
Xfmtts in 'eomctvfc ifotms 567

ruler and compass the length of the circumference is also the limit
of an infinite series of operations and therefore unattainable. But
change the process by using the integraph, and what was before a
limit and just out of reach, becomes attainable and we get a line
equal to the circumference.

THE MATHEMATICAL HANDBOOK OF AHMES.
BY G. A. MILLER,

Stanford University^ California.
The Handbook of Ahmes was written about 1700 B. C.�more

than a thousand years before the beginning of the classic period of
Greek mathematics. It stands as an isolated peak in the history
of mathematics and practically marks the beginning of this his-
tory. It seems’to have been written as a compendium of useful
and curious mathematical facts for the learned Egyptian priests
living at about the time when the Israelites were slaves in their
country.

The book is replete with facts of the greatest interest, not only
to the students of mathematics, but also to those who are interested
in the history of the development of the human intellect. Even the
title of the book is naive. It is as follows: "Directions for obtain-
ing a knowledge of all dark things * * * of all secrets which are
involved in the objects." This title gives evidence of the ancient
belief in the power and comprehensiveness of mathematical know-
ledge, and is comparable with the much more recent saying of
Istdorus, bishop of Seville, who expressed his admiration of num-
ber in his encyclopedia in the following words : "Take away num-
ber from all things and everything goes to destruction."

The five parts of the Handbook of Ahmes are devoted respec-
tively to the following subjects: Arithmetic, stereometry, geom-
etry, calculation of pyramids, collection of practical examples.
The first part begins with a table in which the forty-eight fractions
having two for a numerator and the odd numbers from 5 to 99
as denominators are expressed as sums of different fractions hav-
ing unity for their common numerator. The table i j ^^^^^^^^^that we reproduce it here, omitting only the verific ’^^^^^^^^^^^^"were given with each fraction. 1^,;1;^^E=

This table is- of great historical importance. It ap / ; ( hat no
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general rule was followed in its construction, although such rules
could have easily be given. One such rule* is contained in the
classic work of Leonardo of Pisa, written in 1202, A. D. Probably
the table is a collection of results obtained by many different
scholars handed down from generation to generation.

The Egyptians had a special symbol for ^ but all the other
fractions employed by them had unity for their numerator.* Even
if they desired to employ only fractions with unity as a numerator,
this table cannot have been of much real value, for it is easier
to represent ^3- by^+-^ than by i+A+rh. The table is a good
example of the fact that cumbersome methods are frequently em-
ployed before the easier methods are discovered. The fact that
the Greeks employed such fractions along with the general frac-
tions gives evidence of the difficulty of replacing the useless by the
useful in the development of knowledge.

While this table bears definite evidence of the immaturity of
the Egyptian intellect it also bears evidence of great strides in in-
tellectual. devel6pment. The appreciation of such truths, which
require some continuity of thought to verify, shows that the
Egyptians at this early date were very far in advance of many
uncivilized nations at the present time. This fact will become
clearer when the other parts of this marvelous work are exhibited.

The second section of the arithmetical part consists of only six
closely related examples. They illustrate how the numbers 1, 3, 6,
7, 8, 9, respectively may be divided into ten equal parts. As is the
case with most of the examples throughout the book, Ahmes gives
only the answers and verifications. For instance, he says f-Q=^
+t+Tobecause 10 times l+^+^o^Q. I11 order to multiply these
fractions by 10 he always doubles them, then doubles these
results and thus obtains their four-fold. He finally doubles these
results and thus obtains their eight-fold. To multiply by 10 he
simply adds the double to the eight-fold. That is, he employs the
principle that any natural number is the sum of different powers
of 2.

There is no evidence that any multiplication table was in use
among the Egyptians. On the contrary, the examples that have

* Cf. Harzer, Jahresberich der Deutschen Mathematiker-Vereinigung, vol. 14
(1905), p. 815.

* In his History of Mathematics, Ball says that the Egyptians used also the
fraction % ; 3d edition, p. 4. T lis-statement is incorrect.
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come down to us indicate that multiplication was accomplished
by successive addition. The earliest evidence of a multiplication
table is found in the work of Nicomachus who lived about 100
A. D., and wrote the first classic arithmetic. Even this table may
have served another purpose.

As in the preceding" section so we find in this section evidences
of immaturity of thought along side with the display of judgment.
An instance of the latter is furnished by the omission of the num-
bers 2, 4, and 5. Ahmes seems to have realized that -^o and^- and
respectively equal to -|- and %, and hence the division of 2 and 5
into 10 equal parts need not be considered. Moreover, -^^ -§-
and hence it is not necessary to divide 4 into 10 equal parts as |

has been resolved into unit-fractions in the preceding table. An
instance of immaturity is furnished by the fact that 1 is divided
into ten equal parts, and the result -iV^-A ls proved by showing
that the double of ^ is ^ and the eight-fold of -i^o is i+A+A
From the fact that i+i+~ll-o+-glo-=I it therefore follows that
A-^-iV

The third section of the arithmetical part consists of eighteen
examples. Fifteen of these give the fractions obtained by adding
to a given fraction its one-half and its one-fourth, or its two-third
and one-third. In the latter case the fractions are simply doubled
by the operation, but Ahmes goes through the details in each of
the six examples where a fraction is increased by its ^ and ^.
His methods appear very cumbersome. For instance, when he in-
creases jy by its 2^ and its ^,he observes that 2^ of ^==^-and
y^ of ^^y^. Instead of adding ^+i-+-ll2 he reduces them to
the common denominator 18 and notes that % =^^ ^.=^ ^d

-^=^-. Hence, the result [sf^^
In the last three examples of this section it -is required to find

the difference between a given fraction and unity, or between a
given fraction and %. The first one of these reads as follows:
"You are told to complete ^^-^-i-to I." This is done by observ-
ing that |-=H-, and hence the required fraction is y^. To reduce
this to Egyptian fractions Ahmes determines the number which
must be multiplied into 15 to give 4. He first multiplies 15 by ^and thus obtains 1. He then multiplies by ^o- and obtains 1^,.
Finally he multiplies by ^ and obtains 3. By adding the first and
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last result together he obtains the required number 4. Hence ^+^g- must be added to |-+i1^ to obtain I.

Section IV. is the most interesting part of the whole book. It
is devoted to elementary algebra. Some of the problems are sim-
ilar to those met in our present text-books on algebra, except that
the unknown is called "he^p/7 instead of x. The following ex-
amples exhibit the nature of these problems: "Heap, its seventh.,
its whole, it makes 19." "Heap, its -|, its ^, its ^, its whole, it
makes 33." It is a significant fact that the oldest mathematical
work extant should include elementary algebra. The equations
to which the problems give rise are all of the first degree. The
Egyptians could not solve the quadratic equation as they did not
even know how to extract the square root.

The fifth and last section of the arithmetical part is devoted to
the division into unequal parts. The first examples state that
100 loaves are divided among 10 people. Four of these receive 50
loaves while the remaining six receive also 50 loaves. It is required
to find the difference between the amount received by each of the
four and each of the six. The second example requires to find
five terms of an arithmetical progression such that the sum of the
terms is 100 and that ^ of the sum of the first three terms is equal
to the sum of the last two terms.

The last problem is solved by assuming that the common dif-
ference is 5^2 and that the last term is 1. The terms obtained in
this way are 23, 17^, 12, 6%, 1. As their sum is 60 instead of
100, Ahmes increases each of these terms by |- of their value and
thus obtains the values of five numbers in arithmetical progres-
sion which satisfy the conditions of the problem. This completes
the arithmetical part of the work under consideration. As this is
by far the most important part of the book we proceed to give a
brief summary of its contents.

In addition to the table of unit fractions, it is composed of 40
problems, while the remaining four parts together are composed of
44 -problems. The most advanced of these problems relate to
linear equations and to arithmetical progression. The main dif-
ference between the method of operation pursued by Ahmes and
those of the present day is due to the fact that the only fractions
which were allowed to appear’in the results were ^ and those
having unity as a numerator, while the denominator was frequent-
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ly more than 1000. This restriction seems to us very unfortunate.
While it is no more arbitrary than some of those under which we
labor at the present day (e. g. the restriction to the rule and the
circle in plane geometry constructions), yet it seems to have been
more detrimental to progress. It had the advantage that fractions
could be multiplied by merely multiplying the denominators.
Hence the multiplication of fractions was just as simple as the
multiplication of integers.

The second and third parts of the Handbook of Ahmes deal
respectively with stereometry and plane geometry. We would
naturally have expected that these two subjects would have been
treated in the reverse order, as the plane figures are involved in
the mensuration of solids. It is possible that the arrangement
was made according to what appeared the relative importance of
the subjects and we are reminded of the fact that spherical trigo-
nometry was developed earlier than the plane trigonometry.

The part on stereometry begins with the following example:
"Directions to calculate a round granary, whose diameter is 9 and
height 10." The problem is solved by reducing the diameter by its

^ and then squaring the remainder for the area of the circle.
This result is multiplied by -| of the height to obtain the volume.
Several interesting facts appear in this operation. In the first place,
the Egyptians regarded the circle equal to a square whose side is
|- of the diameter of the circle. This is equivalent to considering
TT ===3.1604 . . . It is interesting to note in this connection
that the Japanese used to consider 7r=3.16.

The fact that the area of the circular base is multiplied by -j
of the height instead of by the height presents greater difficulties,
which have not been definitely solved. It may be that granaries
had sloping sides and that the given base is the smaller of the two
bases. In the examples in which the base is a square the area
of the base is also multiplied by -| of ihe height. All the examples
dealing with the mensuration of solids relate to the determination
of the contents of granaries whose dimensions are given or to the
determination of the dimensions when the contents are given. In
the latter it is assumed that the base is a square whose side is 10
units.

In the part on plane geometry there is one example in which
the area of a circular field is computed. This is again done by
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finding the area of a square whose side is | of the diameter of
the field. The following example, at first sight, seems to fix a
remarkable low limit to the geometrical attainments of the Egyp-
tians. It is definite proof that Ahmes did not know how to find
the area of an isosceles triangle. The problem is to find the area
of an isosceles triangle whose base is 4 and whose side is 10.
Ahmes simply multiplies half of the base into the side, giving 20
as the area.

In order to find the exact area from the given data it would be
necessary to find the value of }/W^=~^=}/^6’ It was noted above
that the Egyptians did not know how to extract the square root
and hence this operation was impossible for them. Moreover, the
error which Ahmes commits is not very great since his result is

only about 2 per cent. too large, an error which in his day may
have passed unnoticed. A similar error is made in the next prob-
lem where it is required to find the area of an isosceles trapezoid.
Ahmes multiplies half the sum of the parallel sides by the other
side, instead of by the altitude.

The part devoted to the calculation o"f pyramids has presented
great difficulties. It deals with the quotient obtained by dividing
one-half of a certain line in the pyramid by another line. This
quotient is called Seqt, and seems to be the cosine of the angle
between an edge o fthe pyramid and the diagonal of the base
Hence this part is sometimes regarded as a chapter in trigonom-
etry but the data are so meagre as to convey very little definite
information. The first -of these examples reads as follows:
"Directions to calculate a pyramid 360 yards at the base, 250 at the
edge, let me know their ratio." It is solved in the following man-
ner: Take ^ of 360, this gives 180; multiply 250 to find 180, this
gives %+^-+To"°f a yard. Sines a yard is 7 hand-breadths we
have to multipliy 7 by %+-1^4-slo-� Hence the Seqt is 5^
hand’breadths.

The last part consists of a collection of twenty-three practical
examples which relate to the division of loaves, wages of a herds-
man, paying laborers, the feed of oxen, etc. From the type of
these examples it is inferred that Ahmes had the wants of the
farmer especially in mind in writing his book. Two of the ex-

amples Nos. 80 and 81, are devoted to the change from one system
of measures to another�a type of problems found in our modern
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arithmetics. One of them seems to involve a knowledge of the
formula for the sum of a geometrical progression.

While the Handbook of Ahmes raises many questions which
cannot be definitely answered at the present time it gives conclu-
sive ptroof of the following facts: As early as 1700 B. C., (and
probably much earlier as Ahmes claimed to have modeled his book
on an old work) -the Egyptians had a fairly advanced knowledge of

fractions, the linear equation, the arithmetic series, and probably
the geometric series. They employed a formula for the area of
the circle which gives a comparatively close approximation. They
had made a beginning in the study of similar figures but their
formula for the area of a triangle was a crude approximation.

A QUESTION.

I venture to draw your attention to "A Geometrical Fallacy" on p.
369 SCHOOL SCIENCE AND MATHEMATICS for May, 1905. It seems
to me the writer of the note in question has entirely misunderstood the
terms "mutually equilateral" and "mutually equiangular." If, as is
clearly intended in the proposition as originally stated, the n-gons are
mutually equilateral and mutually equiangular, equal angles lying be-
tween equal sides in each, and read in the same order, i. e., right to left
or reverse in both, then the proposition is evidently true. Further, the
writer assumes two n-gons congruent to begin (line 8) and concludes by
asserting that they are not in general congruent. Can you explain?

W, "D. PATTERSON.

THE REPLY.

If, as the writer states, two polygons are mutually equilateral, mu-
tually equiangular, and the equal angles lie ’between equal sides in eacli,
then the polygons are congruent.

The third condition is obviously necessary, but it seems to have al-

ways been overlooked, or, at least, as in the comments of Mr. Patterson,
it is assumed to be a logical consequence of the first two conditions.

That this is not true is shown in the note referred to; for though it

begins with two polygons which are congruent, and which therefore
satisfy the three conditions, each is afterwards altered so that the

first two are satisfied and the third is not, and they no longer are con-
gruent. G. W. GEEENWOOD.


