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On the Stability of a Liquid Ellipsoid ivhich is rotating about a
Principal Axis under the influence of its own attraction. By
A. B. BASSET, M.A.

[Bead Nov. 10th, 1887.]

1. When a mass of liquid is rotating in a state of steady motion
under the influence of its own attraction, the diffei'ent ellipsoidal
forms which its free surface can assume may be classified as follows :—

I. Maclaurin's Spheroid, in which the free surface is an oblate
spheroid, and the liquid rotates as a rigid body about the axis of the
spheroid. If p be the density of the liquid, £ the angular velocity of
the spheroid (which in this case is identical with the molecular
rotation), it is known that £2/4<Trp must not be greater than "1123, in
oi'der that steady motion niay be possible, and in this case the free
surface may be one or other of two oblate spheroids, which coalesce
when ?/4arp = '1123.

II. Jacobi's Ellipsoid, in which the free surface is an ellipsoid with
three unequal axes, and the liquid rotates as a rigid body about the
least axis. In this case f'/̂ "Y* must not be greater than •0934, in order
that the ellipsoid may be a possible form of the free surface. Hence,
if ^/4nrp < "0934, there are three ellipsoidal forms, viz., the two Mac-
laurin's spheroids, and the Jacobian ellipsoid. When £2/4jrp = -0934,
Jacobi's ellipsoid coalesces with the most oblate of the two spheroids,
and when 4̂ /4n-p lies between "0934 and '1123, the ellipsoidal form
is impossible.

III. Dedekind's Ellipsoid, in which the free surface remains stationary
in space, but there is an internal motion of the particles of liquid, due
to molecular rotation £ about lines parallel to the least axis. In
this case, if a and 6 are the greatest and mean axes respectively,

' a9fe*^8/(t** + ^s)*7r/B must not be greater than -0934; and when the
former quantity is equal to "0934, we must have a = b, and Dedekind's
ellipsoid coalesces with the most oblate of the two Maclaurin's
spheroids.

IV. The Irrotational Ellipsoid, in which the axis of rotation is the
mean axis, and the motion is irrotational. In this case the spheroidal
form is not possible.

V. An ellipsoid in which there is molecular I'otation £, and an
independent angular velocity £+0 about the axis to which £ refers.
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In this case the axis will be the mean or least axis, according as

When this inequality becomes an equality, the free surface will be a
prolate spheroid rotating about an equatorial axis. This case includes
the. four preceding cases.

• VI. lliemanris Ellipsoid, in which the rotation takes place about
an instantaneous axis lying in a principal plane. This case includes
all the preceding cases; moreover, if the instantaneous axis does not
lie in a principal plane, steady motion is impossible.*

In the present paper, I propose to consider the stability of a liquid
ellipsoid which in steady motion is rotating about a principal axis,
and which is subjected to a disturbcince such that the free surface in
the beginning of "the disturbed motion is an ellipsoid. A disturbance
of this character may be communicated by enclosing the liquid ellip-
soid in a case which is subjected to an impulsive couple about any
diameter together with a deformation of its surface, and is therefore
equivalent to,a disturbance produced by an impulsive pressure com-
municated to the free surface of the liquid. The disturbed motion
may therefore be investigated by means of Riemann's general equa-
tions of motion, a proof of which I have given in Vol. xv-ii. of the
Society's Proceedings; and references to the equations of this paper
will be denoted as follows : [E].

The method employed is founded upon Riemann's paper, and the
present investigation is an amplification of his work upon this portion
of the subject.

2. By [E. 21], the potential energy of an ellipsoidal mass of gravi-
tating liquid of mass if and uniform density p is

where P = ^/(a? + \) (&a + \ ) (c2 + \), and D is a constant. Let li
be the radius of a sphere of equal volume, then

JJ = 0 when a.= b = c = li,

therefore D = ^Mirplt?, .

and U = iMirp.Ui—^Mirpahc\ — (1).
Jo •*

* For proofs of the foregoing theorems, see—Ricmann, Abhand. Konlg. Win.,
Gottinycn, Vol. ix. ; Greenhill, I'roc, Camb. Fhil. Soc, Vols. m . andiv.
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Now JJ is evidently positive ; hence the integral must be a maximum
when a = b = c = B, and will become indefinitely small when any
one of the axes of the ellipsoid becomes infinitely small or infinitely
large. .

Let 2c be the axis of rotation, then, employing the notation of the
preceding paper, let

By [E. 20 and 21], E is the variable part of the energy of a
mass of liquid whose free surface is constrained to maintain a fixed
ellipsoidal form and which is rotating about the least axis. In steady
motion w8 and £, and therefore E} are certain functions of ath^ c\ let
Eo be the value of E in steady motion.

Let a disturbance (which for brevity will be called an ellipsoidal
disturbance) be communicated to the liquid by means of an impulsive
pressure applied to its free surface, which is such that in the be-
ginning of the disturbed motion the free surface is a slightly differeut
ellipsoid. Then, if EQ+$E is the energy of the disturbed motion, we
obtain by [E. 20 and 21],

10

All the terms in square brackets are positive, and in the beginning
of the distui'bed motion are small quantities ; hence, if E > EQ) these
turms must remain small quantities and the free surface can never
deviate far from its form in steady motion, and the motion is there-
fore stable. But, if E < Eo, the terms in square brackets may be-
come a finite positive quantity, and the difference 2£—Eo may become
a finite negative quantity, such that the difference between the two
sets of terms always remains equal to the infinitesimal quantity hE.
When this is the case the free surface may deviate far from its form in
steady motion, and the motion may be unstable.

Hence, for the particular kind of disturbance which we are consider-
ing, the condition of stability requires that the energy in steady
motion should be a minimum. Or, in other words, if the steady
motion is stable, it must be impossible by any kind of ellipsoidal dis-
turbance to abstract energy from the By stein.

3. Let the disturbing pressure be divided into two parts pu p^ the
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former of which produces a variation of the axes and no change in the
angular momentum, whilst the latter produces no instantaneous
variation of the axis but changes the angular momentum. The
resultant of p2 will consist of a single force, which produces a trans-
lation of the whole mass of liquid, and which it is unnecessary to
consider; and a couple G. If the axis of this couple lie in the
principal plane, which is perpendicular to the axis of rotation in steady
motion, the energy will be evidently increased by its applica-
tion; but, if the axis of the couple does not lie in this principal
plane, the component of the couple about the axis of rotation may
diminish the energy if it acts in the opposite direction to that of
rotation, in which case the motion will be unstable.

In Maclaurin's spheroid the component of the couple about the axis
of rotation necessarily vanishes, since p2 always passes through the
axis of rotation; the case of Dedekind's ellipsoid, in which the free
surface is stationaiy, will be considered later on.

Hence, so far as the action of p2 is concerned, Jacobi's ellipsoid, the
Irrotational ellipsoid, and the ellipsoids belonging to the general
class V., including the prolate spheroid rotating about an equatorial
axis, but excluding Dedekind's ellipsoid, are stable whenever the
couple component about the axis of rotation of the disturbing
pressure either vanishes or is in the same direction as the rotation ;
but when this is not the case the motion may be unstable.

In the case of Dedekind's ellipsoid, by (2),

, ^aW? _ Aa?- CV _ Jb'-C'o '
where tfW <? 9 '
and the effect of a disturbing couple about tho axis of rotation will
be to increase the energy by the quantity

whence E > EOi and therefore the motion so far as this kind of dis-
turbance is concerned is stable.

4. We must now consider the disturbance p^ which produces a
variation of the axes. Prom the last two of [E. 16] wo obtain

(a—li)* w = const. = r, (a + fe)a u /= const. = r' (3),

whence, from [E. 9],

VOL. XIX.—NO. 3 0 8 .
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Also, from [E. 6],

5(a2+62)

whenoe a-Tiv£s? + 7±™-aa* (5)'
where H=7rpabc\ —.

Jo •*

We must now obtain the value of Eo. Putting a, 6, c each equal to
zero in the first three of [E. 16], and taking account of (3), we obtain

c

.'»
a a 2a(a + b)* (a-by a a 2a (6).

Whence (5) becomes

= -ir-ioc3 (7),
since Aa? + Bb* + C<? = 2 ff.

Whence Eo is a finite negative quantity.
The constants r, r' express the fact that the angular momentum

and the vorticity* are unchanged during the motion; also since the
disturbance px does not change the angular momentum or vorticity,
these constants must have the same values as in steady motion.

* The equation [E. 17], which expresses the fact that the vorticity is constant,
may be shortly proved thus :—

Since {, rj, (ure independent of x, y, z, tho vortex lines must all be parallel to
some diameter r of tho ellipsoid. Let /, in, n be the direction cosines of r, dS an
element of tho piano conjugate to r, and e the angle between »• and S.

The condition that tho vorticity should be constant requires that

const. = f f a sin e dS — wS sin e = coSpr-l,
whcro p is tho poipondicular from tho contro on to the tangent piano parallel to the
piano S. But, since the volume of tho ellipsoid is constant, Sp = const., therefore
u/r = const., or

fi v-2 (3
••«., T3" + "IT + •*? = c o n 8 t '4 7T Ta3 b1 c3



1887.] Stability of a Liquid Ellipsoid. 51

Since the volume of the ellipsoid is constant, the conditions that E
may be a minimum require that

.(8).
da a dc

db b dc

On performing the differentiations it will be found that (8) lead to
(6) ; hence the first conditions are satisfied.

We must now enquire whether, in the general case, E has a
minimum value when r and r' are unchanged by the disturbance.

Let z = 5E/M, Bs = abc, x = a, y = b, then

r" . r"' „ -r,, I" d\

(«"2/)2 £75? ...(9)

Since a, b, c are positive, and a is never less than b, we have to
examine the form of the surface (9) between the planes y = 0,
x—y = 0.

First suppose r is not zero.
When %—y, 3=oo . If ?/ has any finite value < or = x, then, as x

increases from y to infinity, z diminishes, and the value oiE0 in steady
motion shows that z will vanish and become negative, and when x is
very large z is very small. Moreover, z can never become equal to
— co for any values of x or y, and when a; and y are both very large
z is very small, unless x—y is small.

z

E 2
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A general idea of the form of the surface may be obtained from the
accompanying figures. Fig. 1 is the curve of section made by the
plane y = tnx, in < 1 ; and Fig. 2 shows the curves of section made
by the planes xz and xy. The surface cuts the plane of xy along the
curve xP, and the sheet underneath this plane gradually bends up-
wards towards the plane.

It therefore follows that in this case z must have a minimum value,
which is given by (7).

By a similar course of reasoning it may be shown that z has also a
minimum value when r = 0.

The conditions that r should vanish require that in steady motion

w(a-by = 0,

which requires either that a = b, which is the case of Maclaurin's
spheroid; or that w = 0, which by [E. 8] is the same as

which is a special case of V.

5. The analytical difficulties of examining whether E is a minimum
by means of the usual conditions that Ell(l, Ebb, ErtaEbb — E2

ab must
all be positive, where Eaa = d*E/da2, &c, would be considerable; but
in the case of Maclaurin's spheroid, this may be done without much
trouble.

Since c is a function of the independent variables a and b, we have
(omitting the factor ilf/5, and putting Q = Aa?—Cc2, R = Bbz—Co2)

2r2 2r'2 . Q

Eb = 2r3 B
6 '

E - 6T \tta — 7 T\3

(a-by (o + 6)» 6

6T'2 , 1 /(+ (
(a+bf a [da a del a3

a \ da a dc

Ebb = 6 (w'+

Eab = 6 ( w ' 3 - i

(
b \db b de

a db ab dc

(10).
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Equations (10) are perfectly general, but in the case of Maclaurin's

spheroid w = w'= tf = Q*/2a,

and a must be put equal to b after the differentiations have been
performed. Whence

F _ F _ 1 (dQ c dQ, 2Q\
a \da a do a I

_ 1 dQ c dQ
a db as dc

therefore (omitting 2Trpabc)

dQ__[m I 1 1 \
db Jo U2 + X c2+\/

\bd\

dj}_ f" / 1 3 _ \
dc Jo Va2 + X ca + \ / (c2

Therefore, when a = b,

\cd\

8-(a3 + ca)3} +2oV]\d\

The numerator of this expression can never become negative, since
it is positive when X = 0, and the roots of the equation for \ , obtained
by equating it to zero, are imaginary. Hence

a£>cf.
db dc

Now dQ/db, and therefore dQ/dc, are negative ; it therefore follows
from (11) that Ean will be positive if Eaa—Eab is positive. Now

afW F ,__dQ_dQ 2Q

da da da

dQ _ jdA ^ 2d0 m

db ~ U db da '

A dA q f d\
and rr- = —oa
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Therefore the condition becomes

fcxtuf ^^ \jo ^^ a i r—r z—— ^ V.

Now, if e be the excentricity of the meridian section of the
spheroid (the factor 2irpa2c being omitted),

0 — - r i i , — sin U \ ,

whence the condition becomes

The above expression is positive for all values of e lying between 0
and 1, both inclusive, whence Maclaurin's spheroid is stable.

6. In the last edition of Thomson and Tait's " Natural Philosophy,"
Vol. I. Part II., pages 329 and 333, it is stated that Maclaurin's
spheroid is unstable if the excentricity exceeds that of the spheroid
which coalesces with the limiting Jacobian ellipsoid; that is, when

e > sin 54°21'27" or -8127.

Unfortunately, no proof of this statement is given, and if the
analysis of the present paper be correct, it follows that the distnrb-
ancc which produces instability, cannot be what I have called an
ellipsoidal disturbance, but must be such that the boundary in the
beginning of the disturbed motion must be a surface which is not
an ellipsoid but one. slightly differing therefrom.

Apparently, however, Poincaru does not agree with Sir W. Thom-
son's result, for on p. 379 of an elaborate memoir* he says :—" Les
ellipso'ides de revolution, qui sont plus aplatis que celui qui est en
meme temps un ellipso'ide de Jacobi, mais dont l'aplatissement reste
inferieur a une certaine limite, sont stables si le fluide est parf aitement
depourvu de viscosite ; ils ne sont plus si le fluide est viaqueux et si

* " Sur l'Equilibre d'une Masse Fluide anime"e d'un mouvement de Rotation.
Ada Mathematica, Vol. vii., p. 269.



1887.] Stability of a Liquid Ellipsoid. 55

pen qu'il soit." It should be noticed that Poincare considers a dis-
turbance of a much more general character than I have done.

Independently of any mathematical analysis, it seems almost certain
that Maclaurin's spheroid must become unstable when the excentricity
exceeds a certain limit. For, suppose the spheroid is shaped like an
orange, and let a small jet of air be directed for a short time to
some point on its surface. The effect of this will be to cause
waves to diverge from the point of application of the jet, which
will travel over the surface, but the motion will not be otherwise
affected. But, if the shape of the spheroid resembles that of a thin
disc, the probable effect of the jet will be to cause the liquid to curl
itself up, or possibly to break up into two or more detached portions,
and the motion will be thoroughly unstable. It appears to me that
the disturbed motion might be investigated by a more simple pi'ocess
than has been employed by Poincare, by assuming that in the
beginning of the disturbed motion the equation of the free surface
is of the form

where v, [i are elliptic coordinates of a point, and y is the value of v in
steady motion, and proceeding upon the lines of my former paper;
but any investigation of this kind must form the subject of a future
communication.

7. The motion of a liquid spheroid which rotates about its axis of
figure has been fully discussed by Dirichlet, whose equations have
been deduced on p. 261 of my former paper, the density of the liquid
being there taken as unity. From [E. 22] it follows that, if the
rotating liquid is inclosed in a case (which may be either a prolate
or an oblate spheroid), and the case is removed, it will be impossible
for the free surface to retain the spheroidal form unless initially
C/Zvp < 1, where p is the density; and that, if this condition is not
satisfied, the free surface during the subsequent motion will assume
some other revolutional form. Also, if 2c be the length of the axis
of figure, and the free surface is initially spheroidal, it will cease
to be so, if at any period of the subsequent motion

2;r

The following errata in my former paper should be noticed :-
In equation (1), the second member should be = 0.
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Page 259, line 9, the following expression should be added to the right-
hand side, viz.:

{ '}/a + (v-vf) {(c-a)
Page 261, line 6, read w = u>'= J£

,, ,, equation (23), read 3o2/o4 instead of 3aJ/4a4.

Geometry of the Quartic. By R. RUSSELL, M.A.
[Head Nov. 10th, 1887.]

THE system of points, the properties of which I intend to discuss,
arose from an attempt to interpret geometrically the sextic covariant
of a quartic.

I consider a quartic whose coefficients may be any whatever, real or
imaginary. Its i*oots are of the form a^+ib^ a3-f-'i&a, a3 + t'&8, at + ibt.
These are represented as follows :—Assume any two rectangular axes
and take the point whose coordinates are av bv; that point may be
considered to represent the complex quantity a^iby We see, there-
fore, that the four roots of a quartic may be represented by four points
in a plane.

I. If a, ft, y, S be the four roots of the quartic, the factors of the
sextic covariant are the numerators of

z—ft z—y z—a z — S z—y z — a

J_ + _l 1_
z—a z—ft z—y

z of course denoting a quantity x+iy.
Let us consider the roots of the

quadratic

z—ft z — y z — a z—5

and let z represent a root of it.
Now z — a defines the length and di-
rection of the line joining z and a,

1

_j_ __i x1__ J_
ft z-Sl

and therefore defines a line

whose length is the reciprocal of that
line, and whose direction is the re-


