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.On Sphero-Oyclides. By Hrney M. Jerrery, F.R.8.
[Read Nov, 18th, 1884.)

1. These spherical quartics are the lines of intersection of spheres
both with cyclides and quadrics. M. Laguerre, who first pointed out
their genesis (¢nfra, §4), designated them Anallagmatic Spherical
Curves, because they are unaltered, when inverted from any of its
four poles of inversion. (Chasles, “Rapport sur les progrés de la
Géometrie,” p. 315.) Underthe name of sphero-quartics, their pro-
perties haye been studied by Dr. Casey (““Cyclides and Sphero-
Quartics,” Phil. Trans., 1871, pp. 585—721). But, since they are
only a species of spherical binodal quartics, and do not include all
the intersections of quartio surfaces with spheres, their name is here
altered. They might be also called spherical quadro-quadrics or
sphero-quadrics (§6).

2. Sphero-cyclides, being binodal, are curves of the eighth olass,
.and have two double, and four single, foci: the former are the two
single fooi of the dirigent or focal sphero-conics, from which they are
generated. If the two double foci coincide in a quadruple focus, the
cyclide is known as a Sphero-Cartesian (Casey, p. 677). These curves
may have an additional node or cusp, whereby the class is reduced to
the sixth or fifth respectively.

8. Sphero-cyclides have two double cyclic arcs, which are the single
oyclic arcs of the complementary or polar conics, of which cyclic arcs
- the single foci of the focal conics or the double foci of the'sphero-
cyclides are the spherical centres or quadrantal poles. Sphero-
Cartesians have each a quadruple cyclic arc, whose spherical centre
is the quadruple focus, or centre of the dirigent circle, from which it
is generated. This conjugate property of double arcs and double
cyclic arcs is common -to all spherical curves (Quarterly Math. Journal,
Vol. xv,, p. 140).

4. A sphero-cyclide may be generated in four different ways, as
the envelope of a variable small circle, whose centre moves on a
dirigent or focal sphero-conic (¥), and which cuts a fixed small circle
(J) orthogonally. (Laguerre, Bulletin de la Société Philomathique, 1867 ;
Casey, §41, Cor.)

These dirigent conics (F') are doubly confocal ; and the fixed circles
(J) are mutually orthotomic, and all the eight figures are inter-
dependent. The centres of the four (J) circles are the vertices of the
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quadrangle, in which any J and F pair intersect, and, taken three and
three together, are the angular points of triangles, which are self-
conjugate with respect both to the (F') conics and (J) circles. Each
triad of centres lLas the fourth for the orthocentre of the triangle
constituted by them ; and each of these four triangles is self-conjugate
in respect to one of the four circles and its corresponding focal conic.

The confocal conics are thus also interdependent. The twelve points
in which the sides of the quadrilateral circumscribed about any pair
J and F intersect, lie by tetrads on the three remaining (F) focal
conics.

The line of nodes in the sphero-cyclide is the polar of the centre of
any (J) circle with respect to the corresponding (F) focal conic.

5. The three anallagmatic congeners, the cyclide, the sphero-cyclide,
and- the bicircular quartic, constitute a geometrical trilogy, as
exhibited by Professor Casey in his two classical memoirs.

Dr. Hart has shown analytically how the bicircular is generated
from each of the four (¥') conics (Proceedings, Vol. XL, pp. 143—151),
and has promised this Society the corresponding memoir on the Five
Focal Quadrics of a Cyclide (Vol. xir., p. 109), the MS. of which he
has allowed me to see and copy. It is hoped he will shortly pub-
lish it. :

Following his steps, I have investigated by spherical coordinates
the generation of the sphero-cyclide from each of its four focal sphero.
conics, and thereby hope to complete the series of the trilogy.

The singular forms of the curve will be considered, and a method
given for finding its points of undulation, and therefrom its points of
inflexion generally.

6. The equation to the sphero-cyclide is derived from those to the
cyclide and quadric, by transformation of coordinates.

Let OAB be an octant of a sphere, whose centre is any origin of
coordinates for the cyclide, and whose radius is unity.

Take O for the origin of spherical coordinates
in Gudermann’s system.

BP=06, AM=¢: OM =X, ON=Y, OP=R.
Cartesian coordinates are thus transformed: to

B

spherical : ‘N
@ = sin O cos ¢ = tan X cos B, -'
y=sinfsing = cos R, 0 M
z =cos 0 = tan Y cos R. Fe. 1.

(tan X, tan Y are usually written X, ¥, for brevity).
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The equation to the cyclide in Cartesian coordinates is
o (@+y'+2)"+b (@ +y'+2) (mt ) +o v+, = 0,

where v,; v, %,; v, %, denote qua.dric and linear.functions of =, y, 2,
and constants.

Let the same symbols .v; ... denote the same functions of
tan X, 1, tan Y.

a sec’ B+b sec B (u;+u,sec R) +v;+vi sec R+v; sec* B =0.

After dropping the accents, we obtain the transformed equation to
the sphero-cyclide
 {(a+bug+vy)sec’ R+ vy} = sec’ R (bu, +v,)"

The curve is binodal, and is touched by the imaginary great circle
(sec* R = 1+tan® X+tan’Y = 0) in - four points sec* B =0, with"
v,=0; it bhas for two nodes the two points bu,+v, = 0, with
(a+buy+v,) sec® R+v, = 0.

The equation to the quadric is derived from that to the cyclide,
when ¢ = 0, b = 0; for the corresponding sphero-cyclide,

{vo(1+ X+ Y) +,}' = (1 + X+ Y*) o},

If vy, =0, or the quadric is referred to its centre as origin, tho
sphero-cychde becomes two coincident sphero-conics.

- Oor—If v, = ¢ (2" +2%) + dy’, or the cyclide has the imaginary circle
at infinity as a cuspidal edge, it is called by Dr. Casey & Sphero-
Cartesian. Its equation in spherical coordinates becomes

{(@+ )1+ X+ YY) +d—c}=1v, 1+ X+ ).

It is thus recognised to be the intersection of a sphere and a
quadrio of revolution (Casey, §235).
. The following theorems are preliminary; and it is necessmy
to premise that, in two-point coordinates, », y denote tan 2,
tany, and in the three-point system a, 8, y; p, ¢, v denote the
sines of those arcs ; a, b, ¢ also represent the sines of the arcs of the
triangle of reference :—

7. Two spherical small circles are mutually orthotomic, if
cos p, cosp; = cos D ; where the symbols denote their spherical radii
and the mutual distance of their centres. For in that case the centres
and either point of intersection constitute & right angle.

8. To find the condition that two small circles intersect ortho-
gonally, TFirst, let their equations in three-point coordinates be

datetfy=g, latmBt+ny=
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Then cosp,v/Z(d'—2¢fcos ) = g; cosp, v/ (P—2mncos 4) =
cos D/3(d*—2¢f cos 4). /3 (I'—2mn cos 4)
=d (l—mcos O~ncos B)+...

The required condition is

gh = dl+em+fn—(en+ fm) cos A— (fl+dn) cos B— (dm+el) cos O.
Next, let their equations in two-point (Gudermann’s) céordinates be

l4as+dy=g9/(Q+2°+y"), l+ez+dy =h/(1+2°+y%).
For mutual orthotomy, it is necessary that
14+ac+bd = gh.

9. IfABCbe a sphericall triangle, and O its orthocentre, then the
four small circles which have 4, B, 0, O for their centres are mutu-
ally orthotomic, if

cos acos &, = cos b cos &, = cos ¢ cos &; = 4/ (cos @ cos b cos¢),
cos 8, v/= (tan® 442 tan B tan C cos a)
= tan 4 tan Btan 0 +/(cos a cos b cos c).

The radii are denoted by 4, 8,, &, 4.
The propositions in the first line are evident from § 7.

In like mb,nner,
cos a cos 8, == cos BO cos & = cos CO cos &; = +/(cos a cos BO cos CO).

The proposition in the second line is established by knowing the dis-
tance (8) between two points from the formula

sin®b 8in’ ¢ 8in’4 co8 8 = X3, (aaq, sin’a) + 3 [8ind sin ¢ cos @ (By, + B, 7))

At the orthocentre
acos 4 = fcos B = ycos 0.

Hence cos 404/3 (tan*A+ 2 tan B tan O cos a)
= tan A+ tan B cos ¢+ tan 0 cos b = tan 4 tan B tan C cos b cos ¢.
By symmetry,
cosacos AQ =cos b cosBO = cos ¢ cos 0O.
Hence cos d, = sec 6, cos A0 = sec &;cos BO = sec 5, cos €O,
and the circles are mutually orthotomic, Since
S (tan’4d + 2 tan B tan C cos a) = p?tan' 4 tan® B tan' 0,
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where u® =2 cosa cos bcosc—1+(6V)*cosec® 4 cosec® B cosec® 0,
' pcos AO = cos b cos ¢,
and pcos &, = /(cos a cos b cos c)..

The analogue to this theorem for Plane Geometry is given by Dr.
Casey (Sequel to Euclid, p. 108).

Note.—By 6V will be hereivafter denoted six times the volume of
a certain tetrahedron constituted by three radii of the sphere, and the
conueotors of their extremities, 80 that the fundamental relation is

6V = besin 4 = v/ = (a’a’+2bc By cos a).
10. To find the disoriminant of the binary quartic
(2 +2g2y+ 1) = (o + 22y +vy?) (s0+ ty)".
Let 4, B be invariants oi single quadrics
A =fh—g¢g,, B=uw—w?
0, D, E are invariants of systems of two qﬁadrics
0 =sv=2%tw'+t'u, D=4dh—~2lg+tY,
E = uh—2wg +1f,

also F = u (sh—1ig)'—2w’ (sh—1tg)(sg—tf) +v (s9—¢f)' = DE—~40.

The function F occurs in investigating I, by symbolical methods,

d’ , d’ i _‘1_ i i 3 3
('u Ey— -2 —— s vd:e’) (a dy tdz) (fx +2gmy+hy)
= |4 (F+340).

If I, I, denote the quartic and sextic invariants of the given quartic,
they can be expressed in terms of the subordinate invariants :

- 8I,=4(4+30)'-3DE,
271, = 8 (4+10)"—9DE (4 +40) + %1 BD',
(I19—27 (I)* = B*[(4+10)'~ DE]—4B (4 +}0)*+$BDE (4+10)
—HBD.

_This factorial form will be employed to prove that sphero-cyclides
have two double and four single fooi.
YOL. XVI.—N0. 240. 1
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11. To transform from a sphero-conic to a sbhero-cyclide.

I. If O be any origin of coordinates, p the perpendicular arc drawn
from it on any tangent arc of the conic, its equation in two-line
coordinates is

(v cos® 8+ 2w’ cos 0 sin 0+ v sin? 8) cot? p
+2 (u"8in 0+ v’ cos 0) cot p+w = 0.

Let r denote a corresponding arc of the sphero-cyclide, and & a
constant. The formule of quadric transformation may take either of
the forms (Casey, § 24),

= - = tanr
cosp = cos (p—r) co8d, cotp= 0750081 vevaneene(1).
The transformed equation denotes the sphero-cyclide in two-point
coordinates,

uz® + 2uw'zy +vy'+ 2 (w'y +9's) (sec 7 sec §—1) 4w (sec r sec 6 —1)%,
(sec’r = 14+tan’» = 1+ +47%).
Formule of inversion are derived from (1),

gec & = cos 7+sin 7 tan p.

Denote by 7, r, the vector arcs of two conjugate points P,, P,,

cos 7, co8 ry = sec’ § cos® p—sin'p, cosr,+cos 7, = 2secd cos’p;

LY 4 secd—1 3 8 .

t&n 2 taan d gecs-]-l taln 2 n"ooloo--lllllolo(z)’

O is therefore a centre of inversxon, such that the curve and its equa-
tion are unaltered, when cot? tan? i is substituted for tan?

The centre of inversion O and the ra.dms d are arbitrary; but, when
they are once fizxed, the other centres 4, B, 0, and the other constants
d,, 3,, 8, are mutually related by the coorthotomic conditions of § 9.

The two conjugate points P,, P, are the points of intersection in
two consecutive positions of the generating circle, which cuts
orthogonally the four fixed (J) circles, whose centres are 4, B, 0, O.

II. Dr. Casey has also assigned a remarkably elegant mode of
transformation for three-point coordinates. (Casey, § 40.)

If U, V, W denote in three-point coordinates the fixed coorthotomic
circles J,, Jy, J, and if the dirigent focal sphero-conic (F) be defined
by the tangential equation

(a,b,¢f g, hlp' ‘0 ')' =0,
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then the sphero-cyplide, thence generated, has the identical form' of
equation ~  (a,b,6f,0, YT, V, WP=0.

The triangle of reference is constituted by the centres of the (J)
circles. It should be premised that, if the coordinates denote a point
not on & circle U,

’ U= cos AP—cosé,

This follows from the equation to a circle, whose centre is (I, m),
U= lz+my+1
T VE4+m +1) V(g +1)

It denotes the distance of that point from the plane of the small
circle.

To prove that p:gir:: U:V:W. Let F be & dirigent focal
conic, O the corresponding centre of in-
version ; so that, by §11 (L),

cos OT' = cos & cos PT = cos & cos P'T.
Let this be written
cos P =cos d cos (P—R) ...... (1).

Let A be the centre, and 8, the radius of
(J), one of the other three centres of in-
version ; AN = p: TO, AN, when produced, form an angle 0.

~cos é, = 0.

Fic. 2.

cos AQ = sin P sin p+cos P cos p cos 6,
- ¢os AP = sin p sin (P—R) +cos p cos (P —R) cos 6.
Eliminate 6 by the aid of (1),
cos A0 sec P—cos AP sec (P—R) = sin p sin B sec P sec (P—R).
~ Hence U = cos AP—co8, = cos 4 P—cos AOseo3, from orthotomy (§9),
= cos AP—cos AOcos (P—R) sec P
= —gin p sin B sec P,

V, W are like multiples of sing, sinr; so that, after dropping the
word sin, as stated in § 6, the formule for quadric transformation are

pigqir=U:V:W,

1. On the General Form of Sphero-Cyclides.

12. To determine the equa,tioms2 to the four fixed co-orthotomic
: I
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small circles J, J;, J;, J;, and the corresponding doubly confocal diri-
gent and focal sphero-conics (F), by means of which the sphero-
cyclide is generated in four different ways.

Let O, 4, B, 0, the orthocentres of the splierical triangles 4BO,
BO0CG, 004, AOB, be the ceatres of four fixed coorthctomic circles J,
JuJy Jy.  'T'he same centres, taken by triads, are the angular points of
triangles, which are self-conjugate with respect to the four (J) circles,
and to the four corresponding (F') dirigent sphero-conics.

Let ABO be first taken as the triangle of reference; then the equa-
tion in spherics to the circle (J), with respect to which it is self-
conjugate, is '

(J) a'cosd tana+ﬂ’cos Btanb+y*cos Otanc =0,
or, by the aid of the fundamental relation
(67)* = 3 ('’ +2l0 By cos a),
(/) atana+ptan bty ta\n.c = 6V /(sec a secb secc).

In like manner (J;), one of the other three circles, may be denoted
in four different forms of the same equation :

) a'cos 4 tan a4 co_s”B tan b4+y*cos O tanc
~2a cos 4 (atan a+tan b+ tan c)+a’cos' 4 tana tanb tanc =0,

(J;) atana+ptanbd+y tanc—6V v (seo a sec b secc)
+atana tanbtanccos 4 =0,

() aa+bdBcosc+cycosd = 6Vseca+ (cosacosbcose),
) a’ = sec a,/(cosa cos b cos c),

if ', @, ¥’ denote the coordinates of a point in (J;), with respect to
the polar triangle of ABO.

This last form determines independently the radius of the (J;)
circle given in § 9,

cos co8 &, = +/(cos & cos b cos ¢).

In like forms the equations to the two remaining circles J;, J; may
be written. From the forms of all four equations to these circles, it
i recognised that, of their twenty-four points of intersection, twelve
lie on the perpendiculars 04, OB, 00, BO, CA4, AB. These arcs are
therefore their radical axes; and O, 4, B, O are the radical centres of
the four triads of circles.

The equation to some one dirigent conic (F'), that corresponding to
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the (J) circle, is assumed to be
la'a® + mb'B' +nc’y’ = 0,
or, in three-line coordinates,
l m 0

The equutlons to the confocal conics W111 be expressed in terms of

(F)in § 15.
13. To find the equation to the sphero-cyclide, by conmdermg it as

the envelope of & circle, whose centre moves on the focal conic (F),

and which cats the circle (J) orthogonally.
Let (A, 4, ) be the centre of the variable circle; its equation is (§ 9)

(67)* cos r = a\ (aa +bp cos c+cy cos b) + ...,
or, if it be referred to the polar triangle of ABC,
6V cos 7 = ara’+bpfl +cvy'.
For the fixed (J) circle (§ 12),
atan a+Btan b+y tan ¢ = 6V v/ (seca sec b sec c).
From the condition of orthotomy (§ 8)
(1) Atana+p tan b+ v tan ¢ = 6V cos r +/(sec a sec b sec ¢)
= (a\d’ +buf’ +cvy’) v/ (sec a sec b seoc).
The centre moves on the dirigent (F),
“(2) W\ +mb'pl+nch =0,

The equation to the sphero-cyclide, as the envelope of (1), subject
to the condition (2), is

l%’ {aa’ v/ (secasec b secc)—tan a}?
+ me, {bB’ v/ (sec a sec b sec ) —tan b}*

+ ;}c-’ {cy’ v/ (secasech secc)—tanc)® = 0.
If wo revert to the primitive triangle of reference ABO, it is written

3 -—}— {aa+bﬁ cos ¢+ cy cos b—6V sec a+/(cos a cosb cos of=0
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14. If U, V, W denote, as in §11, the J;, Jy, J; circles, the equation
to the sphero-cyclide takes the form

) (]
m ”
If this form be compared with the tangentia.l equation of (F),
I m

a8 in § 11, 'p:q:fr"::U":V:W-A

The eqnation to the sphero-cyclide was anticipated from Dr. Casey’s
theorem. .

15. To express the three focal sphero-conics F), Fy, F} in terms of
their confocal F.

3
Being given FE.% + % + {:— =0,

if ABC be the triangle of reference, to determine the coefficients,
if OBO be the new triangle, in the assumed equation

FIEE"‘]""'I::O'
L m om

P denotes the perpendicular. from 0 (acos 4 = ficos B =1y cos 0)
on any tangent arc, so that .

P'3, (tan® 4+ 2 tan B tan C cos ¢) = (p tan 4+ ¢ tan B+~ tan 0)*
= tan 4 tan B tan O (p* tan 4 cosa+¢* tan B cos b++* tan O cos c)
—3 (p* sin® A—2gr cos 4 sin B sin O) sec A sec B sec .

Make this substitution, and denote by g, as in § 9, the ratio
S (tan' A + 2 tan B tan 0 cos a) = p* tan’ 4 tan® B tan! 0,

':'l1 - cot A cot B cot 0 (p* tan 4 cos a+¢* tan B cos b++* tan C cosc)
— 87 ot A cot Beob 04 L4 2.
Ly m o
Since F' and F, are doubly confocal conics, they must be identical, if

the constant term bo omitted. Write 6 for l— cot 4 cot B cot C, and
equate coefficients. W
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=}—0-ta.nAcpsa, 1 -_-‘-—q-ta.nBcosb+%l—;

Ut m

NIH

1 = tanOcosc+-1—.
n m,

-~

Substitute this value for 8 in F,,
15',51'4,4'_+i —gr-cotA_seoa,= 0.
l"m =n 1
F,, F, have similar forms.

16. The following identity connects the several (J) forms of §12:

-tan A cos a {aa+bB cos c+cy cos b—6Vseca+/(cos a cos b cosc) !
+tan B cos b {aa cosc+bB+cy cos a—6V seo b +/(cos a cos b cosc)}?
+tan O cos ¢ {aa cos b+ b8 cos a+cy—6V secc+/(cos a cos b cosc) }*

= cos® @ cos' b cos’ ¢ tan A tan B tan 0
X {a tan a+ B tan b+y tan c—6V v/ (sec a sec b sec ¢}’

The proof depends upon identities of the type
tan A+ tan B cosc+ tan O cos b = cos b cos ¢ tan 4 tan Btan C.

Hence it may be shown that the equation to the sphero-cyclide may
be obtained from any other pair of circles (J;) and dirigent conics
(). ‘ ,

When referred to tangential coordinates, OBCU being the triangle
considered,

Pl
h

By Prof. Casey’s theorem, cited in § 11, IL., the equation is deduced
to the sphero-cyclide

L. _
() +n.+m,—0°

2 J‘ Ji
L4tiga=0,
L + m o om
But, from this article,

-'; = tan A cos aJ:+tan B cos bJ,+tan O coscJy,

it

n'r—l

= cos’a cos® b cos’c tan A tan B tan C.

If this value of J* be substituted, and the result compared with the
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JI

former equation 1 + g3 +

it is seen that
1 _ ¢ ' 1 _ ¢t 1
T= lltanAcosa, po l‘tanBcosb+ oy

-!-=i‘tan0coac+-l.
L m,

L

These relations are those given in § 15.

17. If a spherical quadrilateral be circumscribed about & circle of
inversion and its corresponding dirigent conic, the other three con-
focal dirigent conics pass through the three quartets of opposite in-
tersections. (Casey on * Cyclides,” § 124.)

The tangential equations to such a (J) circle and (F) conic (§ 12)
are  (J) p'tan A cosa+g'tan Bcos b+ tan Ocosc =0,

4 P_’_ q'_.'-’_'.=
(F) e 0.

The triangle of reference is constituted by the three vertices of the
quadrangle of intersection, as before. Whence

3
iL: % : % :: m tan B cos b—ntan 0 cos ¢
: ntanOcosc —ltandcosa

+ ltan A cosea —mtan B cosbd.
The spherical quadrilateral, thus constituted, is defined by the linear
equations aap =+ bBg £ cyr = 0.

Two points of intersection, as well as their two antipodal points, lie
on the arc B0, which passes through two vertices of the quadrangle

of intersection, a=0, b0¢ =y
Since the line-equation to F; (by § 15) is

(F) S+ -+ Tt Toorg > ('’ —2begr c0s 4) = 0,
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thé transformed point-equation is

(F)
a*cos 4 (uv—cos® A)— b3 cosBoosOsmA(ntanOcoso—lcosatanA)

—%:cosBcosasmA (m tan B cos b—1 cos & tan 4)

+2a cos B (sin® A —sin? 0) + 2ay cos O (sin’ 4—sin’ B) = 0,

if (1—p) ¥*'m = (1—») ¢'n = 6Vl tan 4 cos a.

" When a=0 '

mb’8’ (n tan O cos o—1cos a tan A) = nc’y* (lcosatan A—mcos b tan B),
or b8 = Sy,

The atc BO therefore meets the conic (F,) in the preceding points.

Similarly, the other two conics (F,), (F;) may be shown to pass
through the other intersections of the quadrilateral.

18. Te find the equation to the sphero-cyclide in two-point coordi-
nates, the origin beiug the centre of a divigent focal conio,

The coordinates in Gudermann’s syslem represent tangents of arcs,
so that @, y; @, b .epresent

fen o, tany; tana, tand; sec’r = 1+2*+¢°
The equation to a (J) circle, whose centre is (f, g) is
() cosd/(1+/4+¢) /(A +2'+y") =1+fz+gy,
or 1+fz-}-gy=oosﬁsecRsecr'=tsecr,

where ¢ denotes the secant of the tangent arc drawn from the origin.
The equation to the generating circle, whose centre is (a, 8) is
1+az+By = Tsec .
The condltxon of orthotomy (§8) gives the relation
1+af+pBg = ¢T.
For the generating circle, when T is eliminated,
t (1 +az+Py) = (1 +af+£g) 86C 7uuereeieennnsnans (1),
For the dirighnt conic

) %+ OO ¢}
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The oircle (1) varies, subject to the condition (2) ; hence
(fsec r—1z) da+ (g secr—1ty) df =0,

The required equation to the sphero-cyclide is
(t—sect)! = a* (f sec r—t2)*+b* (g sec » —ty)*.

When rationalised,
{(a’f*+bg*—1) sec’ r + £ (a’* + by*—1) }* = 4F sec® r (a’fo +bigy—1)*
If this be combined with the imaginary great circle sec’r =0,
(@’F+by'—1)Y=0 or {(’=P)2’—(1+1)+V'(A+2*+y")} =0
The sphero-cyclide has two double cyclic arcs, which are the single
cyclic arcs of the polar or complementary conic of (F) the focal conic.
The line through the nodes is the polar of (f, g) with respect to this
polar conic (a’z’4b%* =1).

The formule of quadric transformation from the tangential equa-
tion of (F) (a,’E’ +b'* =1) are seen to be

Ein:l= feecr—ta: gsecr—ty: - —s8ec T,
where t = cosd V(1 +f2+4°).

19. If the four (F) conics are given, to determine the four corres-
ponding (J) circles.
The equation to the sphero-cyclide may take other three forms of
the above type,
(t,—sec 7)? = a; (f,se0 7—£,2)* + b; (g, 8ec r—Hy)*.
For the confocal conics,
1+a' _1+4a; _l4a;, _14ay_ 5. s
= = = =14v*; [y =tan(08)];
T e Len 1y 7 =m0
0, 8 being a common centre and focus of the confocal conics.
By equating coefficients in the identical forms, when developed,

T @PHYP-140%) = - @A +8G-1+ald)
-}(a 14 b — 14 0F) _—tl—(a,f’,+b:g:—1+b’,'t’:) (),

TEPH-1-0) =L (@f+bg-1-0)
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@f = a\f, = a3f; = a, fy = \ suppose,
Yg=big=Yg=bgn=p
The line throngh the nodes (a'fz+b'gy = 1) is fixed and seen to be

the pola.r of the centre of each (J ) circle with respect to the polar
conio of its corresponding (F') conic.

(a*+1) ¢ = (a}+1) t, = ... = v suppose,
E+)t=G+D)h=. =
(1) may be written
1N e Y LN 3
(GG -1) 4= : (a;,+b: 1) +alt,

v
149

This is simplified to the condition of orthotomy,

A if;?“ =th, or fhitgg+l=1tt.
By symmetr.y, fhitgg+l =it
By subtraction,

—L+£:b,—l or’ ﬁ:’-*-?b%i:l'
By symmefry, -,—)‘:—, + Z’_b&? 1
Hence Nyt = a’a,:a:a:, i_-l:Li— — b'b; b3 b;.
Since ,,+i"‘7+1—tt,—m,

¥ (1+7) = (@' +1) (g +1) (3, +1) (55 +1).
Thus the radii (&) and the centres (f, g) of the (J) circles have been
determined in terms of the axes of the (¥) sphero-conics.

Cor.—If the centres of the (J) circles are collinear, the foci of the
sphero cyclide are also collinear. In this case, three, and not four,
pairs of (F') focal comcs and (J) circles are necessary ; if g = h=g
=g, =0, N =a%ja}, v = (a’+1)(a’+1)(a +1).

20. To determme the two double and four single foci of the sphero-
cyclide, and its equivalent class-octavic.

Its equation is taken from § 19, when m is written for a’f*+b%g*—1,
{m @ +5"+1) +£ (4 By~ 1)} = 42 (2 +y"+1) (a¥fo+ bigy—1).
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The equivalent class-equation is found by combining it with an arbi-
trary tangent (2¢+yn—1); the resulting binary quartic must have
two equal roots, in which case (I)*—27 (1,)* =0, as in § 10,

The resulting binary quartic is

{[m+a't+ (m~) 8] 2°+2 (m—1") Enay+ [m+ 0¢ +(m—F) o] 4*}*
= 48 [(8+1) 2+ 22y + (2" +1) y*] [(af=¢) 3+ (Vg —n) y]".
Then the system of invariants, given in § 10, has the following values:
A = (m+0*8)(m+58) + (m—B) [(m+a') n'+ (m+b'8) &)
=8 (a'+1) (B*+1) + (' —mt) (a*s +b'n*—1)
+ [t +mf (a*+0*~1) +m*] (B+4'+1),
B=8+0"+1. _ '

In determining the foci, B and all other terms, which involve
(& +2*+1) 8- = factor, are neglected, since the foci are obtained by
the intersections of common taugents o the quartic and this imaginary
great circle.

o= (@ =ty + Fg—n)*+ (=gl

= (@ +¥%'+1) '+ 0"+ 1) = (@)fE + Vg 1)},
B = (m+ BE)(aYf — )+ (m+a8) (Bg —n)f + (m—¥) (@l —gh)’
= £ [(b'+1)(a'f =)' +(a’+1)(bYg—n)"] +\&' —m)(a'fe+ b'gn +1)}
=(8—m)(a¥* +b%'+1)(F+2'+1),
= (£8+1) [m+ U+ (m~2) *]—289* (n—~t%)
+ (1 +1) [m+a 4 (m—£) £)
=—£ (@@ +8'~-1)+[2m+ (o' +b'=1) 7] (F+4"+1).

If these values be -ubstituted in the -xpression for (I)*—27 (I,)* in
§ 10, the equivslent class octavic mey be obtained.

The foci are found by rejecting B, and therefore the last three
-terms. For the double foci,

CE'= ¢ (@B +bn—1)%
They are therefore the single foci of (¥) the focal conic, from which

‘the sphero-cyclide was generated.
The four single fooi are those of the class-quartic

(4+ %)’-—DE.

S
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Cor.—The two double foci unite in a quadruple focus, when ¢ =,
or (F') becomes a circle. This sphero-cyclide is called by Dr. Casey
a sphero-Cartesian.

21. The sphero-cyclide has in all 28 foci, real and imaginary.

Prof. Cayley remarks that this quartic has two nodes, and, besides,
touches the imaginary circle 8 (a*+y'+1=0) in four points. The
number of itsclass is thus 4.8 — 2. 2, or 8; and the number of com-
mon tangents to the quartic and the circle S would thus be 2.8 or
16; but among these are included the four lines touching along the
points of contact, each twice; the number of common tangents is
thus 16—2.4, or 8.

' These eight lines intersect in 28 (-— 8—7-) points, which are the fooi
of this quartic.

IL. On Sphero-cyclides with QOollinear Foct.

22, Their equations have been deduced in §19, Cor., from the
general form ; but they are here also investigated, when a focus of
the focal conic is the origin, and the constants determined in terms
of the directrices.

There are only three (F) focal sphero-conics,

(F) A@+y)—@—a)'=0, (F) p@+y)—(—b)'=0,
F) »@+§)—(s—0)* =0.
There aré three cqi'responding coorthotomic circles of inversion,
(J)) 1+fz=pysecr, (J;) 14+gz=pysecr, (J;) 1+hz=psec7.
Let the generating circle to1 the frst pair be
1+az+fy =7 (1+a'+y)! = ysecr
The condition of orthotomy (§ 8) is
‘ l14+af =p,7.
The envelope is required of tlie variable circle
pi (1+ao+By) = (1+af) secr,
subject to the dirigent condition, that its centre moves on the conic,
MA@+ —(a=a) =0 ..vvirirnnrinnnnn (B).
The equation to the envclope is found, as in § 19, to be
{(1+af) secr—p, (1 +a2) }' +a’%]y* = A (secr—p,)".
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But, since the dirigent conics are doubly confocal, §, H being the
common foci,

..1_ - 3 =-}— - ? '—-1— - N=d=—
5 =140 = (=1 48) = 5 (= 146) = d = — oot ST,

The preceding equation to the sphero-cyclide may be written

{a (o] +f*+1) +2f—2d} sec’ » .
+2p, {2d—(1+af) 2—f~a} sec r+2p} (3—d) = 0.

The quadrantal polars of the origin (1 =0), and of the other common
focus (z = d), are double cyclic arcs of the sphero-cyclide.

.The line of nodes [(1+af) 2+f+a = 2d] is the polar of the centre
of (J) with respect to the polar conic of (F),

(az+1)+a? (1-—) Y=

23. Two other forms may be written, in which p,, g, b; ps, }, ¢ take
the place of p,, f, a. It is proposed to obtain thereby another form
of the quartic, in which the coefficients shall be functions of a, b, c,
the tangents of the distances of the directrices from that common
focus, which is the origin of coordinates.

Equate the coefficients in the preceding and the identical quartic
[(1+bg)*+b%)—p] sec’ r—2p; [(bg +1) + (bg +1) bz—p] sec 7
- +2bp} (v—2d) =0,
_af+l _bg+l - af+l—\_bg+l—p_ H
= , = =

VE  p Ps ap, bps VK’
i+ (af +1)'=) _ B+ (bg+1)'—p
ap} . be}

The symbols H, K are introduced for snBsequent use.
These relations may be combined, 8o as to express p} m terms of f:
(a,-b)(a.f+ 1)+b)\
Ps au

Pa=b)— 222 fr1y- 2 1 g L(@=D)(@f+1)+PAT =

After reduction,
pp}+f* (ab—1—2ad)—2f (a=b) +ab—1-2bd = 0 ,.....(1).
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‘By symmetry,
vl +f° (ac—1—2ad) —2f (a—0) +ac~1—2cd = 0.........(2).

“The symbols A, g, » are retained, for convenience, as known functions
of a, b, ¢, and d. '

Subtract (2) from (1), and reject the factor (b—0).
(af+1)'=A—ap} (b+c—2d) =0,
or (af+1)'+ %} —A = ap} (a+b+0—24d).
Multiply (1) byc, and (2) by b; subtract, and reject the factor (b—c).
A+bo) g = (L+af’+¥%
By eliminating p}, there results a quadratic, which indicates two (J;)
circles, P [—abe—a+b4c+2d (ab+ac—1)—4ad’]
49 (—bo+ab+ac—1—20d) — abo—a+b+c+2bed = 0.
For brevity, write this quadratic
Af*+2Bf+0 =0.
The following relations connect the coeflicients :
2Bd = A—0, B'—AQ = .
Whence ' Af+B =V (\py),
A (af +1) = A—aB+av/ () = A (b+c—2d) +a v/ (Auv),

%(1-1)-3 = %—(b+c—2d—A) = A\ (b—24) (c—2d)
=r+ N1~ -
=A+ be A—=p) (1=»).
We have the proportion above stated
1(,. A 1
—\1-—=)=~(1-L _)=~H
3 ( af+l) b (1 bg+1) =
Substitute the preceding value of af+1, and a similar value of bg+1,

H=[3 (=) A=) +A+ VOw) | [\ (o= 20) +64/(win)]

= [£ a=») QN+t VO] 8 (c+a=20) +5 /O]
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Dividendo, = {1:"

[3a-n-L£a-n]+r—4}

x { (=0 /O + 2= 6=0)= A -0 }
= {~(a-2d) (b—2d) (c—2d)—a—b—c+4d}
{ V) =1+ 2 (a—23)(b—2d)(c—2d) — “_’”} :

which is & symmetrical function.

By the aid of this proportion, the coefficients may be expressed.
From the former proportions,

1 ’=—1 bg+1)?
P: (af+1) p: (bg+1),
(af +1)'—\ = ap! (b+0—2d), end % (1- E’i‘l) =H
Hence K =p}(af+1)"’= —1— (b+0—2d)"'[1—\ (af +1)"7]
-;- (b+c—2d)"} [1- L eE=-1) ]
by symmetry,
=1 (c+a—20)" [1- % oE-1],

dividendo,

—] .b_,_.i’ ’_ l—.g_ .l.—-.]; ( =})~! -— -1
—[(,. .J\)H 2('4 )\)H+p A]‘“ b) (c—2d)
= )‘lp (c—2d)' [ —(2abd +a+b) H'+2 (ab+1) H42d—a—b),

by symmetry,
= ;1; (a—2d)= [—(2bod+b+06) H3+2 (bo+1) H+2d—b—0c),

dividendo,

=2=¢ [ (2bd+1) H'+26H—-1] [A (c~2d)—» (a—2d)]**

= 7 [(2bd+1) H'2bH+1) [l + = (1=n) (1--»)] !
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by symmetry,

=1 [(2cd+ 1) H'—2H+1]) [1 + = (1-0 @ —p)]
dividendo,
= (— | P 1n_ - - -
= (—24H*+2H) {7 (1-1) [1+ = (1-p( y):] +b+o 2d}

= 8H (=dB+1) { - (1-NA-p(A-N+ T Q=N+ 3 A=p)
+1 a-v+ea} o

The equation to the sphero-cyclide may therefore be thus expressed
symmetrically in terms of the tangents of the distances of the
directrices of the focal conics:

-;—(a+b+c-2d)sec’o——-(as+H)secr+a, -~d=0.

Cor. 1.—If u+b+c = 2d, the satellite-conic degenerates into the
cyclic arcs.

Cor. 2.—If K =0, the sphero-cyclide degenerates into the line of
nodes twice repeated, and the imaginary great circle.

Cok. 3.—If K = oo, or (a—2d) (b—2d) (c—2d)+a+b+c—4d, the
sphero-cyclide degenerates into two coincident conics, but retains the
same cyclic arcs.

III. On Sphero-Cartesians.
24, To generate a Sphero-Cartesian by Laguerre’s method.

There are three concentric dirigent circles,

D+ =a) e (B), P+yP=d;..... (F), @+ =a5...... (Fy).
And to these there correspond three co-orthotomic circles of inversion,
14+fie =t se0r...... ) 14 fiz = {8807 ....00 (CAN

1+fye = tysecr ... (Jy),

where f,, f;, f» denote the coordinates of their centres, and ¢, ¢, ¢ the
secants of the touching arcs drawn from the origin.
The equation to the cyclide is found, as in § 18, or deduced from it,
as the envelope of a variable circlo, which cuts the (J) circles
VOL. XVI.—NO. 241. K
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orthogonally,

(f:-H:— %) secr+2¢, (f,mf %) gec r—1) (1+ ;1:.) =0.

Similar form;; involve the constants f;, aj, ¢;; fy, @y, 5.
By equating the coefficients of like terms in the equivalent forms,
h9 = fioy = f, = toyy,
h(@+D) =t (4+1) =4 (g+1) =/{(@+1) (@+1) (6+ D},
(@+D{(f1+4) =1} = (G + 1) {(f1+4) a1}
= (a+ 1) {(fi+8) ag—1}
= 2a)0,0,+ 030 +a}0+ ajoy - 1.
The sphero-Cartesian can now be expressed in terms of the radii of
the (F') dirigent circles
(20030, + 030, + a}0} + 030y ~ 1) sec®r— (a3 +1) (a3 +1) (a3 +1)
+2v/{(a}+1) (5} +1) (6} +1)} (%a,3,2—1) seor.
'25. To express the radii of the (J) circles of inversion in terms of
those of the (F) dirigent circles. (Casey on * Cyclides,” § 244.)
Let é,, §,, 3, denote the radii of the (J) circles :

oot 8, = 1L = (14 53) @+ 1) (@41 @+
A a,

tan’d, = — a —q, u
a: l +a, ‘1 -l-a,

This may be also expressed in terms of the distances Pur p,, ps of the
centres of the (J) circles

3 —ﬁ___il_ .ll_fl.— n (p,—
tan’s, L5 147, tan (p, - p,) tan (p,—py).

IV. On the Singularities of Sphero-cyclides.

26. There is in all cases a pair of nodes, which may be real cranodes,
or imaginary modes; mot acnodes. Thus sphero-cyclides are dis-
criminated from other spherical binodal quartics.

When certain mutual relations exist between the parameters, which
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enter into their equations, there may be another node, crunode, or
acnode, which unite in a cusp.

Moreover, the two nodes in the line of nodes may unite in a tac-
node ; and the two nodes (which are imaginary) may coalesce with a
third (acnode) to form a triple point, of Salmon’s special form 5°
(Htgher Plane Curves, § 243.) See below, § 80.

Lastly, these two singularities, the tacnode and the triple point,
may (in a special case) coalesce, and form a compound singularity,
called a tacnode-cusp, of Salmon’s special form 4°.

27. To determine the mutual relation which subsists between the
parameters in the equation to a family of sphero-oyclides, which have
the same line of nodes and the same double cyclic arcs, when the
sphero-cyclides are trinodal.

This relation will be drawn as a first discriminating curve (D,).

e ———
.

[N R W
N

/ Q:\':
—" N

Let this equation take the form
¢ =x (14 dv)— (1 +ma+py) sec r+Asec’ r = 0,

where «, A are parameters, sec'r = 1+2'+y* in Gudermann’s system,
(1 =0, 1 +d=z = 0) denote the cyclic arcs, and ‘(1 +mz+py = 0) the
line of nodes.

At a singular point,

do _o 9 _
da:—o’ dy_o'
K 2
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For the sphero-cycli&e,
xd = m secr+2 (1 +mz+py) cosr+ 21z,
0 = pseor+y (1+ma+py)cos r+2y;
whence  x(24+dwx) = secr + (1+ma+py)cosr+2),
and xdy = (my—pz) secr,

. = (1= P ,
am+ay.@ y)mw
All the nodes in the family lie on the sphero-conic

(erg- )2t

The locus of (x, \) may be drawn by points for successive values of
@ from 4 to —o. This curve (D,) has a Newtonian centre, since
the expressions for «, A both contain sec r or (1+2*+y*)\

It has six asymptotes Adkp=0,

=1_2
when m—m R

kd—2\3tm (1+o* )tz (1+ma) (1+2°) =0,
where 2 has two values from the quadratio
z— % +1=0.
It has a pair of points
"= Zzl"d (m*+p), A== (m'+p)},

which correspond to the infinite values of @,y (my = px)., It has
_four pairs of cusps.

The line of nodes (1+maz+py = 0) will touch the sphero-conic
x(14dz)=A(Q+2'+4%) =0,
if dp +4 (mP 4+ p'—dm) e\ = 4 (m*+p*+1) AL

The two lines thus defined, as functions of x and A, both touch and
cut the curve (D,), as shown in Fig. 3. See remarks on PQ in § 28,
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28. To determine the relation be-
tween the parameters, when sphero-
cyclides with collinear foci are trinodal.
(Curve D,.) ' o

In § 27, p=0; and the equation to a
family of such quartics is

x (14+d=) = (1+ma) sec r+Asec*r.
The sphero-conic (§ 27), on which all the
third nodes lie, is resolved into two great circles

= =1_2
I)y=0, (L) a= moa

The Onrvé (D,) in this case consists of two parts, according as
(L) y=0, or (IL) 14ma+2\gecr = 0.

I. When y = 0, x, X have the following values:
x (da'+-22—d) = (a—m) (1+2%)},
A (d2'+22—d) (1 +2*) +mda® 4+ 2ma’ + 2 +m—d = 0.
Two pairs of linear asymptotes are given by the equation
« (1+dz) = (1 +max) (1 +2") +21 (1 +2%),
"where # has two values given by the quadratic
de*+20—d = 0.
A pair of cusps is determined by the value of #, which satisfies both

dx

de _ dan _
dz ™~

the conditions 0, i 0.

By taking the logarithmic differential of «,

2dz 42 = 1 -
d*+22—d x—m 142

That is, 2 (z+m)+d (ma®—32' +3mz—1) =0 ...........(4).
Its discriminant is 4 (d*+1) {(m*~1) d+2m}* = 0.

Let d = lg—mm” or tan d = tan 2u, that is, let the distance from
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the origin of the arc of nodes be half that of the cyclic arc
xd (2—m) (z+ L) = (@—m) 1+,

2Am (z—m) (m+ ) (142" 4+ (z~m) (2m*2*+2mz+m*+1) =

There is but one solution applicable, viz.,, 2=m, y =0; and conse-
quently it belongs to the subsequent Case II. The curve drawn with
the values of x, A, when the factor (z—m) is withdrawn, is in-
applicable, and does not constitute a part of the Curve (D,).

The cubic (A) has only one real solution; it has no equal roots,

when d =

12_":”,, unless m=1, and d = . Cohsequently, there is
only one pair of cusps for each sphero-cyclide of this family.
If the line of nodes (1+ma = 0) touch the sphero-conic

x (14+dz) = Asec’r,
then me (m—d) = (m'+1) A,
If this ratio « : A be substituted in their preceding values as functions
of z, (mz+1) {3 (1+md)+m—=2d} =0 ....c.cvervnrere..(B).

Hence this line PQ (x:}), in Figs. 3, 4, 5, both touches and cuts
Carve (D,).

To their point of contaot there corresponds a sphero-cychde with &
triple point (see § 26) ; to their point of intersection, a quartic with
a tacnode and crunode; moreover, this line PQ discriminates quartics
with real crunodes from those with imaginary nodes.

II. For the second portion of Curve (D,), when

&= -1-——2—, 14+mz42xsecr =0,
m d
there results the hyperbola
d "1 _ 1
Rl

For all values of «, A thus correlated, the quartic degenerates into two
coincident circles, codiametral with the (z) are,

1+mz+2\ (142 +4°) = 0.

Cor.—For the sphero-Cartesian, the conditions for a third node
or other singularity are derived, when d = 0. (Fig. 5.) .
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[29. To find the condition for a tacnode-cusp in a sphero-cyclide.

In this case the tangent at the cusp in the Curve (D) coincides
with the line PQ, which therefore meets (D,) in three coincident
points; the triple point unites with & cusp in the corresponding
quartic. :

The velues of # in (B) are identical, if 2md = m*—1, or
tan d+cot2u =0, or -’2£+a = 2u (p. 133).

This value of d satisfies (A), the condition of a cusp:

(mz+1) {(m*+8) &*—4mz+ (1+3m*)} = 0.

' . .,
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The two sphero-Cartesians
seo'r(lta)secr =2
have each & tacnode-cusp, when @ =31 respectively.]

30. To determine all the varieties of sphero-cyclides with collinear
foci by the aid of the first discriminating curve. (Figs. 4, 5.)

Let the line POQ@ be first considered : forall values of the parameters
x, \, for points above this line in the first quadrant, and below this
line in the third quadrant, all such quartics have two crunodes; for
points on the other sides of this line, the two characteristic nodes are
imaginary.. At the points of intersection R, S, the quartics have a
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tacnode and crunode; at the points of contact P, Q, a triple point
formed by the union of an acnode with two imaginary nodes.®

To the cusp in this Curve (D,) there corresponds a cusp in the
sphero-cyclide, besides the two imaginary nodes; for points on (D,) on
either side of the cusp, crunodes and acnodes correspond.

For points (x, A) on Curve (D,) above R, the Sphero-Cartesians are
tricrunodal ; and for points beyond P, acnodal with two imaginary
nodes.

For points (x,X) on exther side of Curve (D,), the companion-curves
become bipartite, or unipartite with folia.

The outer lines in the second and fourth quadrants AB, 0D are
bounding lines: <., for points (r, A) thereon, the corresponding
sphero-cyclides shrink to points; and for exterior points, nome
“correspond.

V. On the Points of Undulation in Sphero-cyclzdes
81. To determine the mutual re-
lation between the parameters, which
enter into their equations, when
sphero-cyclides have points of undu-
lation, or the second discriminating
curve (D,).
At o folium-point, or point of un-
dulation, % 0, :‘T'l, 0. Fro. 6.
Let these tests be applied to this quartic in its most general form
(§ 27) - X EBO’ P —K (1+dz‘+8y) = (1+m) 8ec '.u Iy 000(1)1

Differentiate thrice successively, and let

=%
=5

K !

2\ (a+py)—= (d+ep) = msec r+ (2+py) (1 +mz) cosr......(2),
2A(1+p)
=2m(z+py) cosr+(1 +p*) (1 +mz) cosr— (z+py)* (L +mz)cos'r...(3),
0 = m (14p*) cos r—m (2 + py)* cos*r— (1 +p*) (z+py) (1 +mz) cos® r
+ (1 +me) (e+py)*cos®r.

® [This triple point discriminates sphero-cyclides from other binodal quartics. In
the quartic x (14dz) = (1 +mz)y/(1 +23=4) + A (1 +23=49),

the triple point for the same critical values of x and A, agin the text, has onereal, and
two real coincident branches, caused by the union of a crunode with two real nodes. ]
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This last condition may be resolved into two factors
(1+p") sec® r— (2 +yp)!, and msec'r— (2 +py)(1+ma) ...(4).
The former factor is rejected, as it should be from its form
1+p'+(pa—y)’
since gec’r = 142"y

The second factor (4) gives the real condition: when substituted
in (2) and (8),

2\ (2 +py)—=x (A+6ep) = 2mBECT ..ccvevnnrneneannn(2),
A (1+p*) seor = m (2+py)+ (1 +2") A+ ma).eervinenen (9.
The elimination of & and A from (1), (2), and (3) gives snother con-
dition, (d+ep) sec’ r [m (2 +py) + L+2") (1 +ma)]
—2 (e+py) A +da+ey) [m (z+py) + 1 +p*) 1 +ma)]
+2 (142" sed r [2m (1 + d2 + ey) — (d+ep) (1 +max)] = 0.
By the aid of (4) this eliminant may take the form -
2m (1+da+ey) [(1+p") sec’ r—(a+py)']
= (d+ep)sec’r [(1+5°) (1+m2)—m (2+py)),
or g still simpler form by the aid of (4),
2m (1+da+ey)—(d+ep) (14+ma) =0 .oovienniiinnns(5).

By eliminating p from (4) and (5), the locus of the points of undala-
tion in a family of sphero-oyclides is seen to be a sphero-conic.

2m—d+mds+2mey = -;— [m A4+4)=2] .ccovvirninnenn(6).

By giving y successive values from + to —w, single values of o,
and therefrom of «, A, so that the required discriminating curve (D,) is
drawn. The curve (D,) has the origin for & Newtonian centre, since
x, X are determined as factors of seor or (1+2*+y*)L

It has an asymptote, when

d+ep=0;
and l1+ds+ey=0, er4(m—d)y=me.

For these values x = o, and A is known from (8).



138 Mr. H. M. Jeffery on Sphero-Oyclides.  [Nov. 18,

It has a second asymptote, also parallel to the (x) axis, when
mdy+e=0, s=w, and e =4d;
for these values
t=0w, 2\(+e)=m(d+2¢).

There is & mnode at the origin, corresponding to the value
(14+mz = 0), since it yields two values of .
Only half of the curve is drawn in Fig. 6.

32. To determine the mutual relation between the parameters, when
sphero-cyclides with collinear foci have points of
undulation. Curve (D,)

In this case 6 =0 in § 81 ; and the locus of the
points of undulation in such a family is a great
circle, co-diametral with the (y) are,

2m=d+mdz =0 ...............(6).

The limiting values of y are o and 0; negative
values of y give the same negative value of p from
(4), and therefore the same points, since « and A
are functions of

(2+yp) and (1+4p").

When y =, p=00; and x = 0 =\ determines the origin.
When y =0, p = o; and ¥, A have these finite values,

Fra. 7.

o ; |
(3) A+ =14+mz; (2) 27&m11:::z—dx=2m A +ah);

and the curve (D,) terminates abruptly. The origin is its centre.

If d =0, the form fails, since (2) and (3) are incompatible, and
by (6) m =0. Sphero-Cartesians have therefore no point of undu-
lation.

The points of undulation are limiting forms of folia or depressions,
characterised by two points of inflexion. Accordingly, for values of
(x, A) on one side or the other of the Curves (D;), in Figs. 6, 7, the
companion sphero-cyclides have two points of inflexion or none.

V1. On the Sphero-du-cyclide.

83. This is the polar or complementary curve of the sphero-cyclide ;
its modes of generation and the forms of its equations are derived at
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once by dualising (§ 36). It is a class-quartic with two bitangents,
real or imaginary, and therefore of the eighth order.

The sphero-du-cyclide has two double foci, which are the single foci
of the focal conic of the sphero-cyclide.

. It is generated in four ways, as the envelope of a variable small
cirole, whose concentrio great circle rolls on a dirigent sphero-conio
(F), and which small circle is 8o related to a fixed small circle (J),
that their common tangents are quadrants in length.

The four dirigent conics (F) are doubly concyclic; their two com.
mon cyclic arcs are double in the sphero-du-cyclide, thence generated.

84. Der.—The quadranto-circle of a spherical triangle ABO has the
common orthocentre of ABC and its polar triangle 4'B'C’ for its own
pole, and is such that two corresponding sides BO, B'Cf of the primi-
tive and polar triangles meet each other and the quadranto-circle in
points 4", A”, which are 90° distant from 4.

The great circles, which are concentric with the four (J) small
circles, taken by threes, constitute four spherical triangles, which are
gelf-conjugate with respect both to the (F) conics and the (J) circles.
Each triad has the fourth great circle for its quadranto-circle.

The other properties of the du-cyclide are in like manner readily
derived from those of the sphero-cyclide.

85. The transformations of § 11 have their counter-part, in trans-
forming from a sphero-conic to & sphero-du-cyclide.

I. The dual formuls (1), (2) become
sinr = cos (r—p) sind, tanr= —__cotp (1),

’ cosec p cosec o—1 et
and of anallagmatic inversion

—tan 2L l1—tanPL —tan S
lt&nzlta.nz_lta,n2

)

. — lunun--..n.(2).
I 8 LA
1+tan 2 1+tan 2 1+tan )

II. If U, V, W denote the fixed circles J,, J;, J;, which have the
property that their common tangent arcs are quadrants in length,
and if the dirigent conioc (¥) be denoted by the point equation

(a,b,6,f, 9, hI“’ B8, 7)’ =0,
then the sphero-du;cyolide,, thence generated (§ 83), has an equation of
the same form (ab,6fahUU0,V,W)PH=0.
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The symbol U has the dual form of that given in §11,

U = cos AP—cos d,.
AP now denotes the inclination of an arbitrary circle (§, n) to the

great circle (I, m) concentric with (J;), whose radius is -%— —3&,, and

. — U+mn+1
t =1
eqration = O+ ) /@ D)

86. Universally in Analytical Spherics, the formule of any curve
are applicable to its dual or polar curve, by writing p’, ¢, ', the line-
coordinates of a great circle referred to A’B'(’, the polar triangle, for
a, B, v, the point-coordinates of the dual point or spherical centre
referred to ABO, the primitive triangle.

In Gudermann's system, where the triangles ABO, A’B’0’ coincide,
being tri-quadrantal, —£ —n must be substituted for 2, y, in dualising.

All the equations in this memoir are equally applicable to this dual
curve, when the point and line-coordinates are thus transformed.

—cos 8, =0.

VII. On Doubly Bi-confocal Sphero-cyclides.

87. Dr. Casey has applied the methods of sphero-conics to sphero-
cyclides by the transformation given in §11. (*“On Cyclides,”
§§ 270—278, 308—311.)

I will apply it to transform the general equation of confocal sphero-
conics p*+mg*+ 0P +\ (apP+b9Q +crR) = 0,

and to prove that all sphero-cyclides, which have the same pair of
double foci, but different single foci, pass through four concircular
points, which lie on a small circle, whose pole or spherical centre is
the orthocentre of the triangle of reference, or centre of the J circle
from which it is generated.*

‘We have to interpret
AT+ 0V + W3 —2bc VW cos a—2ca WU cos b—~2abUV cos ¢,

. EDoubly bi-confocal bicircular quartics and cyclides do not intersect. The
function (ap P+ dgQ + ¢rR), when quadrically transformed, gives the centre of J or
the orthocentre of the eentres of Jy, Jy, Jy as a point-circle

3 (a%? cos® 4 — 2bcBy cos 4 cos B cos C),

not situate on tho curve, A system of doubly bi-confocal Cartesians and Cartesian
cyclides is exprossed by the relation 8 «< D, where § is a circle or sphere, and D the
distance of a point on the locus from tho centre of the (F) focal circle or sphere.]
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where, by § 11, IL, in Dr. Casey’s notation,
p o« Ucx cos at—cos aP « p sec a—a',
gx Vo psecdb—f, rox W psec c—j’.
"For brevity, p stands for +/(cos a cos b cos o),
6va’ = aa+b3 cose+cy cos b.

Hence P = ap-—bqcos 0—cr cos B oo uv cos B cos 0—6va,

Qo pvcos Jcos A—6vB8, R x pvcos A cos B—6vy.
Here also, for brevity, » denotes tana tandtane, 6v = absin 0.

ap’P+~qu+c'rR o a (psec a—a’) (uy cos B cos 0—6va)

+b (usec b—f") (uv cos 0 cos 4—~6vB)
+¢ (p sec 6—7") (v cos 4 cos B—6vy)

o« (6v)*+abo (tan a cos B cos C+tan b cos O cos A + tan o cos 4 cos B)
—12v4/(cos a cos b cos ¢) (a tan a+ 8 tan b+ tanc).

This is the equation to a small circle, concentric with the J circle
of § 18.

abe 2 (tan a cos B cos 0) = (6v)’—~abc tana tan b tan ¢ cos A cos Beos 0.
The reductions used here depend on the identity
tan b cos O+ tan ¢ cos B = tan @ (1—tan b tan ¢ cos.B cos 0).

The transformed equation to this family of sphero-cyclides is

I (useca—a’)*+m (psecb—p) +n (usecc—v')?
+A {2 (6v)*+ abe tan o tan b tan ¢ cos 4 cos B cos C
‘ +120u (atan a+ 3 tan b4y tan ¢) }%

The small circle intersects the sphero-cyclide in four points, and
not in eight, unless the anfipodal points be added, since, by expressing
the constants in terms of 3« tana, the first line becomes & sphero-
conio.

[88. Sphero-cyclides are cut by planes in four concircular points.
As in § 87, any sphero-cyclide (§ 6)

a sec’ B+ (bu,+v,)sec B+v,= 0
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is intersected by any circle,

seo R = lze+my+n = w,
in the same four points as the sphero-conic

aw}+ (b +0,) w+v, = 0.]

Errata.—In § 4, read * The line of nodes in the sphero-oyclide is the polar of
the contre of any (J) circle with respect to the polar conic of the corresponding (F)
focal conic.” : :

In § 6, Cor., read ¢ If the cyclide has the imaginary circle at infinity as a cuspidal
edge, or if vy = ¢ (22 + 2% + dy3, the generated sphero-cyclide is called by Dr. Casey
a Sphero-Cartesian.’’

Prof. Hart has already published his Memoir on the ¢ Five Focal Quadrics of &
Oyclide,” in the Measenger of Mathematics, Vol. x1v., pp. 1—8. See § 6.

On the Limits of Multiple Integrals. By Huem MacCorr, B.A.
[Bead November 13th, 1884.]

In my first paper on the ¢ Calculus of Equivalent Statements"”
(Proceedings, Vol. 15., Nos. 124, 125), I showed how the limits of in-
tegration in a multiple integral might always be ascertained whenever
we had enough data for the purpose. I now propose to show how the
expression of the limits thus ascertained may often be simplified and
reduced to & form more convenient for integration.

DeriniTioN.—When we have an elementary statement of the form
Zpiron OT Yoo Lt OF Zon Yo, o Eu oy &C., presenting the nearest limits (or
true limits of integration), we may, for brevity’s sake, take any of
these symbols to denote, not the statement itself, but the éntegral
which has the limits of integration indicated by the statement.

Thus Y..a2,, Will be a mere abbreviation for

Ym Zr
[ dy j dz.
Yn L7



