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Ocean acidification is receiving increasing attention because of its potential to

affect marine ecosystems. Rare CO2 vents offer a unique opportunity to inves-

tigate the response of benthic ecosystems to acidification. However, the benthic

habitats investigated so far are mainly found at very shallow water (less than or

equal to 5 m depth) and therefore are not representative of the broad range of

continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9

observed in a CO2 vent system at 40 m depth leads to a dramatic shift in

highly diverse and structurally complex habitats. Forests of the kelp Laminaria
rodriguezii usually found at larger depths (greater than 65 m) replace the other-

wise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which

are mainly characterized by calcifying organisms. Only the aragonite-calcifying

algae are able to survive in acidified waters, while high-magnesium-calcite

organisms are almost completely absent. Although a long-term survey of the

venting area would be necessary to fully understand the effects of the variabil-

ity of pH and other carbonate parameters over the structure and functioning of

the investigated mesophotic habitats, our results suggest that in addition of sig-

nificant changes at species level, moderate ocean acidification may entail major

shifts in the distribution and dominance of key benthic ecosystems at regional

scale, which could have broad ecological and socio-economic implications.
1. Introduction
Rising levels of CO2 released by anthropogenic activities are driving unprece-

dented changes in the chemistry of the oceans [1,2]. The mean ocean surface

acidity has increased by 25–30% (equivalent to a drop of 0.1 pH units) since as

the advent of the Industrial Revolution in the 1780s and is predicted to decline

by a further 150–200% by the end of the century, representing an additional

drop of 0.3 pH [3]. Changes in pH since pre-industrial times are happening at

least 10 times faster than over the last 55 Myr [4]. The increasing interest in under-

standing how changes in pH and in the overall carbonate system will affect

marine life has placed ocean acidification (OA) as one of the fastest-growing

research areas in marine sciences over the last few decades [5]. Most research so

far has been conducted by means of laboratory experiments on a wide range

of marine organisms, which have shown different responses and sensitivities
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Figure 1. Map of CO2 vents at Columbretes Islands, Spain. (a) Situation of Columbretes Islands in the northwest Mediterranean Sea. (b) Location of the CO2 vent area
within the Columbretes Islands Marine Reserve (black square) and of the control station (C3) nearby the main island. (c) Detailed map of the CO2 vent area and benthic
habitats. C1, C2 and C3 are off-vent control stations, and V1, V2 and V3 are vent stations, where seawater samples and benthic community data were collected.
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[6–8]. While experiments are essential to identify species

responses to OA, they fail to predict its long-term consequences

on marine ecosystems and whether organisms will adapt to

increasing seawater acidity [9].

In situ observations of naturally occurring CO2 seafloor

vents provide empirical data on marine ecosystems acclimat-

ized to acidified waters. However, a small number of CO2

vent systems have been investigated to date [9–13]. These

systems share significant decreases in the diversity, biomass

and trophic complexity of benthic marine assemblages,

major declines in the number of many calcifying organisms,

and increased abundance of erect macroalgae, seagrasses or

soft-corals [9–14]. Most of the CO2 vent systems studied so

far were placed in very shallow waters (3–5 m depth), and

therefore are poorly representative of the broad range of habi-

tats that occur on the continental shelf. Very few studies

investigating the biological effects of these systems at larger

water depths have been performed in hydrothermal vents

in the Aegean Sea [12] and in the northern Gulf of

California [13], at 10–35 m and at 70–200 m, respectively.

Dominant habitats at mesophotic depths (the deepest part

of the photic zone where light penetration is low, typically

from 30–40 m to over 150 m) are usually characterized by a

large dominance of calcifying organisms, such as endangered

coralligenous outcrops and rhodolith beds in the Mediterra-

nean Sea, which display a notable carbonate production

(170–660 g CaCO3 m– 2 yr– 1) [15,16]. Calcareous red algae

are the main framework builders in those two habitats, pro-

viding structural complexity and favouring biodiversity

[16,17]. Given their wide spatial distribution and ecological
roles, both habitats are among the most significant in the

Mediterranean Sea [18]. Their critical ecological functions,

the long life spans and low dynamics of the dominant

species, as well as the high sensitivity to OA of coralline

algae and other calcifying organisms dwelling in mesophotic

depths [7,19] render coralligenous outcrops and rhodolith

beds especially vulnerable to a high-CO2 ocean. In this

study, we show the in situ effects of exposure to anomalously

high natural seawater pCO2 over benthic habitats dominated

by calcifying algae at 40 m depth in the Columbretes Islands

Marine Reserve (northwest Mediterranean Sea).
2. Material and methods
(a) Study area and remotely operated vehicle survey
The Columbretes Islands emerge 30 nautical miles off the coast of

Castelló (Spain, northwest Mediterranean Sea; figure 1a) and are

the emerged expression of a 90 � 40 km, mostly buried volcanic

field associated with the Neogene opening of the Valencia

Trough [20]. The Columbretes form a tiny volcanic archipelago

that consists of one main island, several islets and rocks, and a

number of shoals. The presence of CO2 vents was examined with

a Seaeye Linx 1500 remotely operated vehicle (ROV) in September

2011 inside and outside the Columbretes Marine Reserve. The

spatial distribution of these vents along this elevated rocky-

bottom area was explored through five video transects, each

596–964 m long (electronic supplementary material, figure S1).
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(b) Carbonate system parameters
Vent gases and water samples were collected in June 2012. Vent

gases were collected from three separate bubble streams in six

replicate 12 ml glass bottles, and analysed with a gas chromato-

graph (TraceGC Ultra, Thermo-Finnigan). Seawater carbonate

chemistry and dissolved inorganic nutrients were measured on

water samples collected by scuba divers in three sites (three

samples per site) inside (V1, V2 and V3) and outside (C1, C2

and C3) the vents at 40 m depth using Niskin bottles (figure 1b,c).

While control stations C1 and C2 were approximately located

25 m and 60 m far from the vent area, the third control station C3

was placed much farther (approx. 6.5 km far from the vent area)

to check for any influence that could be attributed to vent proximity.

Carbonate system parameters ( pCO2, CO3
2�, HCO3

�, DIC con-

centrations, and saturation states of calcite and aragonite) were

calculated from pH (in total scale), total alkalinity (TA), temperature

and salinity. Additionally, in nine stations covering the waters

around the vents, seawater samples were taken at three depths (5,

20 and 40 m; eight samples for each depth) in order to study the

spatial variability in pH (in total scale), TA, salinity, temperature

and dissolved inorganic nutrients.

Temperature and salinity were measured with a SD204 SAIV

A/S CTD. Samples for pH and TA measurements were collected

in 0.5 l BOD glass bottles, poisoned with saturated mercuric

chloride and stored in the dark at room temperature; samples

were analysed on the same day of collection. Samples for inor-

ganic nutrient analysis were collected on polycarbonate bottles

and stored frozen until spectrophotometric analysis in an

Alliance Evolution II autoanalyser following standard pro-

cedures [21]. PHTS (total scale) was measured with a combined

electrode aquatrodeþ Pt1000 (Orion) calibrated using TRIS/

HCl and 2-aminopyridine/HCl buffer solutions in synthetic

seawater with a salinity of 38 PSU [21]. TA was measured by

potentiometric open-cell titration using 0.1 N hydrochloric acid

(Fixanal, Sigma Aldrich) and a Titrando Metrohm 888. Equival-

ence point was evaluated from titration points in the pH region

3.0–3.5 using a nonlinear least square procedure [22]. Carbonate

system parameters were estimated using CO2SYS [23]. The pH

and alkalinity of certified reference material (CRM; supplied by

Dr A. G. Dickson, Scripps Institution of Oceanography, La

Jolla, CA, USA) was measured for each set of measurements.

From 12 measurements on the CRM, the accuracy was

3 mmol kg21 for TA and 0.001 for pH. Precision, as the average

of standard deviations of measurements, was 1.4 mmol kg21 for

TA and 0.002 for pH.

(c) Biological surveys
Scuba diving surveys were also made in June 2012 to quantify

the main species of macro-organisms present at and off the

vents at 40 m depth. In the same sites where seawater samples

were collected, 12 quadrats (50 � 50 cm) were placed hapha-

zardly over the vents (four quadrats in each of the three sites;

V1, V2 and V3), while six (three quadrats in two of the three

sites; C1 and C2) were placed off the vents at the same depth

(40 m) (figure 1b,c). Within each quadrat, we collected all the

macro-organisms present in order to characterize the assemblage

at each station. Specimens were identified in the laboratory,

where fresh weight and cover were determined in each quadrat.

When present, the number of fronds of L. rodriguezii was also

counted inside each quadrat.

(d) Biomass of Laminaria rodriguezii
To characterize the assemblage at the vents, fresh weight of all speci-

mens of L. rodriguezii (n ¼ 486) present in each one of the 12 quadrats

(50� 50 cm) was measured in the laboratory after removing the

water excess spinning the samples for 30 s in a salad spinner. Dry

weight was estimated using a subsample of individuals (n ¼ 112),
which were weighed after 24 h at 608C. L. rodriguezii biomass was

not estimated outside the vents, as it was totally absent.

(e) Statistical analyses
Variation in assemblage composition inside and outside vents

was analysed on a Bray–Curtis (BC) similarity matrix of log-

transformed total percentage coverage of all the species ident-

ified. Significant differences between algal community inside

and outside the vents were estimated through a permutational

MANOVA using the function adonis in the vegan package in R

[24]. Significant differences on the parameters (pH, CO2, CO3
2�

and DIC concentrations) estimated in locations inside and out-

side the vents were assessed using linear mixed-effects models

(LMM) [25]. The presence/absence of vents was treated as a

fixed factor and the sampling station as the random effect. The

normality of residuals and the model performance were visually

inspected using residual distributions and quantile–quantile

plots. The analyses were computed using vegan [26] and nlme
[27] packages implemented in R.
3. Results
(a) Seawater chemistry
CO2 vents occur between 36 and 48 m depth on the southern-

most section of the Columbretes Islands Marine Reserve

(figure 1a,b). The mean composition of the bubbling gas was

90.0% CO2, 4.8% N2, 1.7% O2 and 0.2% CH4, subsequently

resulting in water acidification (electronic supplementary

material, table S1). No sulfur was detected in the gas. Field

observations and sampling were performed at the vents and

in off-vent nearby control stations with equal ambience ambient

seawater salinity and temperature (figure 1c; electronic sup-

plementary material, table S1). The escaping gas had no

influence on the composition of the upper water layers, as

shown by samples from 5 and 20 m depth above the vents,

which fell within the range of off-vent stations (electronic

supplementary material, table S2).

Statistically significant differences on pH and carbonate

system parameters (CO2, CO3
2� and DIC) were found

between locations inside and outside the vents ( p , 0.0001,

figure 2; electronic supplementary material, table S3). Water

collected near the bottom in control stations displayed pH

(total scale) values ranging from 8.04 to 8.08 and pCO2

from 402 to 445 matm, whereas at the vents pH (total scale)

ranged from 7.80 to 7.95 and pCO2 from 572 to 993 matm,

therefore illustrating a notable pH decrease (figure 2; elec-

tronic supplementary material, tables S1 and S3). The

lowest pH (7.48) was measured at station V2, whereas the

average value for the venting zone was 7.88, which is equiv-

alent to a reduction of 0.2 units the average value found in

control stations C1–C3 (electronic supplementary material,

table S1). The increase in CO2 led to an increase in the concen-

tration of dissolved inorganic carbon (DIC), which was

86 mmol kg21 higher at the vents than off-vents at relatively

constant values of TA (2561 mmol kg21), salinity (38.3 PSU)

and temperature (148C), and a decrease in CO3
2� concen-

trations (figure 2; electronic supplementary material, tables S1

and S3). The mean saturation state of seawater for the calcium

carbonate minerals aragonite and calcite was 4.39+0.05–

2.82+0.03 s.d. at the control stations and 3.18+0.28–2.05+
0.18 s.d. at the vents, respectively (electronic supplementary

material, table S1). No changes in inorganic nutrients were

http://rspb.royalsocietypublishing.org/
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detected between control and vent stations (electronic sup-

plementary material, table S2).
(b) CO2 effects on species and habitat distribution
Field surveys showed substantial seascape changes at the

venting zone in comparison with off-vent areas (figure 3),

including significant differences in community composition

( p , 0.001). While a kelp forest by the endemic L. rodriguezii
covered the bottom directly affected by venting, coralligenous

outcrops and rhodolith beds (dominated by coralline algae,

gorgonians and calcareous bryozoans) were only found a

few metres off the vents (figures 3 and 4). At the vents, the

kelp L. rodriguezii displayed biomass values between 22.1

and 116.5 g DW 2500 cm22 with densities ranging from 55

to 210 fronds 2500 cm22.

Other non-calcareous algae were found both at and off the

vents (figures 3 and 4); in particular, fucoids such as the ochro-

phytes Cystoseira zosteroides and Cystoseira spinosa, as well as
the rhodophyte Phyllophora crispa (electronic supplementary

material, table S4). However, these species showed higher

biomass off the vents (electronic supplementary material,

table S4). By contrast, organisms with high-magnesium cal-

cite skeletons such as coralline algae (Spongites fruticulosa,

Mesophyllum spp., Lithothamnion spp., Lithophyllum stictaeforme)

and bryozoans (Turbicellepora avicularis, Reteporella spp.) were

totally absent at the vents, whereas they were either common

(bryozoans) or dominating (coralline algae) off the vents

(figure 4; electronic supplementary material, table S4). Only

the aragonite calcifying species Peyssonnelia rosa-marina
was found at the vents, displaying the highest biomass and

coverage (electronic supplementary material, table S4).
4. Discussion
(a) Distribution shifts in complex structurally habitats
This study revealed that moderate decreases of pH lead to

dramatic shifts in highly diverse and structurally complex

benthic habitats thriving at depths rarely explored in terms

of OA effects. Dominant habitats at mesophotic depths,

such as coralligenous outcrops and rhodolith beds, mainly

characterized by a large dominance of calcifying organisms,

are replaced by forests of the deep-water kelp Laminaria rodri-
guezii, which becomes dominant at depths much shallower

than under normal seawater conditions. To our knowledge,

this study highlights for the first time that beyond the

changes at species levels reported in most of previous studies,

where some species are winners and others lose out [9–11],

OA can lead to significant changes at habitat level, benefiting

specific habitats and compromising other habitats, also lead-

ing to vertical distribution shifts as observed in terrestrial

ecosystems as a consequence of global warming [28].

The presence of kelps and other fleshy macroalgae (such

as fucoids) inside the vents indicates that they are favoured

by the observed changes in the carbonate system parameters.

This agrees with the positive response displayed by several

macroalgae and seagrasses to elevated CO2 concentrations

through the increase of photosynthesis and growth rates

[19,29,30]. Nevertheless, the dominance of the deep-water

kelp L. rodriguezii observed in this study is noteworthy as

this species is known to thrive between 65 and 95 m depth

[31,32] and had almost never been reported before shallower

than 50 m depth. These observations demonstrate that high

CO2 concentrations enhance the competitive abilities of

L. rodriguezii at depths shallower than its common bathymetric

range, thereby offsetting other existing environmental limit-

ations (e.g. light or temperature) and allowing this species to

grow at 40 m depth. The lower biomass displayed by fucoids

(mainly C. zosteroides) inside the vents in comparison with

the biomass of L. rodriguezii could be indicative of competition

among fleshy algae. We hypothesize that L. rodriguezii
outcompetes fucoids and other fleshy algae by inhibiting

their growth due to the reduction in ambience light under

the kelp canopy. Although the increase in competitive

strength of seaweeds over other organisms (such as corals) as

a function of CO2 enrichment has been described previously

[33,34], the impacts of OA on the interactions among algae

under acidified conditions remain largely unknown. The com-

petition between habitat-forming fleshy algae (i.e. kelps versus

fucoids), as observed in this study, can result in further ecosys-

tem shifts involving species substitutions.

http://rspb.royalsocietypublishing.org/
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(b) Contrasting responses of calcifying organisms
Organisms with high-magnesium-calcite skeletons such as cor-

alline algae and bryozoans were completely absent at vent sites.
Only the aragonite-calcifying Peyssonnelia rosa-marina was able

to survive in the acidified waters, as previously noted in very

shallow waters too [35]. Our results lend support to the idea

http://rspb.royalsocietypublishing.org/
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that high-magnesium-calcifying organisms are more sensitive to

OA than aragonite-calcifying ones [35,36]. They also challenge

the widespread concern over the global fate of calcified algae

in the near future, as there are species such as P. rosa-marina
showing a moderate resilience to OA [36]. The recent discovery

of calcium-magnesium carbonate (dolomite) in crustose coral-

line algae [37] and its lower solubility in comparison to

magnesium calcite [38] suggest that some calcifying algae will

not be doomed under moderate decreases in pH. This highlights

the need of further research on the carbonate composition of

these organisms.

(c) Long-term consequences of acidification for benthic
ecosystems

The high variability in CO2, pH and other carbonate system

parameters observed in this study, as well as in other CO2

vent studies [39], decreases the value of these sites as predictors

of future ecosystem functioning under oceanic pH levels

expected to occur at the end of this century [3]. However, pH

variability has been stressed to enhance acclimatization or

adaptation to acidification through repeated exposure to low-

ered pH conditions [40]. Although a long-term survey of pH

variability would be needed to fully understand its effects on

the structure and functioning of the investigated system,

our results indicate that, regardless of variability in pH and

other carbonate parameters, moderate acidification can drive

dramatic and persistent changes in benthic ecosystems. More-

over, expected synergies of OA with warming and other

stressors are likely to occur [41,42], which can result in even

more drastic changes than the ones observed in this study.

Fucoids and kelps, globally recognized as key structural

and functional elements of marine benthic ecosystems [43],

are in decline, with some local extinctions already documented

[44]. Our results suggest an enhancement of the populations of

these habitat-forming fleshy algae under acidified conditions,
and especially of kelps at mesophotic depths. OA will nega-

tively affect coralligenous outcrops and rhodolith beds,

which are extremely threatened habitats [18]. Our results also

indicate a substitution of habitats dominated by calcifying

algae by those dominated by erect fleshy algae, and the repla-

cement of high-magnesium-calcite corallines by aragonite-

calcifying algae (e.g. Peyssonnelia) as main carbonate produ-

cers. The changes observed in the highly diverse and

structurally complex mesophotic habitats of the Mediterranean

Sea investigated in our study may have critical ecological and

social implications for coastal ecosystems at large spatial

scales in an increasingly acidifying ocean.
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