MATHEMATICAL ASSOCIATION

supporting mathematics in education

The Conic through Five Given Points
Author(s): A. C. Dixon
Source: The Mathematical Gazette, Vol. 4, No. 70 (Mar., 1908), pp. 228-230
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3605147
Accessed: 08/05/2014 21:41

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.
for the "shine" and "cosh" with which we are so familiar, a substitution on which certain examining bodies appear to lay special stress.

In conclusion, a vast amount of work lies before our Association waiting to be done. Progress must of necessity be slow, but I hops that in the years to come we shall be successful in our attempts to raise mathematics to a higher level in Great Britain than it has ever occupied in the past. And I again repeat that this much desired end will conduce in no uncertain degree to the welfare and prosperity of our nation.

THE CONIC THROUGH FIVE GIVEN POINTS.

The following discussion may be of interest on account of the way in which it leads to the axial and focal properties.
I. Let the locus of a point P such that $A(C D E P)=B(C D E P)$, where A, B, C, D, E are fixed points, be called the conic ($A B, C D E)$. Then it is clear that permuting A, B or C, D, E does not affect the conic, and that the conic passes through C, D, E, and also through A, B. (Give $B P$ the four positions $B C, B D, B E, B A$ and then give $A P$ the position $A B$.)

Since $A P$ and $B P$ correspond homographically the same conic may be defined as ($A B, F G H$) where F, G, H are any three positions of P except A, B.
II. If F is any point on $(A B, C D E)$ then Pascal's theorem can be proved for any hexagon whose vertices are A, B, C, D, E, F if B is next but one to A, and thus A or B may be interchanged with any one of C, D, E. For instance if A is to be interchanged with C we put A, B, C 1st, 3 rd and 5th as in $A D B E C F$. This is a Pascal hexagon, and it follows that F lies on ($B C, A D E)$. Thus the conic is not affected by any permatation of the five points after which it is named, and we may call it ($A B C D E$).
III. If any circle has been drawn through $A B$, the points P, Q where this circle meets the conic can be constructed with the ruler only as follows. Let $A C, A D, A E, B C, B D, B E$ meet the circle in $C_{1}, D_{1}, E_{1}, C_{2}, D_{2}, E_{2}$.
Then

$$
\begin{aligned}
A\left(C_{1} D_{1} E_{1} P\right) & =A(C D E P) \\
& =B(C D E P) \\
& =B\left(C_{2} D_{2} E_{2}^{\prime} P\right) .
\end{aligned}
$$

Hence P is a double point in the homography in which C_{1}, D_{1}, E_{1} correspond to C_{2}, D_{2}, E_{2}; the other double point is Q, and thus P, Q are the intersections with the circle of the Pascal line of the hexagon $C_{1} D_{2} E_{1} C_{2} D_{1} E_{2}$.
IV. By III. we may suppose the conic to be named after five points $A B C D E$, of which four are on a circle, say A, B, C, D. Take another circle through $A B$ and let it meet the conic again in P, Q. In the figure of III. we then bave

$$
\angle D_{2} C_{1} A=D_{2} B A=D B A=D C A .
$$

So that $C_{1} D_{2}$ is parallel to $C D$, as also is $C_{2} D_{1}$. Hence $P Q$ also must be parallel to $C D ; P Q$ is therefore in a fixed direction whatever circle through A, B is chosen.
V. As a particular case of IV. suppose C, D both at infinity : then it still follows that

$$
D_{2} C_{1} A=D B A, D_{1} C_{2} B=D A B,
$$

and hence $C_{1} D_{2}, D_{1} C_{2}$ are parallel and $P Q$ is parallel to them, making the same angle with $A C$ that $A D$ makes with $A B$.
VI. Still taking $A B C D$ cyclic, suppose that $A B$ meets $C D$ in T, and let the circle, whose centre is T and radius $T A$, meet $C D$ in K, L. Let G, H be the points where $A K, A L$ meet the conic. (G, H can be found by the
known coustruction depending on Pascal's theorem.) Construct as in III. the point I, where the circle $A B G$ meets the conic again. Then $G I$ is parallel to $C D$, and therefore $A B, G I$ are equally inclined to $A G$ and $A G, B I$ are parallel. If any other circle through A, G meets the conic in P, Q, then $P Q$ must be parallel to $B I$, that is, to $A G$, and all chords of the conic parallel to $A G$ are therefore bisected by a line perpendicular to them. The same holds for chords parallel to $A H$, and the conic has therefore two axes of symmetry in general. It follows from V . that G, H cannot both be at infinity, and hence the conic has at least one axis.
VII. If $P K, P L, P M, P N$ are drawn perpendicular to $A B, C D, A D, C B$, then, as P varies, $P(A B C D)$ is proportional to $P M . P N / P K . P L$, and this is true whether $A B C D$ is cyclic or not.
VIII. If in VII. we suppose that $A B C D$ is cyclic we have that

$$
P M . P N+P K . P L
$$

\propto the square of the tangent from P to the circle $A B C D$.
Proof. Let $P B, P D$ meet the circle again in E, F, and let $E E^{\prime \prime}, F F^{\prime \prime}$ be diameters.
Then $\frac{P L}{F C}=\frac{P M}{F A}=\frac{P D}{F F^{\prime}}$ by similar figures $P L M D, F C A F^{\prime}$,
and $\quad \frac{P K}{E A}=\frac{P N}{E C}=\frac{P B}{E E^{\prime}}$ by similar figures $P K N B, E A C E^{\prime}$.
Also $E A \cdot F C+E C \cdot F A=E F \cdot A C$, and thus

$$
\frac{P K \cdot P L+P M \cdot P N}{E F \cdot A C}=\frac{P B \cdot P D}{E E^{\prime} \cdot F F^{\prime \prime}} .
$$

But $E F / B D=P F / P B$, whence $P K . P L+P M . P N \propto P D . P F$.
Hence if P is on a conic through A, B, C, D, the square of the tangent from P to the circle $A B C D$ is proportional to $P M . P N$ or $P K . P L$.
IX. In VIII. let $A B$, and therefore also $C D$, be perpendicular to an axis, which meets $A B, C D$ in U, V, and let G be the foot of the perpendicular from P to this axis. Then from VIII. we have $t^{2}=e^{2} G U$. $G V$ where e is a constant and t the tangent from P to the circle $A B C D$. Let O be the centre of this circle and take another circle through A, B with centre O_{1}; let t_{1} be the tangent from P to the new circle. Then

$$
\begin{aligned}
t_{1}{ }^{2}-t^{2} & =20 O_{1} \cdot G U \\
\text { and } t_{1}{ }^{2} & =G U\left(e^{2} G V+20 O_{1}\right) \\
& =e^{2} G U \cdot G V_{1}
\end{aligned}
$$

if V_{1} is a point on $U V$ such that $e^{2} V V_{1}=20 O_{1}$.
The conic may therefore be defined equally well by reference to the new circle and the lines $A B, C_{1} D_{1}$, where $C_{1} D_{1}$ is the perpendicular to $U V$ through V_{1}. The points where $C_{1} D_{1}$ meets the new circle lie on the conic. Similarly we may move U forward to U_{1} if at the same time we again move the centre of the circle forward to O_{2} so that $e^{2} . U U_{1}=2 O_{1} O_{2}$ and now make $C_{1} D_{1}$ the radical axis of the new and old circles. It is not necessary that the new circle should meet the conic in real points.

X . Let r, r_{1}, r_{2} be the radii of the three circles, with centres O, O_{1}, O_{2}. We have $r_{1}{ }^{2}-r^{2}=U O_{1}{ }^{2}-U O^{2}$, since the radical axis of the first two passes through U, and similarly $r_{2}{ }^{2}-r_{1}{ }^{2}=V_{1} O_{2}{ }^{2}-V_{1} O_{1}{ }^{2}$.

Thus

$$
\begin{gathered}
r_{2}^{2}-r^{2}=V_{1} O_{2}{ }^{2}-V_{1} O_{1}{ }^{2}+U O_{1}{ }^{2}-U O^{2}, \\
O O_{2}=\frac{1}{2} e^{2}\left(V V_{1}+U U_{1}\right)=e^{2} . G G_{1}
\end{gathered}
$$

while
if G, G_{1} are the middle points of $U V$ and $U_{1} V_{1}$.
After some reduction the value of r_{2}^{2}, unless $e=1$, becomes

$$
e^{2}\left(1-e^{2}\right) X G_{1} \cdot G_{1} X^{\prime}+\frac{1}{4} e^{2} \cdot U_{1} V_{1}^{2}
$$

where X, X^{\prime} are two points on the axis such that

$$
\begin{aligned}
& \left(1-e^{2}\right)\left(G X+G X^{\prime}\right)=2 G O, \\
& e^{2}\left(1-e^{2}\right) G X . G X^{\prime}=\frac{1}{4} e^{2} \cdot U V^{2}-r^{2} .
\end{aligned}
$$

Making U_{1}, V_{1}, and therefore G_{1}, to coincide with X or X^{\prime} we have $r_{2}=0$; the circle reduces to a point and we have the focus and directrix property.

When $e=1$, the value of $r_{2}{ }^{2}$ becomes $2 G O . \lambda G_{1}+\frac{1}{4} U_{1} V_{1}{ }^{2}$ where X is a point in the axis such that

$$
2 G O . X G=r^{2}-\frac{1}{4} U V^{2}
$$

Here $r_{2}=0$ when U_{1}, V_{1}, G_{1} coincide with X.
A. C. Dixon.

MATHEMATICAL NOTES.

253. [I. 2. b.] Cf. Note 249, p. 167.

If n be a prime, a any number prime to n, p the smallest value of the integer m for which $a^{m}-1$ is divisible by n and n^{s} the highest power of n which divides $a^{p}-1$, we may write

$$
\begin{equation*}
a^{p}=1+b n^{s}+c_{1} n^{s+1} \tag{i}
\end{equation*}
$$

where

$$
0<b<n
$$

Now if P be the smallest value of m for which $a^{m}-1$ is divisible by n^{s+1}, P must be a multiple of $p=\lambda p$, say. But from (i),

$$
a^{\lambda p}=1+\lambda b \cdot n^{s}+\text { a multiple of } n^{s+1} .
$$

Therefore λb is divisible by n and (since $b<n) \lambda=n$.
Further, since in the expansion of $(A+B+C)^{n}$ the coefficient of every term except A^{n}, B^{n}, or C^{n} is divisible by n,

$$
\left.a^{n p}=1+b n^{s+1}+n \text { (a multiple of } n^{s+1}\right)
$$

[unless $n=2, s=1]$
Similarly

$$
=1+b n^{s+1}+c_{2} n^{s+2} .
$$

and generally

$$
\begin{aligned}
a^{n^{2} p} & =1+b n^{s+2}+c_{3} n^{s+3}, \\
a^{n_{p}} & =1+b n^{s+q}+c_{q} n^{s+q}
\end{aligned}
$$

for all positive integral values of q.
Thus $n^{q} p$ is the smallest value of m for which $a^{m}-1$ is divisible by n^{s+q}.
The above furnishes au answer to Mr. Wiles's question in Note 249 (M. G. Dec. 1907, p. 167). From this we can shew that for a composite number N, if a be a number prime to N, then $N^{q} P$ is the smallest value of m for which $a^{m}-1$ is divisible by N^{s+q}, s, q being integers readily found by an examination of the powers to which the various prime factors of N are raised in $\alpha^{p^{\prime}}-1$, where p^{\prime} is the smallest value of m for which $a^{m}-1$ is divisible by N.

Since we know that $a^{n-1}-1$ is divisible by n it follows that p is a factor of $n-1$, and the exceptions to the rule as enunciated by Mr. Wiles are determined by finding values of n and a fur which $a^{n-1}-1$ is divisible by $n^{2}, n^{3}, \ldots n^{s}$.

If a be given, this amounts to finding values of m for which $a^{m}-1$ is divisible by x^{p}, where $x>m$ and $p>1$. This can probably be done only by trial : thus

$$
\begin{array}{cccc}
3^{5}-1 & \text { is divisible by } & 11^{2} . \\
5^{1}-1 & \ldots \ldots \ldots \ldots \ldots \ldots & 2^{2} . \\
7^{4}-1 & \ldots \ldots \ldots \ldots \ldots . & 5^{2},
\end{array}
$$

