ase +"(u~|)h]
+7 [A3 +A[S+ NS+ ] (2t —24y), (5)

where Aj, A}, ... stand for the numerical coefficients.

This corresponds to the mid-ordinate formula® given by Mr.
Sheppard; but, as pointed out by him, it is not adapted for ﬁndmg
more accurate formule. Proceeding as before, we should get

ol

‘ wede = ah [1yan+ wgan+ .. F U gayn )
-0

o ()~ ) 7 Jom 0

where a is one of the factors of =.

The numerical coeflicients here are greater than those of equa-
tion (3), and, as a, b, ¢, ... must be odd numbers, the coeflicients
of the differences in the expression for the error will be much
larger. It may be noticed, however, that the coefficients in (5)
are smaller than the corresponding coefficients in (2); so that, if
greater accuracy be required, it will probably be better to compute
the first few differences. This, of course, involves a knowledge of
termns preceding w, and following Uin-pi :

8. As illustrations of the precedmg formule the values of the
integrals .

.(°1+w=10g¢2 (a)
V'de _ =
and L =g ®

have been computed, using six intervals, with ordinates a,, uy, ..., u,.
It may be noticed that the central differences of 1/(1 +«) first decrease
numerically, then increase and become infinite, since u_; = o; so
that after a certain point the expressions obtained above cease to
represent the error. For u, the odd differences begin to increase with
the seventh; for u, the increase begins much later. In the case
of 1/(1+2a*) the odd central differences of u, are all zero, and those of
1, begin to increase numerically after the third.

The true values of (a) and (b) to seven places of decimals are
6931472, and "7853982. '

* Proceedings, Vol. xxxi1., p. 267.
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The values of the ordinates arve

z | w=11+2) | w=1/1+)
0|1 1

3 8571429 *9729730
2 ‘75 ‘9

2 | 6666667 | -8

& 6 6923077
§ 5454545 *5901639

1 ) D

and the errors in the computed valnes ure as follows:—

Formul. oot tes | v in )| B i )
(i.) (Simpson’s rule) 7 + 226 — 3
(ii.) (Simpson’s second rule) 7 + 482 — 23
(vi.) 5 —146 | + ow
(viii.) (Weddle’s rule) 7 + 22 + 14
(xiii.) (Hardy’s formula) b — 15 =179
(xiv.) 7 + 9| =5
(xv.) 7 + 40 + 12
(xvii.) 7 — 66 + 21
(xviil) 7 + 7 — 67
(xix.) 7 + 10 — 50

It appears that, while any one of these formule will give a good
approximation, the best results are not obtained by always using the
same ones. When once the values of the ordinates have heen ob-
tained, that of the integral can be readily computed by several of
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these formule; and, as some err in excess and others in defect, we
‘shall get very close limits within which the true value lies, and
generally better results than would be attained by exclusive use of
any one formula.

Thursday, April 10¢L, 1902,
‘Dr. HOBSON, F.R.S., President, in the Chair.

Eleven members present.

Prof. C. J. Joly, M.A., Dunsink Observatory, Ireland; Ganesh
Prasad, D.Sc., Christ’s College, - Cambridge, and Miss Lilian Janie
Whitley, B.A., Westfield College, Hampstead, N.W., were elected
members. '

The President (Dr. Larmor temporarily in the Chair) communicated
a “ Note on Divergent Series.” Prof. Love next gave results he had
arrived at in connection with * Stress and Strain in two-dimensional
Elastic Systems.” Discussions followed on both communications, in
which the President and Messrs. Larmor and Love took part.

The President read the titles of the following papers :—

Further applications of Matrix Notation to Integration Pro-
blems: Dr. H. F. Baker.

On the Convergence of Series which represent a Potential :
Prof. T. J. I’A. Bromwich.

On the Groups defined for an Arbitrary Field by the Multipli-
cation Tables of certain Finite Groups: Dr. L. E. Dickson.

The following presents were made to the Library :—

¢ Educational Times,” April, 1902.

¢ Indian Engineering,” Vol. xxxr., March 15-April 5, 1902.

Gibbs, J. Willard.—*¢ Elementary Principles in Statistical Mechanics,” 8vo;
London, 1902.

¢ Nautical Almanac for 1905,”" Svo ; Edinburgh, 1902.

¢« Mittheilungen der Mathematischen Gesellschaft,” Bd. 1v., Heft 2; Hamburg,
1902.
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‘¢ Supplemento al Periodico di Matemation,”” Anno v., Fase. 5; Livorno,
1902.

¢ 11 Pitagora,’’ Anno vir., Nos. 1-5; Palermo, 1901-2.

¢¢ Memoirs of the National Academy of Sciences,” Vol. viir. ; Washington, 1898.

Dickson, Dr. L. E.—¢“College Algebra’’ ; New York, 1902.

From the ‘¢ Scientia” Series, presented by the publisher, M. C. Naud :—
¢ Cryoscopie,” par F. M. Raoult, No. 13.
“Franges d'Interférences et leurs applications métrologiques,” par J. Macé
de Lépinaz, No. 14.
‘¢ La Géométrie non-euclidienne,” par P. Barbarin, No. 15.
*¢ Le Phénoméne de Kerr,”’ par E. Néculcéa, No. 16.
¢t Théorie de la Lune,” par H. Andoyer, No. 17.
¢ Géométrographie,” par E. Lemoine, No. 18.

The following exchanges were received :—

“ Proceedings of the Royul Society,”’ Vol. Lxix., Nos. 457, 458 ; 1902.

¢ Beibliitter zu den Annalen der Physik und Chemie,”” Bd. xxvri., Heft 4;
Leipzig, 1902.

““Rendiconti del Circolo Matematico di Palermo,”” Tomo xvi., Fasc. 1, 2;
1902.

¢t Bulletin of the American Mathematical Society,”” Vol. viir., Nos. 5,6 ; New
York, 1902.

¢¢ Bulletin des Sciences Mathématiques,”” Tome xxv1., Fév., 1902 ; Paris.

‘‘ Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche,”” Vol. vi.,
Fasc. 2; Napoli, 1902.

¢« Atti della Reale Accademia dei Lincei—Rendiconti,”” Sem. 1, Vol. xI1.,
Fasc. 5; Roma, 1902.

‘¢ Jahresbericht der Deutschen Mathematiker- Vereinigung in Monatsheften,”
herausgegeben von A. Gutzmer in Jena, Band x1., 1 and 2 (doppel-) Heft (Jan.—
Feb.), Dec. 19, 1901 ; Band x1., 3 Heft (Miirz), Feb., 1902.





