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SUMMARY.

1. The hydrodynamic basis of convection of heat suggests
study by means of models.
2. We have the formulz :

Natural convection . . &= (k8/1) F(32ylPab/i?),
Forced convection . . &= (k6/1) F(lve/k).

3. Graphs drawn with h=(k6[l) as ordinate and either
(Pylaf/k?) or (lve/k) as abscissa should be independent
of the size of the object; consequently, to ascertain the
heat-loss for any particular body it should be necessary
only to perform the appropriate experiment with a model.

4. For natural convection Péclet’s data have been analysed
with promising result. The formula would not Lie applicable
to bodies where the fluid expansion caused was no longer
negligible as a mere volume change.

5. For forced convection the formula, tested by data
given by Hughes, is very promising. The cooling fluid
is not heated so much as in natural convection, and can
still be regarded as incompressible for smaller bodies at
higher temperatures. The formula is good, even for thin
wires, and it is satisfactory to trace in 1t the hydrodynamic
variable determining turbulence.

6. Evidence available in published data indicates that, for
heat-loss from a body, an excellent first approximation can
be obtained from experiments with a model. The principle
of similitude affords a convenient method of expressing
experimental results.

March 1920,

LXXXII. Space-Time Munifolds and correspondiny (Fravita-
tional- Fields. By WiLrrip WiLson, 53.8¢., Northampton
Polytechnic Institute *.

THE main purpose of the present paper is the investigation

of the gravitational field of an infinite uniform recti-
linear distribution of mass or, more precisely stated, the
determination of the equations of the geodesics in a space-
time manifold in which the square of the element of length
has the form
ds? = —fidirt —fod2?— f?d? +fdt?, . . (1)
where the /’s are functions of » only f.
* Communicated by Dr., Wm, Wilson,
t+ When f,=f,=f,=fi=1, » z and ¢ are the ordinary cylindrical
space co-ordinates,
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So far as the writer is aware, the only gravitational field
which Dbas been investigated from the point of view of
Einstein’s theory is that of a single particle or of a number
of isolated particles, On Newton’s theory the intensity of
the field in the neighbourhood of such un infinite rectilinear

2m
. . - - -
distribution of mass is equal o o where m is the mass

per unit length, using gravitational units. The following
investigation shows that the intensity as given by the
general theory of relativity is, to an exceedingly close
approximation, equal to the Newtonian result,

Before proceeding to the actual investigation it will be
well to stady the following simpler types of manifold
in which the square of the line element has the forms :—

ds? = —da?—dy? —d* = 2atdadt + (1 — a%?) di?, . (9

ds? = —dit—de? — 12 dd* —20rd¢ di+ (1—r?w?)dt?, (3)

ds? = —Adr*—d>—r%dp*+ Bdez, . . . . . . 4)
where «, @, A, and B are constants.

In the 1e]at1v1ty theory of gravitation the general form of

the square of the element of length is
1,234

= 2 gxr(l].’ll'lcdl'r.

KT

The potentials g,, satisfy the equations
F=0, . . . . . .. (5

where
1,284 3 3
G y = ( ¢ L e loy b
2 ,,2 LT =80 Tt orsm 10 gy
Fc 9 log\/g)
/wahs
and
1,2,3,4
l_‘a = % g (a/ﬁ( BJYB a‘/ﬁy)
,3}’ a 30,;) axa

In some cases the potwutiala Yer may also satisfy the
equations

B =0, . . . . . . ()

I,“’U

* Linstein, Adnn. d. Phys. xlix. p. 769 (1916). Iinstein only uses
co-ordinates fur which g=1. Sec also Liddington, ¢ Report on Relative
Theory of Gravitation.’



Downloaded by [University of Cambridge] at 05:51 13 June 2016

and corresponding Gravitational Fields. 705

where
1,23, 4 a a
30 _ € [ € A0 s 4 __° 4
:BI“'” - sz (F”o‘rsv_ F/"/I fﬂ+ 0.y PI“T aiUU FI“') )

The latter equation expresses the necessary and sufficient
condition that, by a suitable choice of coordinates, the square
of the element of length can be put in the form :—

13, 8,4
dst = 2 dad . . . . . . (D)
$
and the gravitational field made to vanish everywhere. Such
a field may conveniently be termed a non-permanent one.
The manitolds (2), (3), and (4) furnish simple illustrations of
such fields.
In the manifold (2) the values of the ger and g*r are :—

(‘9“2_1 .ryllz “‘3L2_1
Yo =—1 |922=—l
‘{5733=_1 %gssz_l
i944= 1—a? !944___ 1
L9 =—al Lyt =—at,
and g=-1,

where g is the determinant of the ger.
The Christoffel expressions I’ gy all vanish with the
excoption of I'jy, which has the value
1114 = a.
The equations
a‘zxo‘ 1,234 - a;pu B,v/3 )
it 2 Tpar s =0 o=L234 . (8
a3
of the geodesics then give the following equations of
motion :—

d®

dst —act

4y

allV AT}

ds? ’

22

- =0

ds? !
= 90,
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where the constant ¢ is given by

dt =
ds
The first of these equations may now be written
d*z "
det ’

showing that the manifold (2) correspouds to a uniform
gravitational field in the @ direction.
In the manifold (3) we have

(gn=—1 (g =—1
l922=—1 i.‘/m:_l‘
{ sy =—17 19 = wz—;lz
R = A AL
(g =—1"0 (= o,
and g =
The non-vanishing Christoffel expressions I'g, are :
’ 1
M= —nr, [¥13== o
Iy=—owr, Pm—(‘;,
F/41= —o’r ;
and the equations of motion (8) are :
d'r_ { d(¢+ot) } -
ds? ds -
PP 2dr d(d+ i)
e teds T =Y
&’z )
dst T 0.
a’t .
(Tsé = O.

The last equation gives
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. e . o dt .
where ¢ is a constant. Substituting this value of ZTs in
the first equation, we obtain

a%r . d¢) 2—

and taking o to be an angular velocity we have the equations
of motion in & centrifugal field.

In the manifold (4) the wnon-vanishing Christoffel ex-
pressions are

I, =%_ and TV = ——:-&.
The equations of motion (8) become

d*r v [dp\?

2e=i () =0

¢ 2drdp _

ds* "rdsds T 7
R R ¢))
a =
d% .

If, instead of ¢ we use ¢/, where
¢ = ‘/K‘Pl,

the equations (9) become

flgd” E)‘l_r dd’,_ =0
ds? Trds ds T ?
d’z
aw =0
d’t
dé‘é = O.

We may therefore regard equations (9) as the equations
of motion of a particle moving with uniform velocity in a
straight line with respect to an inertia system (», z, ¢'),
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viewed from a system (r, z, ¢) rotating in the inertia system
with angular velocity (1 — 4'A) times that of the particle in
the inertia system.

We now proceed to the investigation of the manifold (1),
where

ds? = —[idr* = fod2? — fur?d? + fidt?,
and the functions
—f1(7)1 _.fﬁ (), —T2f3(7), /4(7)

must be solutions of the equations (3).
For our purpose there is no loss in generality in using any
function of # in place of ». We therefore write

—rf(r) = —1? e e (1)
and obtain for the square of the line element the forni :
ds? = —fidr?—fod@ =12 dQ? +fide, . . (1n)*

where the accent has been dropped after making the sub-
stitution (10).
It is easier to deal with the equations (5) if we write ds’
in the form
ds? = —e'\¢i7'2—e"d22——73¢l¢2+e"dt2, .. (A2)

where e*=f,(») etc., and A, p, and v are functions of »
which have to be determined.

The Christoffel expressions I'zy are then found to be

/™ _ ! 9 . '
irn— L ,(112—2,“5
[V = —3ue™? - 1
{ !22 s ’ {3, =,

i P33 =—‘7’€_)‘, i r

R I !
\Dy= e, (M = v,

where

_a?” r_a/"' r_g
-’ K= v o

Substituting these expressions in the equations (5). the

kl

* T am indebted to Dr. Wilson, of King's College, for suggesting the
investigation of a line element of this type.
+ Kddington, Report,
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latter become :

Y
WV = P Y =P (13)

I =N dpt = P v, oo o oL (14)
)\.’ - /.L/“' V', . . . . . . (]5)
+iuV = =Y =B 0 (16)

Substituting the value of N\’ given by (15)in (13),(14),
and (16), we obtain the equations:
14 1,/
”

L. .

P N 6 1)

P

#”—}-V”—-F,’y' — }g':_’__

I

1
v

!
v+ =
”

]

0. . . . .. 19
From (18) and (19) we find

. —4m
Ho=
;@
Vv = ;;
and therefore from (15)
—d4m+a

A= TR

where 4m and a are constants of integration.
Substituting these values of ' and +' in (17) we see
that
4m
“=——3;
1—2m
whence
8m?
—dm+ta =~
1—2m
and therefore

= 1lem

w
su
91.—‘ =

1=2m
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Integrating these last equations, we obtain
p=—4mlogr+A,

4m
y = — 2;?‘10;;7 +B,

- N C20))

8m? l
A= 1~§;llogr+C,J

where A, B, and C are constants of integratjon.

We shall see, when the equations of motion are written
down, that m can be identified with the mass per unit length
of the z axis. When m is zero the square of the element of
length will take the form

ds?= —dr*~d2 —r¥d¢?*+ dt?;

i. e., when m=0,

A=0, pu=0, v=0.
Therefore

A=0, B=0, (=0,

and the values of A, g, and v are

p=—4mlogr,
4m
1—2m

8m?

log »,

The square of the element of length (1) is therefore

Smﬂ_) 4m
A = —r BV gt et _p2dg? 4 P g (1)

The Christoffel expressions which do not vanish are :—

= dm? 1 I — —2m
=1 _9m"» =
2m :_47,") 1
. =3 3 __
Ty = —— .= Pia=
? 7
8m?2
F'33 — _,,.( _1-2771), 1"414 — __2_'2_1_ 1
1—2m’
2m dm~1
I"44 = = 7,,( m ),

1—2m°
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Substituting these values in the equations (8), we obtain
for the geodesics the equations following :—

2 2 o\ 2 . A 2
d* ,4_”?'_) %‘ (,‘gi) + er( 1 1—2m) d.z)

p e B ds
s 2 %flj’ =0, (24)
ST g =0 o)
=0 e

We may interpret these as the equations of motion of
a particie in the gravitational field of an infinitely extended
uniform rectilinear distribution of mass along the z axis.
From (25) we see that if the particle is moving initially
in the plane z=constant, it must remain in this plane ;
i.e., we have always

dz oxe
E = 0. R . . . . (25)
From (24) we have
r’d~—¢ =h (24h
7 s e e e

where 1 is a constant of integration. This equation simply
states that a radius vector sweeps out equal areas in equal
times. From (26) we get

de _ ()

ge = s oo (26
where ¢ is a constant of integration.
Substituting these values of Z-: and :iii from (25') and

(26') in (23}, we write (23) and (24) in the form:

dr _ (5%5) d_¢)2= {—2m G-
ds r 1

ds? —om "

4m? dr\?
T r(1=2m) %) _}’ @7

rziii=h. e e e (28)
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The Newtonian equations of motion for the type of field
we are dealing with are :

d*r , <ll¢ )2 — _5{{’?‘ . (271)

der” \de T

?‘2(g¢=2§. e e (28Y

Comparing these with (27) and (28) we notice they are
identical for a sufficiently small m. Since we are using
gravitational units, m is, for any solid cylinder of laboratory
dimensions, negligible compared wilh unity and we see
that (27) takes the form

d¥r  rddN? 2m ,
() == (29)
But for small m, (26') gives
at
ds = -
dt

and substituting = for ¢ in (29) we obtain the Newtonian

ds
equation (27/). When m, however, is very great the
equations of motion are more complicated. 1t is instructive
to put equation (27) in the approximate form obtained
by neglecting small quantities of the second order. -On
eliminating ds by means of equation (26') we obtain

d2r ) @)2__ 2m

sz —7 dt - Pl —4m?
neglecting quantities of the order of m® and assuming

. . Ir
the radial velocity component fl—t? to be small or zero.

To this order of approximation iherefore, and with the
assumption just mentioned, we may take —3gu fo be
the gravitational potential of the field we have Leen
investigating, since

% (—4g)=~1} a% (714%>

gives for the intensity of the field the expression obtained

above.

Northampton Institute, E.C. 1.
20th July, 1920.



