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variables ¢ and ¢”, and canonical parameters ¢’; then, by the so-

called exponential theorem,
Ae" = Aa’ An
and hence B =a.A,—1—3%(A.4,—1)'+3 (A A,—1)—....

Here everything on the right side is directly calculable from the
constants of structure. When the group has no special infinitesimal
transformations, we know that among the +* linear forms in e/, ..., €,
which constitute the elements of the matrix E”, there are + linearly
independent ; hence by solution of only linear equations we obtain
the finite equations of the group. When there are r—m special
infinitesimal transformations we do not in this way obtain more than
m independent equations; but the solution can be completed by
quadratures, as explained in the note referred to.

The formula E =A—1—1(a—1)"4+41(A—1)'—...

may be proved in “another way, without differentiation, by using
(1) the general formula for the sum of such a series of matrices,
(2) the fact that, if 6,, 6,, ... be the roots of the determinantal equation

| E—6] =0,
the roots of |A-¢| =0
are given by b =c¢;

in fact to every invariant factor of the first equation there is one of
the latter of the same exponent. The formula is only an algebraical
formula of inversion involving the roots of two related algebraical
equations.
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Part 1.

Let w,, 1, ... each denote square matrices of the same number of
rows and columns whose elements are analytic functions of the
complex variable ¢; let barriers be made joining the singularities of
these functions to ¢ =0, so that within the star region bounded
thereby each functiou is developable about every point in an ordinary
power series; let ¢, be an arbitrary fixed point in the region, and Qu,
denote the matrix of which any element is obtained by integrating
the corresponding element of «; from £, to ¢ along a path lying within
the region; further, let a,, a,, ... be such constants that the series
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converges for all finite values of ¢, however great, and let the symbols
Qu, Qugy, Quy Quig Qug, ... denote Q (u, Qu,), Q [u,Q(u2 Qus)], veey SO
that each integration denoted by @ affects all that follow it in any
symbol.

Then form the series of matrices

V = 14, Qu,+ a, Qu, Quy+ a3 Qu, Quy Qug+ ...,

defining a single matrix of which any element is the infinite series of

corresponding elements, one from each term of the series V. It can
be shown, as in Proc. Lond. Math. Soc., Vol. xxx1v., 1902, pp. 354, 359,
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that each of these infinite series converges over the whole of the
infinite star region described. 'The matrix V thus exists, and is finite
and developable over the whole of this region.

Such a matrix as V may be called a matrizant; we shall restrict
the term to the case when each of the matrices u,, u,, ... is the same
matrix %, and each of the constants a,, a,, ... isunity, and shall denote
the matrizant in that case by Q (u), or sometimes, in more detail, by
Q4% (). Its most fundamental property is that

gt. Q(u) = 4 (u),

so that each of its columns furnishes a set of solutions of the system
of linear differential equations

lz; .
’-C-l;ﬁ = u,ixml+ e +Ma,-,,ﬂ3,, (1‘ = 11 vy 7‘)!

and, since for ¢ = ¢, we have
Q () =1,

these sets of solutions are independent.
There are various other properties, partly of a formal nature, which
must be clearly stated.

1. It is necessary to repeat the process for summing a series of
matrices in order to show clearly how the infinite series of logarithms
which may arise in the terms of a matrizant may disappear in the
sum. If f(t) denote an integral function
£ 8

| T3,

f(t)=1+alit—!+a._.§! -

and M be any matrix satisfying the equation

M* = A+ A M+ ...+ A, A,
and no equation of lower order, and the roots of the algebraic equa-
tion in 6, 6 = AN O+ o+ A0 '
—say, 0, 0,, ..., 8,—be all different, the series

M 2 .f8
V=1+aq, 1..l.+agg'2[—|+asll3—L'+...,

wherein each term is to be reduced to a polynomial "in M of order
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#—1, will when rearranged in powers of M have for sum a form.
V=0+0M+..4+C,_, M,

in which the single quantities O, C,, ..., C,., have the values
obtained by expressing the identity

f6) =C+0,6+..+0,,6!
for all the roots 6, ..., 6, of a supposed irreducible equation
0 =A+N0+ ...+, 007
this gives at once (Proc. Lond. Math. Soc., Vol. xxxiv., pp. 114, 359)

D,, D D
V — gt pad | XX “:14 u-l,
D +DM+ +75 -,
where D=|1 1 e 1
6 6, .. 6
et ¢t ... e

is the product of the differences of the roots 6, ..., 6,, and D;_, is the
determinant obtained from D by replacing the elements of the ¢-th
row of D by f(6,), ..., f(6,).

This formula yields at once the corresponding formula when the
roots 8, ..., 8, are not all different ; for instance, by subtracting the
first two columns of every one of the determinants D, D,, ..., D,_,,
dividing by 6,—8,, and proceeding to the limit, we obtain the case
8, =0,. The quantities C; = D,/D, which, in the case of unequal
roots, are linear functions of f(8,), ..., f(6.), become in general
linear functions of these quantities and their differential coeflicients
in regard to 6, ..., 0,; the coefficients in these linear functions are
the same whatever be the form of the function f, and depend only
on the matrix M ; they may therefore be calculated from a suitably
chosen simple form of f(¢), in particular (1—£)~'. Thus we prove
the formula of Frobenins and Stickelberger (references in Bromwich,
Proc. Camb. Phil. Soc., Vol. xr., 1901, p. 79), that, if the inverse

matrix (6—M) ! be arranged in the form
M N; K;
o= [ s 5]
( ) 2 - +(0 0),+ +(0 oy
where M;, N,, ..., K; are matrices, then

V= -'% [f(o') M+f'(0;) Ni+ ...+ fg {?') I(]
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One of the simplest cases of Q(u)is when % has the form ¢-'M,
where M is a matrix of constants; then
t]
Qu=Mlogtfty QuQu= MQ(t-logt/t,) = % (log t/¢,)",
or, if A = log t/t,,

A
2'Mg é""Ma'i' ’

thus, if the matrices of constants M;, N,, ... be determined from the
matrix M, we have, putting f(f) = €",

@M =% {M,. (tio)o'}N; (fo-)’ 1ogti +

4K, (t0 )a 2 11). (108 i)"" }

the exponent ¢;—1 of the highest power of the logarithm correspond-
ing to the root §; being one less than the multiplicity of this root
in the equation satisfied by M, namely, than the exponent of the first
invariant factor of the matrix M— 6 corresponding to this root.

Q(u) =1+AM+

- 2. A second property to be remarked is that, if M be a matrix of

constants, we have
MQ () M = Q (MuM™).

3. If s = ¢ (¢) be uniquely reversible, in a form ¢ =¢,(s), or we
confine ¢ to u region about ¢, for which this is so, and if t, = ¢ (%),

and Qo [u ()] = F (1),
then F@y=0" ”07 ulp ()] do (t) } .
dt
If, for instance,
_ _at4d — ato+b .
s=o() =22, =1 =92 0w =0,
afat+by\ _ [ad.—bc at+b :I
then E (ct+.{) =0 tray® (ct+d)

it may happen that & matrix of constants, p, can be found such that

-1 — ad—bc (at+b)
. “(t)"“(ct+d)=“(at+d)
(attby
b (84) =racon

VOL. XXXv.—no0. 811, %
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4. We clearly have
Q4% (u) = Q5 (u) Qrio(u); [Q4% ()] = Q' (u).
We have, however,
[0 ()] = @ (<),

where 7% denotes the matrix obtained from « by interchange of rows
and columns, and the same transposition is to be carried out after
© (—ut) has been calculated.

For, if U= Q(u),

dU"__ -1@'-1__ -1

el U tU = — Uy,
and, if V=0 (=), W=7V,

L-%K——'Lil’ le:—PVu,

dt — T
and hence

(WU) dW U+ WdU_ — Wul + Wl =0,

while, fort = ¢, wehave W=1,U=1;
thus, as stated, U'=

or [Q()]'=Q(—%) =1— Qu+Q(Quu) RIQA(Qu.u)u)+...

where each term is formed from the preceding by multiplying by 1
on the right and then integrating the product, or, if », denote the

eneral term .
g ’ Upst = — Q ('U,,’ll:).

5. If u, b be arbitrary matrices of the same order, the latter of
non-vanishing determinant, and a star region be constructed within
which the elements of both the matrices

lh
huh™' 4 ¢
w, huh™ 4 — d
ave everywhere developable, we have
(h b + dh ) = 1 (u) 1,
where /g is the value of h at ¢t = ¢, For, if

dh
._.h}l
v uh +d
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dn-
p7 (27" (u) h-'Q (v)]

= =0 (u) uh'Q (v) — Q"' (u) h"(—(% B2 (0) +Q7 (u) k02 (v)

= =0 () B! {imh-1+ ‘%‘h-'—v} Q(v) =0,
. (
and for ¢ = ¢, we have
‘ QM (w) BIQ (v) = kgL
Taking L=Q (w), huh!=a,
we obtain Q(w+eo) = Q(w) 2[Q (w) e (w)].
6. Two particnlar cases of §5 seem worth remark. First, if
W), Wy, ..., w, be each single functions of ¢, and 4, ..., A, be matrices

of constants of the same order of which any two are commutable, so
that A4, 4,= A,4,, and the star rvegion be suitably constincted, we

have

W QA Fw,A) = Q (w0 A,) Q (w,Ay) ... @ (w,A,).
For, if c=wdy+...+w, 4,

we have Q' (w 4,) eQ (w, 4,) = 0.

Second, if A, =1, we have
Q (w,+u) = ¥ Q (u),
» being an arbitrary matrix, a result obtainable by multiplying the
series Q) =14+Qu+ QuQu +...,
e = 1+ Quw,+ Qu,Qw, + ... .

7. If ¢ denote a matrix of which any column consists of the
elements of one of = linearly independent sets of solutions of the
system of linear differential equations

s wa@y+ w2,

dt
so that :—gf = ué,

then, by the cogredient substitution, wherein 4 is an arbitrary matrix

for which |A|#£0, n = hé

z 2
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we obtain the system
dn =y, v=huh'+

dt

and, by the contragredient substitution, wherein again | k| # 0,

{=k(&),

dh} )

we obtain the linear system

dé = wt, dl.,

w=—kik! +
1f the matrices w, v, w be assigned l)eforelmnd, these eyuations give
for the forms of the matrices k, &, by §§ -4, 5, the equations
h=Qv)h Q" (u), k=Q (w)kQ (),

wheve the constant matrices Ay, k, are arbitrary.

8. Thus any two linear systems can be transformed into one another
cither cogrediently or contragrediently. Now a single linear equation
1"y d"ly
AN Ay=0
g Tt g Foe T Y

can be reduced to a linear system in various ways ; taking here

o ) dy o_dly
& =Y, &= dt ceey W, = ZZE’-""

for the elements of a columm of a matrix £ whose % columns are
obtained by putting y equal to the coustituents of a fundamental
system of integrals for the single linear equation, we have what we
may for the present call the special linear system

dé _
at — ué,

where in the first (n—1) rows of « every element is zero, except that
one immediately to the right of the diagonal element, which is unity,
while the 2-th row consists of the elements

— )‘u — AI ___Arg_»__l
}\“, N N

"

Any linear system can then, by § 7, be reduced to a special linear
system, and so to a single linear equation, arbitrarily given, either
cogrediently or contragrediently, the necessary explicit form of the
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matrix & or & used in the transformation requiring a knowledge of
the solutions of the systems to be connected by the transformation.
If, however, we be given a linear system, which may be special,
and require to transform this to some single linear equation, sny con-
tragrediently, by suitable choice of a matrix %, the equation
_ dk
k= —ki+ &
W + i’
wherein w has the form just explained, arising for a special linear
system, shows that the elements of I satisfy equations

i Ki,y = d_tllc;l - (uf:lki. 1t k)
G=l.n;7=1..2-1),

namely, that the (74 1)-th row of k is determined from the 7-th by

the rule kO

’l}(i‘l) = —d—t-' —-uk“’.

Conversely, if we take the first row of k avbitrarily and determine
the subsequent rows by this rule from the first row, it is easily seen
that w has the form for a special linear system, namely, the elements
of any column of the matrix { satisfy equations

dz _ dzy __ dz, , _ dz,

:Zt =2, (lt =25 eeny dt =2, ZI—E = ’w,,|21+ ~--+'wnmzn'

In particular, if the original system (u) is special, derived from

d'z d*-'z _
w +A, T + ... +Xom. =0,
and we take k,=0=k,=..=k, k,=— ﬁ,\! .

it can be shown that the (w) system belongs to the so-called
Lagrange adjoint equation

d & d"
—_——— — ‘e - "— (A = V.
Az at (/\lz) + e (A2)+ + (-1) ar %) 0

Obviously the most general contragredient transformation

{=r("
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may be obtained by first applying a particular contragredient
transformation ¢, = k, (€)', and then a cogredient transformation
{ = kk;'¢. For instance, when we are transforming from a special
linear system we may take the special contragredient transformation
to be that to Lagrange’s adjoint equation; or we may take k,=1,
though in that case the intermediate system will not be a special
system. Also, as the equations of a contragredient transformation

whk+ ki = %, E=Q (w)k,Q (u),

are equivalent to

uk+kw = 3—:, E=Q(u)kQ (w),

the inverse transformation, as applied to the new system to return
to the original, is obtained by changing the rows of % into columns;
in the case when we are transforming from a special system (u) to a
special system (w), this gives the incidental result that, if the rows
of a matrix k of non-vanishing determinant are determined from the
first (avbitrary) row by the relation

then the columns of this matrix are determined from the first
colunm by the relation _
JUH) = dar —wk?

Tt ’

the special matrices u, w being connected by the equation

__dk
ki = —.
Wk 4+ k1t T

This explains the reciproeal relations of an equation, and its
adjoint; for instance, for » =3, the forms of the special matrices
u, w and two forms of the matrix & are respectively

o 1 0 o 1 0
1 0 0 1

’ w= ’
A A N _E B
X

7w =

Mg 1y My
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’ 1
0 0 — 5\_3.
1 A+ A
0 2 _ Mty
]\7 = 2
A A,
1 A=20 AHAEA (A —2X) (A=)
Ao A A
0 0 _1
M
__1 o 1 2"3
- Ma I»‘3
1wt ommptan (= 200) (i — )
Hs [ Il H

Precisely similar remarks may be made as to cogredient trans-
formations ; in fact the relation

=) hQ (1)
is the same as = Q(v) bt (—a),
and is a cogredient equation starting from equations in which « is

replaced by —4, that is, from the system obtained from the original
by the particular contragredient transformation { = (¢) .

9. It has been remarked that there are various ways of reducing a
single linear equation to a linear system. We explain now a way
which is-of great importance in the sequel of this paper.

If the single linear equation be

d"’y _ Pu~1 d"']y 13"—_'{- du-ﬂy P,, L dar- 3’/+ + P

AT T A bt A Gaur b AT ¢1s... B

and we put, with " = dy/d¢, &c.,

s

=y B=¢y, B=¢idy’, = by,
seey w1|=¢l¢2""¢u—ly("—”,

da, _ %_ﬁ & ¢
then = -, = +% ( + & )“+¢

dt o, dt @ o ¢z dt b by
dﬂ),.-l n 2 ¢r 0
T at (;¢)%'+%T
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o n-l ’ )
and i, = ( 3 d") .+ 1 a4+ b, 1+ Py zt ...+ L @y ;

{” r-1 ¢,. ¢,, ! ¢" ¢n ’ (bu
so that, if for brevity H, = 3 %’3,
rol .
4 1 1
o .- 0 0 .. O 0
&,
1
0 H, 0 0 0
¢,
1
d_ | 0 0 H, oS 0 0
5= 3 - .
1
0 0 0 0 .. H,., T
¢n-l
£ P, P, Py Puz P

=1 jmit H" _
L ¢" ¢n ¢u ¢u ¢u (bu + ! ;

Varions cases of this formnla to be referred to are—

(¢) When every one of the functions of ¢ denoted by P, P,, ..., P, _,,
¢y, ..., ¢, 18 an integral polynomial, and no one of ¢, ..., ¢, has a
multiple factor, though any two or more of them may have common
factors : then each of the rational functions

LINEY Yéu(e) =S 1 L 4u+s Pi(e.)(¢.(e)
b, . ’ . U ’ B t—oc.,

t—c, ral e &

occurring in the matrix has only poles of the first order for finite
values of #, and the linear system has a form

-(—l“-: = [1[+1>|lf,+...+A,,fr"+20> 1] @,
i i t—c¢

wherein A4, A,, ..., A, ¢ arenatvices of constants and the summation
vefers to all the poles ¢ which arise. The value of u is zero and
A =0 when ¢, is of greater dimension than any of P, P, ..., F,_,,
and otherwise p is equal to the difference of the dimensions of ¢, and
the highest dimension of any of these.

(b)) When each of the functions P, P,, ..., P,., is an integral poly-
nomial and ¢, = ¢, = ... = ¢, = ¢ is an integral polynomial without
repeated roots.

(¢) When P, ..., ,.; are again polynomials, ¢, is a polynomial
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without repeated roots, and ¢, = ¢, = ... = ¢,.1 = 1. Then each of
the functions H,, ..., H,_ , is zero. And further simplification arises
when the dimensions of P, P,, ..., P,., are equal to or less than that
of ¢n-

(d) When P, P, ..., P, ., are analytical functions for which ¢ —¢ is
not a singularity, and each of ¢, ..., ¢, is either unity or t—c. TIn
the ordinary case in which no one of P, P, ..., P,., vanishes at
t=c¢ and ¢, is t—n, the polynomial with matrix coeflicients,
A+4,t4 ...+ 4,t* does not enter at all in the resulting linear
system.

Of these (a), (b), (¢) are intimately related, while (d) includes
cases in which the coeflicients in the linear differential equation are
algebraical functions of ¢. '

.As a particular example of (¢) we may take the equation

(t+1) %" —[(ay+by) t+ay] £y" — [(@y + b)) t+ ] tyf
—[(e+d) t+a]ly =0,
which, with ds=t(t+1l), d,=¢ ¢ =t

P=a(@+1)+bt, P,=ua,(t+1)+bt, P,=a,(t+1)+Dt,

 F, 010 0 0 O\q
leads to de = 1 01 1 + - 1 0o o0 o0 ‘ x.

dt ¢ t+1
L a a, a+2 b b b/
As an example of (b) we may take

._ At+B

= 4t+B | Ct'+Dt+ I

RO YR

which, with

¢ =, =t(t—1), P=C’+Dt+E, P, = At+B,

leads to
= [(2 o) b (—OL' 1:1Jf)+{éi(0+g+ﬁ; A+113+1)_} o

As an example of (¢) we may take

y'=vy [J\+ b —'\;J+y[p+ 3 ——’-'L],

rel t—c,. ral t—"G,.
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which, with ¢ = I (t—c), ¢ =1,
ral

Py = ¢, [H‘E' *%"-], P=¢a[,u+§ —"'——],

val t—cr ret t—c,

leads to 3:: [(2 ;1\) + é, t_—l—c, (;(L), gr)] e

As an example of (d) we may take the same equation, putting now

n=y, a=(t—c)y;
then we find

a=(y )relo+ (0 h)

2 p A
< 1 0 0 ] .
+ 1%2 t—:o,« (#t (cl’—cl) A") v

ret
which takes a simpler form in the case of an equation of common

occurrence for which A =0, p =0, and S u. = 0; in that case the
ral

eqnation is, in the usual phraseology, regular at infinity.
As another example of (d), of the greatest importance for our
purpose, we may take

n- f a5 n- n-2 "= "2 f -
g = lLJ_“'t__Q_l g4 P __-:%‘,i(_e__z g4+ }L+TQ ”,

where p, p,, ..., p,_1 are constants, and @, @, ..., Q,. are developable
about ¢ = 0 in positive integral powers ;. putting

¢n=¢”-l="'=¢l=t’ P5=Pi+t(2"’

we obtain ' g’% = (.gﬁ + V) 2
0100 0
0110 0

where A=<0 0 2 1 0

P P P2 Ps - Puart+n—1

is a matrix of constants and ¥ is a matrix of which all the elements
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are zero, except those in the last row, which are

Q) Qla rey Qn—l'

It will be scen below that the algebraic equation | A—p| = 0 is the
so-called index equation at ¢ = 0.

10. In connexion with these examples the obvious fact seems worth
remarking at once that, if a new variable s can be found such that
each of the logarithms

log (t—c¢,), log(t—c;), ..., log (t—c,)
is a single-valued analytic function of s, for a certain range of the
latter, then, for a suitable corresponding range of ¢, every integral of
the linear system

e _ [A + At 4.+ A+ 3 (t—c)"! 0,] T
dt ral

is a single-valued function of s; for, if
log (t—¢,) = ¥ (5),
so that t = ¢, +expy,(s) = ¢ (s), say,

the system is

%f; = [.;/ O [A+49+... +-A.-V]+,_§¢.’.(s) Cr} @

= ug, say,

and each of the terms
(] (s

Qu = r nds, QuQu = J wds | wds,

So S ~ 8
in the matrizant solution
z=Qu)z,= 1+ Qu+ QuQu+t...)x,

is a single-valued analytic function of s about the properly chosen
value s,

A very particular case of this is the well known theorem that the
independent and dependent variables of A hypergeometric differential
equation are single-valued functions of a variable &, which is the
quotient of two integrals of a certain hypergeometric equation for
which a =4, 8 =4, y=1; in fact, if

‘= r"do(l—tsinwyb, K'=r"de[1-(1_z)sin29]-b,

0 o
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the expressions for log#, log (1—?) unambiguously in terms of
q=¢™=¢ ™" are given in Jacobi’s Fundamenta Nova. But the
suggestion above, into the utility of which this is not the place to
enter, applies to a linear system

dz
== waz,

d
in which w has poles of higher order, say
w= A+ +AL+I[0,¢-0) "+ + O (t—c) ]

a very particular case is Bessel’s equation

ni—4?
2

"o 1"
y = ty+ ;

Y,

which, by «, =y, 2, = ty, gives the system

de _ T ,/00 _1_01]\_
d—t_L t(10)+t(n’0) ®
solved by single-valued functions of s = logt.

11. Some remarks should be made as to the direct evaluation of
Q (aw+ ... +a,m,) as a method for the integration of a linear system

'(é_: = (aw+a,0,+... +a,w,)e,

in which v, ..., w, are functions of ¢, and a, a,, ..., a, are matrices of
constants of the same order, no two of which are commutable (§6).

¢ t t
If P = j wdl, ¢uq = J wdt]' w, dt,
o to

to

¢ t ¢
‘Pon=j WdtJ wldt_{ wdt, ...,
fo t

b

we have
Qavt ... +e,0,) =1+ap,+ ... + a9+ (PPt aa, 05 +aia0,,+..) + ...
...+(Ea}°arl ves ([700")+ ceny

where the suffix of the ¢ in the general term is exactly similar to
the exponents Ay, A, ... of the matrix product a*a,™ .... Of the pro-
ducts a ... a,, ', aa,, ¢;a ..., all are necessarily expressible linearly
with numerical coefficients in terms of, say, N of them, where N is
at most equal to the square of the order of any one of the matrices.
Thus, when what we may call the multiplication table of the
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matrices a, a,, ... 1s known, namely, the law by which any product of
powers of them can be expressed in terms of N of them, the linear
system may be regarded as integrated in explicit terms, the problem
of integration breaking up into the two problems of ascertaining this
multiplication table and of finding the properties of the sums of the
infinite series of functions of ¢ of the form ¢, ... ¢, ... which arise as
the coefficients of the N fundamental matrices.

In particular the last example but one of § 9 shows that for any
single differential equation of the second order with rational co-
efficients, which is regular at its singular points including ¢ = o,
the solution can be expressed by sums of series of elementary
functious of the form

$o=Q(t—0)"y ¢y =Q(—0c)"'Q(t—=0c)"",
f0= Q(t—c) ' Q(t—c), ...
Cousider, for instance, & linear system

%: = (aw+a,w)

wherein the matrices of any, the same, order satisfy the equations
2
=0, ag,=4qa, aa=0, @ =a,

which we represent by

e a
- T
a 0 «a
a, 0 gq

then we have
Q(aw+a,w) = 1+a[¢0+¢ol+¢011+¢olll+"‘]
+a o+ ou+ o+ o+ |
=14a@ [we““‘] +a, [e“"'-—-l], ’

where ) denotes integration from #; to & An example of such
matrices is given by .
-3 1 00
—(—z =
““(—;, ,})’ “ (—% 1)

_ _1 -iQw 'l?[
T ow ¢ dt

which arise by x, =eV%y, w,
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from the equation

By [y L 9]dr_ 1 |
i = letet o wla ety

and an infinite number of such pairs of matrices can be derived by
linear transformation of the dependent variables from the system in

which 0
=(o o) «=(0 1)

¢ being an arbitrary constant. But the integration in finite terms
applies to two matrices of any order having the same multiplication
table.

Another example is the linear system

0 w, wy wsl

dz —“ 0 -wy o L
= = (tw kwy)
it C, vy 0 —wlj 2z = (fw, +juw,+ kwy)
—w, —w, w, 0

where 7, j, k are matrices satisfying

P=f=kF==1 jk=—-k=1< ki=—ik=j, jj=—5i =k,
and the solution is expressible by four series of functions ¢ in the
form Q (1o, 4 jws + kwg) = A+7iA,+jA,+ kA,

where, for instance, 4 is

A=1—¢—bp—ds— i+ bipe—Pos + P —Dsg + P+ ... .

The systematic study of linear systems from this point of view
breaks up into two independent problems: (1) the determination of
all irreducible types of multiplication tables of sets of matrices of
the same order, a problem akin to that of the enumeration of types
of discontinuous groups; (2) the investigation of the properties of
the functions represented by such series of repeated integrations as
those denoted above by 4, 4,.... These series converge for all
finite values of ¢ in the suitably chosen star region, and a first
approximation to their investigation is the determination of their
character near the corners of the region. It is to this determination
for a wide class of cases that the second part of this paper is
devoted.
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Parr 1L
12. It has been remarked in § 9 that the single linear equation
y(u) = 1;2—_]-:1/("-” + f';;g-_'lym-n_*_ ot %J‘

wherein P, ..., P,_, arve developable about # = 0 in a series of positive
integral powers of ¢, leads to a linear system of the n-th order

da (A

az_ (4 V)

- \gth)e
wherein 4 is a matrix of constants and V is a matrix capable of
development for the neighbourhood of ¢ = 0 in a form

A+ At + A2+ ...

wherein 4,, 4,, 4, ... are matrices of constants.
Independently now of whether the system is so derived from a

single linear equation or not, we proceed to consider the character
ubout ¢ = Q of the matrizant

A
o (t t V)
wherein 4, V are as in the description just given.

13. We assume the following theorem of algebra:—Let M be any
matrix of constants, say of » rows and columns, which may be of zero
determinant; let § be any root of the determinantal equation
| M—p| =0, of multiplicity I; let p—6 be of multiplicity Z, in the
highest common factor in regard to p of the first minors of the
determinant | M—p |, of multiplicity I, in the highest common factor
of the minors of (#—2) rows and columns, and so on; let ¢, = I—1,,
€= L, —1, &c.; so that, if the minors of n—7 rows and columns do
not all vanish when p = 6, we have ¢, = [,_, and

(0—0)' = (p - )" (p—0)".... (o—0)",

the factors (p—6)%, (p—#)%, ... being what are called the invariant
factors of the matrix M—p for the root . They are the same for
this as for the matrix p™'(M—p)p = p'Mu—p, wherein p is any
matrix of the same order as M of non-vanishing determinant; the
exponents €, ¢, ... are non-vanishing positive integers known to satisfy
the inequalities ¢ > €3> ¢ ... 2 ¢,> 0. If ¢, ¢, ... be, like ¢
for 0, the first of these respectively for the other roots ¢, 6", ... of
| Mf—p | =0, the equation satistied by A is of the form

(M—8)" (M— ) (M—¢")" ... = 0.
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The important theorem is —rows, each of » elements, ! rows in all,
linearly independent of each other, to be denoted each row by a
single letter such as a;, «,, ..., can be found to satisfy the following
l sets each of n linear equations :—

M=0)a, =0, (M=0)2;=u, .. (M—06) e, = Te,-15
(l‘I—O) h =0, (ﬂ[—a) Ya =Y .0y (M—()) Ye, = Yeo-1s

(M—6) 2, =0, (M—6)z, =32, .., (M=6)z, =z,.,

and can be chosen in such a way that the most general solution of
the set of » linear equations expressed by (M—6)z = 0 is a linear
function of the rows 2,7y, ..., z,; the most general solution of the set
of equations (M —8)*z =0 is a linear function of therowsz, ... 2, 2,... 2,
and so on. Further, if ¢" be the multiplicity of the root ¢, similar
! rows ay, @, ..., y1, ... can be chosen to satisfy the corresponding sets
of linear equations for the root &', and similar rows for the remaining
roots 6", ..., and the whole number of »=1+0'+1"+... such rows
can be chosen to be linearly independent of one another, so that the
matrix of » rows and columns of which the elements of any column
are constituted by the elements of these rows is of non-vanishing
determinant. Let this matrix, when its columns in order are formed
from the rows @, &y, ..., Tey Yps +oos Yeu +o0y Zepa &1y -1y 21, -, be denoted
by p. It is then another way of stating the above equations to say
that w'Mu = m where m is & matrix, called the canonical form of M,
constituted as follows :—It has zero everywhere, save in the diagonal
and the % —1 places immediately to the right of the diagonal. The
diagonal consists, first, of the root 8, I times repeated ; then of the
root &, I’ times repeated; and so on. The n—1 elements to the
right of the diagonal, which we shall in future denote by e, ;,, for
1 =1, ...,(n=1), consist, first, of ¢,— 1 unities, then a zero, then ¢ —1
unities, then a zero, and so on, there being a zero in the I-th row,
then ¢;—1 unities, and so on for the roots in turn. If we form the
conditions for the equations Mp = pm, in fact, they will be seen to
be the equations above. The matrvix m has the same roots and in-
variant factors as M, and the rows satisfying for it the equations
corresponding to those above for M, viz., (M—06)z=0, ..., are in
turn £, = (1000...), § = (010...), ... ; so that the matrix u belonging
to m is the matrix unity.
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14. Now let the roots of the determinantal equation |A—p| =10
be arranged as follows :—Let 6, be the root, or one of them, whose real
part is greater than for any other root; let #,,4,, ..., 6, be all the
remaining roots which differ from 6, by integers, so chosen that their
real parts ave in descending order; thus we shall have 6,—6, = m,,
0,—0; = m,, ..., these being positive integers or zero, and s =1
being supposed included. Now from the remaining roots of
| A—p| = O choose that one of the largest real parts, or one of them,
say 0, .1, and let those follow this root which differ from 6, ., by in-
tegers, as before, in descending order of real parts down to 6,. It
this rule be continued, it arranges all the roots.

Now choose a matrix u as in § 13, such that

0, ay

pldp={ . 0, a, . [=aq,say,

wherein a,3, @y, ... are either unity or zero, according to the invariant
factors, but in particular a, .1 g 4.1, ... are certainly zero, and let
p 'V = v, so that

T (—‘} +V)u= 0 et V) = 9 (S 40).
We first investigate the character of the matrix

§E=Q (—ZL +v) = Q(u), say.

15. Consider, to this end, a matrix of constants defined as fol-
lows :—

wherein y, is of s, rows and columus, its diagonal being the diagonal

of y, all elements in the first s, rows and columns of y other than

those belonging to y, being zero; and vy, of (s,—s) rows and

columns, its diagonal being the diagonal of y, all elements in the

(s,+1)-th, ..., s-th rows and columns of y other than those of y, being
VOL. XXxV,.—No. 812. 2 a
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zero ; and so on. Further, v, is of the form

0 cy ¢ oo €
=10 0 6y ...

where ¢, 5 g, ... are constants to be further defined below, and
Ya» Vs --- have similar forms; thus in y all elements in and to the
left of the diagonal are zero.

It is manifest that, if m be a positive integer,

"

71
= y" ;
hence, if A denote log t/t,, we have
val LAl
e
9} AR
( £ . v(%)_ )
n) = Ny
where . v ( tl) =14y A+ é! Foey enes

Since the only root of the determinantal equation | y,—p| = 0 1s zero,
there is a power y}* which is identically zero, k; at most s, and so for

the others; thus ¢ (%) contains only a finite number of powers of

A, at most up to A%~%, ... In particular when in y, every one of the
constants ¢; other than ¢y, ¢, ..., in which j=17+1, is zero, so
that vy, is of the form

0 ¢; O
n=4. 0 Cos + [
0 0 cyey
we have 7,=40 0 0 cuey . >
0 0 0 cpeyey
=10 0 0 0O C3y034Cis - [ 0
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( 1 s 1
1 ¢, ‘)‘,‘chsa'\l 3,019‘528031’\3

1
0 1 CogA o CagCyA?
D‘nd v (-7‘-) — 4 23 3! 28%34 .
’ 0 O 1 Cy A
0 O 0 1

We know, however, that & matrix of non-vanishing determinant o
can be found to put o"'yo into a form ¢ with constants dy, in place
of ¢y, in which all but the elements d; i, ave zero, and each of these
is either zero or unity ; this would give

where ¥ (8,/t), ..., are of the simple form above in terms of the con-
stants d,;, dy, ... .

In addition to the matrix ( : ) consider now the matrix

" consisting only of the roots 6,, 6,, ... of | A—p | =0, written in order
in the diagonal, so that )

(t/t)"
sz(i?-): AL

If we form the product
e Y
a(2)a (%),
(7)o (]

it will be the same as Q (—%’), save that every element in the <-th
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row is multiplied by (¢/t,)%. But we have the relation (§ 5)

a, Bk Y o -

Q (hnh T+ A I ') = hQ(u) b,
giving, if L =Q (w),

Qw) Q) =Q [w-}-Q(w)uQ" (w)] ;

herein put w = 06/t, u = y/t; then

o(8)o(2) =o[2+10(2)m(3)]
the general element of -
Q2 (8/t)yQ7'(8/t)

s [0(66)y07 0], = § [R(0r)] [y ()],
= () [y27 (067 ]

= ()" & v (07 @),

= /)" )" v = (W0 Yo

of which however, by the definition of the matrix y, the element y,,
is zero when 6,—6, is not an integer, and is, in fact, zero when r € p;
so that when vy, =c¢, is not zero 6,—0, is a positive integer or
vero ; thus on the whole

(3)a(7) =00

1 V 0\ clg(t/to)D,'an i (t/to)s,—o., g
wheve ?= T : oa Cog (t/lto)b\’-" . 3

all places in the matrix, other than those in the diagonal, which were
fitled by zeros in the matrix ¥ being here also filled by zeros, and
each of the exponents 6,~86,, 6,—6,, ..., which occur being either
zero or o positive integer. '

16. Consider now the differential equation for a matrix % expressed
by

%’ = (-‘;— +v) n—n9,
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equivalent to a system of »* linear equations for the elements
of n, of which, if —‘;- +v = u, the general one is

?fli; = wany+ ... F %= @y oo PinPns)

Gg=12,..,02);
if g be any particnlar form of % satisfying this equation, the matrix

92 (¢)

satisfies
2 (90(9)) = 22 (p) + 92 (p) = (ug—g9) Q.(9) +992(9)
= u[gQ(#)];
and is therefore of the form
92 (9) = 2 (u) go,

where g, is a matrix of constants, being the value at ¢, of the matrix
g, or its continuation ; thus

Q (it‘~+'v) = g2 (9)g;"

‘We proceed to show that when the constants ¢, ¢y, €y, ... in ¢ are
suitably chosen there exists such a matrix ¢, reducing to unity when
t = 0, and expressible about ¢ = 0 as an ordinary power series

lygit+gt+...,

wherein g,, ¢,, ... ave matrices, which is convergent for sufficiently
small values of t. Its continuation to all values in the star region is
then given by the equation

g=0(% +v) %07 (9).

. For this purpose we write dewn the differential equations to be
satisfied by the elements ef the columns of the matrix n in greater
detail ; let the row of elements constituting the first column of 5 be
called z, those the second, third, ... columns respectively v, 2, ...;
next, those constituting the (s,+1)-th column be called X, those
the (5,4 2)-th column be called Y, and so on ; then, taking account of
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the form of the matrix ¢, we have

:;-;: (% +v) % ——}-01:1;,

& - (% +‘U) y— —i [en?/'*‘cm(t/to)ol_oz.a’]'

dit
dz _ fa lre 0y~ 0y 8,85
T \-t— +0) z— s [ s+ 0oy (t/20) y+ e (t/6) -’E]»
aX a 1 ,

= (- —_— X
th ( ¢ +”) X t 0;,” ’
% = (—‘tl +1,) Y- %— [gs.«z Y+CA.H,s.+'-’(t/to)o"+l—os'*2 X]’

‘We proceed then to establish in turn (1) the existence of formal
solutions of these in the form of power series in ¢, (2) the convergence
of these servies.

17. Fivst as to the formal solution. The equation for the row z,

when we put
v =, ta,ttatt+ ...,

where a), «,, ... ave matrices of constants, and assume
x = ®y+ b, + P, + ‘
where @, &y, y, ... denote rows of clements, gives
b, + 260, + 30+ ... F b, +
= (a—b0,+a b+, +... ) (0,2, + ey +..) 5

lLience, equating cocflicients of the same powers of ¢,

(«=6)ay, =0, (a—6—1D)ax;+a2,=0,
(a-=0,—m) .+ 20, + 2o+ ... a2, =0,

Of these the first is clearly satisficd by
a, = (1000...),

while, since there is no root of |a—p | = 0 exceeding 6, by a positive
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integer, each of the following rows @, @, ... is given, without
ambiguity, by the formula
@y = — (a—0,—m) 7" (, Ty + ... FAudy).

Similarly substituting in the equation for y a series
Y=yt 'yt
where 7, ¥,, ... ave rows of eclements, we have
fy 280y, + ... = (a—by+ i+ at®+ .. ) (o + 1y, + s+ ..0)
= (/L) (ot tay + Py + ...} 5
here 6, ~ 6, is zero or a positive integer, say k, siuce otherwise the
equation for X, to be considered presently, is the next equation. For

distinctness consider the cases separately.

(n) When 6,—6, = 0 the term ¢,; in the matrix a may be zerv or
unity, according to the invariant factors; in either case the value

1y, = (0100...)
gives (a—0)y = a,y2;

taking then ¢, = a;5, the terms in ¢° vanish and snbseqnent terms
ave given, after equating coefficients of ¢”, without ambiguity by
the equation

(a —6‘:_")7') ym+ QG Ym-1 +...+a, Yo— L1g®m = 0.

(b) When 6,—0, = I, > 0 the term @, in the matrix « is zero, and
the same value of 7, as in the previons case gives

(a—0,) 7, =0,

reducing the coeflicient of 1* to zevo; for the coeflicient of " in
which m < & we have, as before, without ambiguity,

y’" = - (a—ei—"ll‘)—,(alym-l'{- oo +U-m?/0) 3
but the term in t* is a critical tevm, giving, since 6,+ %, = 6,,

(@a=0) e, F iy + .o+ gy — ety b, =0,

wherein the determinant |«—6,| is zero and the inverse matrix
(«—8,) "' numeaning. Bat, since 8, # 6,,1t follows, in virtue of the
way in which the roots have been arranged, that 6, is not equal to
any other root of |«—p|=0; thus the only diagonal elemeut of
a—6, which vanishes is the first, and every elcment of y, except its
first is determined by this equation without ambiguity when ¢, is
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assigned. Take the first element of y, zero for simplicity, and
take the disposable constant ¢,, so that c,¢ " = first element of
aYi, 1+ ... +a,y, and then determine the other elements of .
Tor the coefficient of " in which m > k, no such difficalty arises,
the row y,, being determined without ambiguity by means of

Y = — (a— 0,—171) - [a|ym-l+ .t am’l/o—cmto-hmm-k,]’
there being no root of |a—p| =0 of the form 8;+m = 6,+m—*k.
To make the argument still clearer consider in similar detail the
equation for the column z; putting z = zy+£z,+£2 +..., theequation
to be satisfied identically in regard to ¢ is

4+ 2% +... = (a—by+at+a,t+ ...) (zo+ 7, + 2%+ ...)
— 0oy (8/t)* %> (yo Hty, + g+ .. ) —cig (B£0) "% (g + by + g+ ..).
(a¢) When 6, = 6, = b,, the constants a,, a, in the matrix a may
ench be cither zero or unity, but in any case the row

2, = (00100...)
gives (a—0,) 2, = agy,

Take then ¢y = uyy, 6y = 0; any row z, for m= 1,2, ... is determ-
ined without ambiguity by the equation

By = —(a—=b~m) " (ayz,.+ ... + €p 2y —yYu) .

(b)) When 6,—8, =0, 6,—8, =k, > 0, the constant a, in the
matrix a is zero or unity, and the constant a,, is zero ; the same value
as before for z, gives (a—#,)~,= 0, and the equation for z,, for
m=1,2, ..., namely,

_ ' —k ks
0= (a—0;—m)z,+a,z,.,+ vt @20 = oty P Y i Cr1at 5 Ry -1y

wherein the terms in a,,_,, 9,.1, are to be omitted if m < ky; con-
sidering then this value of m, there are two roots, viz., 6, and 0,
equal to 6;+k;, and two of the diagonal elements of a—6,—m ave
zero, namely, the first and second, all others being other than
zero ; then, when ¢y, ¢y are assigned, all elements of z, after the.
second are determined by this equation without ambiguity. By
equating first and second elements in the equation to zero, we obtain
respectively, since m = ky,

(2) m -k
@192 + (alzm-l"" ver +ﬂ,,,20) "‘cmto = 0’

@ o poke — ()«
(al "-'m-x+...+amzu) c”to T = 0’
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thus when a,, =1 we can take ¢,; = 05 but in a,ny case c,s, oy Cnt e
-chosen so that these equatious are satisfied.

(¢) When 6,—0, = k, > 0,60,—0, = 0, the constant a,, in the matrix «
is zero, and the constant a, is zero or unity ; but the same valne as
before for z, gives (a—6,) 2y = gy, and, taking ¢, = ay, the coeflicient:

-of ¢° vanishes ; the equation arising by the coefficient of ¢",

O = (a_ga_'n") Zn + a2, .1 +... + Q,, 2y~ czsym_cl'; fo Lin -k 8]

wherein for m < k, the last termn is to be omitted, is only critical for
values of m for which 6,4+ m is a root, namely, for m = k ; considering
this value of m, every diagonal term of a—6@;—m is other than zero
except the first, and so every element of z,, except the first is definite :
we can then take the first element of z, zero and choose ¢, so that
Cppte ™ = first element of «, 2,14 ... + @, 25—y Y.

(d) Lastly, when 6,—6,=F% >0, 60,—6,=% >0, each of the
constants a,,, @y in the matrix a is zero. As before, the valuc
z, = (00100...) gives (a—6y)z,=0; but the general equation for
m > 0,

O = (a'— 63—7"') 2 +a1 2t + oo +amzo Czsto ym l,—clsto g .ﬂmm-k,-k,s

wherein g,,_;, =0 for m <k, and &,_x s, =0 for m < k,+4k, is
-critical for both the values m = Iy, m = k;+k, for which ;+m is a
root, respectively 6, and 6,

“When m =1k, only the second diagonal element of a—68;—m is
zero; we may take the second element of 2z, =0, and choose
ity ™ = second element of («,z,_1+...+«,z), the other elements
of z,, being determined without ambiguity.

When m = k;+ I, only the first element of the diagonal of a—6;—m
is zero; we may take the first element of z, ,,, = 0, and choose

ete ™ ' = first element of (a,z‘,‘.,*h_,+ +ak,+k,zo—cnto‘k’ykl).
A precisely similar argument applies for immediately succeeding
-columns. Consider now the (5,—1)-th colnmn ; puttting
X =X, +tX,+ X, + ...,

the equation ¢ (l—Y— = (a4vt) X—6, , X

.gives

tX 420X, 4. = (a—b, ,+ta i+ at*+... ) (Xo+ X, + 23,4 ...),
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and we take X, =(0...010...),

wherein the (s,—1)-th element is unity, satisfying (a—6,,,) X, =0;
while, as there is no positive integer m snch that 0,,.1+m is a root of
| a—p| = 0, no other critical terms arvise.

For the (5,4 2)-th column Y we have to satisfy

PN +20Y, 4. = (a—0, ot ot +ay+ (Y + Y, +£Y,+...)
= o g0 (Hft) P 00 (X X+ X+ 00).

(e) If 6,.,—6,,, =0, the constant Qo 21, o 42 10 the matrix a is zero
or unity, but the row

Y,=(0...010...),
with nnity in the (s, +2)-th place, satisfies

U .
(“_a‘r*?) )~0 ‘_'"’R.H,n,vz X(n

we take then Colvtyap2 = Qo1 gy 00

and, as there is no positive integer m for which 6, ., +m = 6, ., +m is
i root of |a—p| = 0, no other critical terms. arvise.

(b) When 6, ,,—6, ., =1, > 0, the constant a, ,, ,,,» = 0, the same
value of Y, as before gives (n—6,,.) ¥, = 0; the general cquation

O = (a_o.v|~'.!_7)1') yvm-l_a'l Ifm—|+ e +am 1’0_6.1, Floe 2 t(;'l;\—m.h,

wherein X,,_, = 0 for m < {,, is critical only for m =1, and in the
matrix a—#, ,,—1, = a—0, ,, the only element of the dingonal which
vanishes is the (s, 4 1)-th ; we may take the (5,4 1)-th element of Y,
zero, and, the (s;+1)-th element of X, being unity, determine
Cy 11, o +2 S0 bliak

vt a2 beh = (5,+1)-th element of (a, ¥, .y +...+a,Y,);

the other elements of Y, =Y, are then determined without
ambiguity.

The same examination in detail can be continued. It is, however,
sufficiently clear that in all cases the constant ¢; can be chosen so as
to give a pevfectly definite expansion in powers of # for every element
of every column of the matrix » in such a way that for ¢t =0 the
matrix 9 =1, that is, has unity for every diagonal element and
zevo for every other element.

18. In regard now to the convergence of the series which have
been determined for the various columns. ILach of the » differ-
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ential equations is of the form
t% = (B+at+a,t’+...)y—2,

wherein y denotes the column to be determined, @ is a numerical
multiple of a column previously determined, as we may suppose by a
convergent series, or a sum of a finite number of such, and f( is a
matrix of zero-determinant. The numerical multipliers in «, namely,
the constants ¢y, ¢y, Cyg, ..., are determined with the early terms of the
series for y, certainly of finite rank, since the equation |8—p| =0
cannot have two roots whose difference is not finite; thus the
question of convergence relates only to the sevies

Y=ottt .+ yyn) = Y+ a4+

where the general coefficient on the right hand is determined by an
equation of the form

Y = ('m‘ _ﬂ) - [al Yin-1 +...+a«q, Yo— X |y

in which a,, and ¥, ..., yx_, ave given and N is such that for m > N—1
the determinant of m—f is not zero. A
Now let the rows of real positive elements Y, ..., Yy, X,, and
matrices of real positive elements A;, H be determined so that
I?/ol < Y, |.7/1| <Y, .., |y1v-1| < Yy l“-’l < 4;
fori=1,2,...,», and, for m > N,
,‘T’mI < Xms ) | (m_ﬂ)_ll < H’
where the meaning is that the modulus of each individual element
of the row or matrix on the left is less than the corresponding
element on_the right, the possibility of the inequalities |a;| < 4,
|r,| < X,, being a consequence of the assumed convergence for

snfficiently small ¢ of the series for the matrix v and the row a;
then the equations, for m > N,

Yo = (m= )" [, Y+ ... + 9+ 2,]
Jead tu |yw]| < H[ A4, Yo b ...+ 4, Yo+ X, 15
or, if we put, for m > N,
Y,=H[ANLY, 1+.. .+ 4, Y,+X.],

lead to o Iyml < 1"m'
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It is therefore sufficient to show that the successive equations, for
m > N, ) '
1rm = H [AlYm-]+ cee + AmYo +-Xm]’

wherein 4;, 4,, ... are any giver matrices of real positive elements

such that the series :
At+ 4,804 ...

converges when ¢ is small enough; Y, Y, ..., Yy_, are any given rows
of each real positive elements; ' Xy, Xy,,, ... are any given rows of
real positive elements such that the series

X+t Xy + .
converges when ¢ is small enough, give rise to & series
Y g+t Y+ .,
converging when ¢ is small enough.
For this, consider the equations expressed by
Y= Yy—tY,—...— "1 Yy,
=H{(td,+84,+..) Y= [t4, T+ (4, Y, + 4, ) + ...
et TN (A Yyt + Ay, X)) ] F X A 7 X+ -}

which, when written at length, are » implicit equations for the
n functions of ¢ which are the n elements of the row Y, in fact of
the form )

Cn (yl—y?) + o+ Cr(Yu—yn) =9, (4 Y15 ooes Yn)s

Onl (3/1_3/?) +...4+ O....(y..—-y?.) = tﬁbn (ta Yus eny yu),

where ¢, ..., ¢, are convergent series in ¢, linear in y,, ..., ¥,, and
Cy; =0, except C; = 1.

Such a set of equations is known to have convergent solutions ;
say in our case

Y=Y, +tZ,+.. .+t 2y Y+t Yy + ..y
which on substitution gives
L2 =Y )+ .+ (2= Yy )+ ¥y + Y Yy + ...
= H{(t4,+ 84+ ) (Yt 2+ oo+t Zy 7 Ty 4 000)
— [t X+ o 7 (A, Yyt oo+ Ay To) | + 87 X+ ),
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and hence, so far as the terms in -},

Z,~Y, =H{4,Y,—4,Y,},

2,~Y,=H{A,Z +4,Y,— (AY+A Y)}
Zy. —YN l—-H{A ZyatAgZy s+ ...+45.,Y,

'_(Al-Y‘\‘-2+--~+AN-lY0)}a
leading to Z =Y, Z;,=Y, .. Zy,=Yy,
while, for the term in ¢”, for m > N,
Y= H {4, + 4Tt o + 4,0+ X},

which is the series of real and positive elements occurring in the
series whose convergence was previously shown sufficient for our
theorem.

19. We have thus established that

( +v)—gﬂ(¢)go = gQ(et N0t Ngs ",

where g is a matrix of functions of ¢ developable in a convergent
ordinary power series about ¢ = 0, the matrix g reducing to unity
for t =0, and g, is the value of ¢, or its continuation, at ¢ = ¢,
Thence, when, as before,

pAp=a, pl'Vp=uy,
we have 9} (‘% +V) =GOt )yt "G,

where G = pg
reduces to p for £ = 0, and satisties the equations

dG ( A \
— +V,;G—Gy.
dat it 4
The matrices y, 0, and ¢ have been explained in §15.
In the subsidiary equations for the determination of the eolumns
of g, the position of £, enters ouly in the combinations cyt™ O i
we put this = e;, these subsidiary equations will contain no reference
.to t,. Thus the matrix ¢ does not alter when #, is taken differently,

nor therefore does the matrix G'; but the matrix Q(¢) does alter,

being O bo($) = O 4($) Q4 ().
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The simplest case of our general formula is when no two of the
roots of the determinantal equation | A—p| =0 are equal or differ
by integers ; then the matrix y consists only of zeros and @(y¢™') = 1.

Another case which may occur is that in which no two roots differ
by an integer unless they are exactly equal. Then in the series which
solve the subsidiary equation for the columns of the matrix ¢ no
critical terms occur after the first terms, which may be critical owing
to sequences of equal roots; in such case, as is seen on referring
back to the work, every constant ¢; in which j > 7+ 1 may be taken
to be zero and the constants ¢, ,;,, are those, a;;,,, arising at once
from the given form of the differential equations, which occur in the
canonical matrix a; thus

8, cy(t/t)™ 0 0
110 0 Cos (B/ts)" "% 0
é=— 3 2 (¢/t) ,

¢ 0 0 0; 034 (/86)% %

in which Ciivl = O, unless 0,' = 0,',,1, and Ciisl = Qi in1 'when 0,- = 0,'”-
In other words, in this case, we have

o
4’—'7’
al4 V) = wgQ(at™) g-lp-) = 10 (At o1y
and @£ +V) = ugQ(at™) g;'n™" = ugu”' (4™ (ugon™)
=hﬂ<%>ho",
where h = pgp?

reduces to unity when ¢ = 0 and satisfies the equations

dh _ (A .4
dt ( t +V)h g
In both these cases, it is to be noticed, the form of the matrix Q(¢)

is determinable at once by inspection of the given differential equa-
tions from the matrix 4 alone.

20. In the case of a linear system derived from a single linear
-equation, as in § 9, the matrix A, there written at length, has the
peculiarity that in | 4—p| the minor of the first element of the last
row has a determinant equal to unity ; thus, if ¢ be a root of multi-
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plicity I, the first invariant factor corresponding thereto is (p—b)',
:and in the canonical form « = u~' Ap of the matrix 4, the I—1 con-
stants @, i, corresponding to the root have all the value unity, so
that the equality of two roots necessarily involves a logarithm in the
solution of the system. The matrix V is further special, in that all
“its first n—1 rows consist of zeros. In fact, the ordinary theory of
.a single linear equation leads us to expect that in this case all the
.constants ¢; of the matrix y vanish in which j is not equal to ¢ +1.
We have not deduced this result in the present paper, the expression
for the most general case given in § 15,

V(—?) _1+‘Yl)\+ YLXJ )

appearing to be. of sufficient simplicity. But that it is not
possible in all cases to arrange to have all constants ¢; in which

JF#i+1equal to zero appears to follow from such an example as
the system

{l_'a‘l__ ' t(1—6,+6,) +t"%
= O, +t(1—6,+6,) 2, + L4 Xy,
d

t—ia;—_0a,,,

(Z:Ls -0 2
s “‘ 1+8

where we may suppose ¢,—60; = 0, or a positive integer; this has a

form
de _ fa )
= (5+e)e
1 0 l
where a=710 6, 0,
o)
L a1
(0 1-6+0, I:Q{f’::ﬂ?——}
v=.0 0 0
.|
‘\ 0 0 144

This system is satisfied by the elements of each of the three columns
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of the product of the matrices
1 ¢ ¢ (t/t) 0 £t % log tfty
01 o0 (SO AR S
0 0 1+4¢# 0 0 (t/t)

namely, in Q (-‘tl +v) =g0(P)g;' =92 (0¢") (vt 1) g7".

1 ¢ ¢
we have g={0 1 0},
0 0 14¢

) 0 0
Qe/t) =1 0 (tt)* 0 »
0 0 ()"
: 10 0' -10g(t/t0)1
Q(/)=10 1 0 - I
00 1 }

0 0 & : 1 6, 0 . tyoe(tft)n
y=4{00 0. $=740 § 0 .
00 O 0 0 6,

'21. As a simple actual example of the method for an nssigned.
linear - equation take the equation (Forsyth Linear Dzﬁewntml
Bguations, p. 103, Ex. 8)

B+ y"—(2+48) %y + (4+10¢8) ty (4+ 126) y =0,
which, as in § 9, leads to the system

0 10 0 0 0y
de _ | 1 1 = (AL B\, v
dT*[TO 1 1f+510 0 0 a—(f+t+1)a,sa>-
4 —4 4 8 —6 2

The roots of |[A—p | =0 are 2,2, 1; with

1 01
=-{2 1 l},
2 30
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210 0 0 -2
we find ,;“A;:.:‘IO 2 0}=a, p"Bp.:{O 0 2},
0 01 0 0 2
1 2 oy cu(t/ty)
b= T 0 2 cu(t/ty) [
0 0 -1

and, with « = % + % , the subsidiary equations

—a—ug —g¢

8 1 0 —2 \[
. a _ -1
lead to 9(74-2-:1)_ {g (1) 2(:1(:-;?]9@)90

=g (0t )2 (yt g,

(210 @ 0 0
with ¢=—}{0 2 2t}, Q(et"):{ 0 () 0},
2 01 0 0t
01 0 . 1 A g
={0 0~-2t,°}, O(yt"):{o 1 2tok},
00 0 ' 00 1

where A = log ¢/t,. .

Part III

22. A problem to which the pr evious investigation can be usefully
applied is the elucidation of the connexion between the form of the
Tinear system and the form of the linear substitutions which generate
the monodromy group of the system. We consider only the case
where the functions of ¢ in the matrix « are single valued over the
whole tinite part of the plane. The star region in which the matrix
Q (u) is single valued aund developable having been defined as pre-
viously explained, let the barrier joining one of its angular points to
t =% be removed, and let Q,(u) denote the value for the matrix
obtained by integrating first from #, to ¢ by the path by which Q (u)
was defined, and then from ¢ once round the single cormer now

VOL. XXXV.—No. 813. 2
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isolated in the positive direction back to ¢,  Then, as follows from
the equation Q7% () = 0 () Q% (w),
we have Q (u) =0 (u)?,

where ® is the value obtained by integrating from #, round the
corner back to #. The group of linear substitutions formed by the
combinations of the matrices ®, one for each corner, is the group in
question. More generally, if O be an arbitrary matvix of constants,
a matrix whose columns are sets of solutions of the linear system is

() C, and Q,(u) 0 =Q(x)C.0"8C;

so that we may, instead of the group (&), consider the group
generated by the substitutions O-'®C, which is said to be a transla-
tion or transformation of the other. In practice it is convenient to
choose C so as to obtain the greatest possible simplicity.

23. Taking now the form we have investigated for linear systems

of a certain type . .
Q(U) = 6RO ) (™) Gi',

the factor ® for the matrix Q(0¢°'), when ¢ describes a circuit about
t =0 from ¢, back to ¢, consists of a matrix having only diagonal
elements of the form e*™, e*™, ..., which we denote by w, w, ...;
corresponding to a sequence of roots from 6,,6,, ..., each of which is
less by an integer than the preceding, the corresponding quantities v
are equal; namely, in a notation previously employed (§14), the
tirst s, quantities w,, w,, ... are equal ; then the following s,—s,; aud
§0 on. '
Denoting the quantity 2=: by e, the factor ® for the matrix (§15)

{ v (1/t)

Q(yt™") = v (v4/t) _ }

Al
18 a matrix A, }

where A, of s, rows and columns, has the form

2
A, = 1+~/le+—';l' 4.
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A,, of s;—s, rows aud columns, has a similar form in terms of y,; and
80 on,

If now such a matrix, with separate square matrices arranged
about its diagonal, and other elements all zero, be called a diagonal
matrix, and two such matrices be considered of the same kind when
the numbers of rows and columns in the respective component
maitrices are the same for both, it is immediately obvious that the
product of two such

COTR R

i8 independeht of their order.
Thus it follows that the matrix @ arising for the matrix Q(et!) is
commutable with the matrix Q(y¢-'), and we have

Q,(U) = G (6t) @ (') 0G5,
wl,
where e = <1 w'A, } ,

w denotihg the value of ¢ for 6, 6,, ..., 8,, and o the value for
Be1s ves 6., and so on.

‘Thus Q,(U) = Q(U) G,86;",

and the monodromy group of the linear system is generated by linear
substitutions of the form

wi,
G, ®G;' = Go{ w'h, } G;L.

24. Consider, for example, particular cases as in § 19.

(2) When all the roots 6,,0,, ... belonging to the corner ¢ =0
are different and no two differ by integers, each of A, A, ... re-
duces to unity.

(b) when no two of the roots differ by integers unless they are

exactly equal, the matrix ® is the value of Q (—c»t'—) taken round ¢t = 0,
3
and equal to l1+ae+ %e"-{-...,

and determinable at once on inspection of the differential equations

282
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without solution. If then f, can be taken so that the matrices @
arising for the various corners have all the same value at £, the
group of the system is particularly simple.

(¢) For a corner at which all the roots belong to one sequence,
differing by integers or zero, if all the constants c; of the matrix y
are zero, and no logarithms enter into the solutions about this
corner, the matrix ® reduces to a single constant w, and the sub-
stitution of the group arising for this corner is independent of Gy,
reducing to the matrix having only the quantity v in each diagonal
place.

25. Conversely, consider necessary conditions that the group
should be finite. Then each substitution must be of finite order,
and we must have equations for each corner of the form

) wlllA;’l
1 = ¢" = w/"’Am

L,

and hence WAl =1, ™)
of which the first is

2.2
€

w" (1+myle-}- ?);-'u y':’+ ) =1,

where y, is a matrix satisfying, for its equation of lowest order, an
syuantion of the form 'y:" =0, in which &, is at most s, and the series
in the bracket terminates with the term involving ¥#~'.  This equa-
tion therefore involves " =1 and y, = 0. ‘

A necessary conditioun is therefore that all the roots 6,0, ...
should be rational numerical fractions and the matrix y be zevo, so
that no logarithms enter into the solutions. In case no two of the
roots differ by integers or zero, the matrix y is zevo of itself ; on the
other hand, if every two of the roots differ by integers, and still
the -matreix y is zero, the particular substitution G,®G;' is in-
dependent of ¢/, and reduces to a numericnl constant w, which in
the case supposed is w voot of unity; for a system derived from a
single linear equation we have seen that the invariant factovs
corvesponding to a repcated root 6 caumot be linear, and y cannot
be zero when there are repeated roots.

"The condition iy not generally sufticient. If a set of matrices N
gencrate a finite group, it is known that a single matrix = can be
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found such that the set of matvices 3 = & Nar-! satisfy the relation
M, M =1, where M, denotes the matrix whose elements are the con-

.jugate imaginaries of those of M, and I, is the transposed of Af,. In
our case, denoting ®, which in the case supposed consists only of

diagonal elements which are roots of unity, by Q, so that Q.a=1,
the matrices M are of the form

M=eG 00 =",

Part IV,

26. In illustration of the previous theory consider the case of the

T e [0 0 1 /01
a= [(aﬁ o)+2f'1—“7) (o 0)]” = (0=

in which 8 = 1 —aq, derived from the single linear equation
t(l=8)y"+(1-20)y'—a(l—a)y =0

by putting @, =y, 2, = t(1—t)y. For t =0, t =1 the system is

already in canonical form ; integrating from t, =%, we have, by the

theory,

2@ =y0 ( 5%) s @.

We find, however,

(5 0 ) =—r0=-sa-0;

and hence, if s = 1—¢ and Q[u(t)] = F(¢), we have, by § 3,

F'(s) =9[u(s) Zﬂ =Q[—u(t)] = (é _(1)) Qlu(t)] ((1) _(1)),

so that

9@ (5 “8%) = (5 s (g 1*)er@ (5 _))ew-
(4)

With » = ¢(1—t), the subsidiary equations for the determination of
the columns of ’

9y = (9 )
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d 1 1
nre (§16) ‘g—;‘l' =g %l%!! =g T

d d
Tigf = af3g,, 'g;i = afd g13— g:! )

. d
leading to (’l‘i(.‘)ngu"‘gngn) =0;
so that, as at ¢t =0, so for all ¢,

Inga—guda = 1,

the ordinary Abel relation in a disguised form.* The equation (A),
with hy = g;(1=¢t) and yy = gy (1), is the same as

(gn gulog2t+g,,)
Jn Gnlog 2t+ gy,

=( by hu) (1 ]0g2s)( Y2 —715)( Tn | Yu)
—hy —hy/ N0 1 —Yan  Yun' *"Yn TYn
— ( hy, hnlog23+h,,)(11 B)

—hy —hylog2s—hy/ \C —4/’

where A=vavetverm B=2v4yn C=—2v,7,

A*+BC =1,
and leads to four relations effectively all reducible to g,,g:—g1,90 =1
together with hy, = Agy+ C(gn log 2t + g,5). B)

We know that g,,, g,; are power series in ¢ reducing respectively to
1 and O for ¢ = 0, and %,, is the same powerseries in s as i3 g,, in¢; if

gu(t) =14 ilx,,t",

the equation (B) gives, putting ¢=0, and assuming log¢[and log(1—¢)]
real and negative for 0 <i <1,

A4+Clog2 = [g"(l—t)—Clogt]‘_ﬁ
=[1+3 (s .Q) (1-¢)"] ,
13 ts0

nal 1
and hence C = (—1K)ues-

Thus, when the series ¢, (£) is known, ¢/ can be found, and hence
A4 and B, as we shall show below ; it concerns us, however, first to
show how far the method of this paper enables us to go towards

# Tn general the detcrminant of ¢ is the exponential of the integral, from 0 to ¢,
of the sum of the diagonal elements of the matrix v.
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determining the group of the equation without calculation of details ;
we prove, in fact, at once that this group can be transformed so as to
be generated by the two substitutions

(02 Cagmoy 1)

For the solution Q(x) we have seen that the two substitutions
about ¢ =0, t=1 are

1@ (3 )o@ we® (5 ) @m
where p= ((1) _2)

Now take a matrix p snch that

p® (; ) we= (] 2),

which is known to be possible, since the two matrices

(l 2w ) (1 2 )

01/ ‘01

have the same roots and invariant factors; putting for the determ-
ination of p,

@ =(5 9.

we find P and Q a,rbitrary, R=0 and §=miP; next, assuming I’
not zero, take a matrix

c=pr=(§ L)r@mm@(§ %)

A+ %3 MIP (pB- 2QA—.Q_‘?)

il -3 (A+ QO) ’

and then, assuming C not zero, take Q/P =—A/C, so that, in virtue

of A24+BC =1,
o =< mo\
¢ 0/

I

Consider now the solution Q(u)p~' of the differential system ;
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about ¢ =0, ¢t =1 it has the respective factors
- 1 2 12
0= 1 ) pt =
m@ (; 7)o@ = (1)

> =py® (3 ) o B,

which, by pu = op, is equal to
i [1 2w g (B)plet = 12y

which on calculation is, as stated,

(2micy 1
2(#0) 1/°
In fact it will be seen that g, (¢) is the llypelgeometnc series

F(a, B, 1,¢), 8= 1—a, and hence
C=— l fa(a4+l)...(a+2—=1)B(B+1)... (B-{-n—l)]
L

(n—1)! n!

it is, however, an elementary property of I'-functions that, for
general values of «, 3,

[na(a-l-l)...(a+n-—l)ﬂ_(ﬂ+1)...(ﬂ+n—-l)] _T@+p) :
wl(a+B)(a+B+1) ... (a+B8+n—1) wen  D'(a)T(B)’
thus here, with a4+ 8 =1,
O0=— 1 _ _sinma
Tal'(l1—a) T

and the group is generated by

o= ((1) ?.)’ ¢=‘ (-—2 Slin“-lra. (1))'
For instance, for a = 4, a = , respectively,
e=(_, 1 (51

Returning now to the determination of the matrix g, the equations
for the first column are, with 8 = 1—a,

Nexn

d r’ 4
tA—t) M = gy, = ofign,
which are satisfied by ‘

iF
gm=TF(a,8 1,8), ga=t(1—- )dt
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reducing respectively to 1 and O for ¢ = 0, if only the identity

afF =t (1—t) F"+(1—20) F
is satisfied, as is known; these are then the values for g, and g,,.
The equations for the second column

,’7.‘71-: — G __In ‘l.q-.".g

— — Y
dt ~ t(l—e) ¢’ dt = o8y,

t

are to be satisfied hy forms
& " 1
2 ='E‘] Nty g =t(1—2) ('('llztlg'*'(l"t).‘lm

which on substitution in the second equation are found to give

LS S

o [ L 1
"’"'",Ex “ut [a +m+a+n—1 B

et l?_;}:—l -2 (1+...+ ;1;)}

which can be shown to be the same as

g = —Tog (1= (e, B, 1, )2 3 " (14 1

2

+ot 11¢)

Thus C is as stated above, and hence from equation (B)

A=507%000y [F(a, l—a, 1; 1—¢)4 Sinma logt] ,
™ m™ tml)

To evaluate this we use the identity holding for general values of
~a, B (St. John’s College, Cambridge, Examination Paper of June 4th,
1894, 9-12), . )

20/ (1) =y ()= (B) = lisn,.o [logt+ rfjﬁ%ma, B,a+B,1-1) ],
where () = El“’—((f)z’

by B =1—a, we thence at once find

A =0"1 (10g 9424 (1)~ (a) =y (1—0) ]

__sinma 2 sin 7a 0l )
== log 2+ ——"=[¥(1)—¥(a) ] —cos ma;
and hence, from A*+BC =1,

B = Sinma { [log 2-+2¢(1) —2¢ (a) — cot ma |*— = cosec® ra},
- .
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whereby, in fact, the relation connecting the fundamental integrals
of the original hypergeometric equation about ¢ =0 and ¢ =1, for a
general value of «, is found in a manner which appears to the writer
simpler than that employed* by Tannery for the particular case a =}.
It can be proved that

Y (1)—¥(3) =21og2, y(1)—y(3) =3(3log3+n/V/3);

thus, for a = 3,
— 9 _1 oy, 3
4= - log 2, B= - [(510g2) w],
and, for a = §,

1=V3 -3 s
A =7 "log (54), B=<- [ (log 54)*—4r*].

Another remark seems worth making. We have had the relations:
expressing the integrals about £=0 in terms of those about ¢ =1;
by elimination of the constants we obtain four functions of these:
integrals which are constant ; putting

e= (o (6 78") 7= (o) (0 °5™)

these relations are, in fact,

{0 )= (9 4)
10 4 B!’
and can be obtained in this form directly from the two. expressions.

for Q ().

[June 17¢h, 1903.—The following deal with systems of linear equa~
tions :—Konigsberger, Lekrbuch der . . . Differentialgleichungen, 1889,
pp. 441-469. . Sauvage, Ann. de I'Bc. norm., 1886, 1888, 1889.
Sauvage, Toulouse Ann., Vol. viir., 1894, pp. 1-24; Vol. 1x,, 1895,
pp- 25-100 and pp. 1-75. Griinfeld, Denkschr. der Wiener Akad.,
math.-naturw. OL, Bd. viv,, 1888. Horn, Math. Ann., Vol. XXXIX.,
1891, pp. 391-408, and Vol. xu., 1892, pp. 527-550. Picard, Trasté
rl’Anaﬁyse, Vol. 111., 1896,'p. 266. Dunkel, American Akad., May 14th,
1902.

* Repeated in Forsyth’s Linear Differential Equations (1902), pp. 129-13¢. We:
remark in passing that the first four lines of p. 148 of that volume do not appear to.
be correctly printed.





