JSBML User Guide

JSBML Version: 1.2
Document build date: December 7, 2016

Authors:
Andreas Driger *° Nicolas Rodriguez ©4 Alex Thomas ?
Marine Dumousseau 4 Alexander DérrP Clemens Wrzodek
Finja Biichel ? Florian Mittag? Michael Hucka ©

Principal investigators:

Bernhard @. Palsson? Andreas Zell ® Nicolas Le Novere ¢4
Michael Hucka®

Institutional affiliations:

2 Systems Biology Research Group, University of California, San Diego, La Jolla, CA, USA
b Center for Bioinformatics Tuebingen, University of Tuebingen, Tiibingen, Germany
¢ The Babraham Institute, Babraham Campus, Cambridge, UK
d European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

¢ Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

SBML (the Systems Biology Markup Language) is an XML-based model representation format for
storing and exchanging computational descriptions of biological processes. To read, write, manipulate,
and perform higher-level operations on SBML files and data streams, software applications need
to map SBML entities to suitable software objects. JSBML provides a pure Java library for this
purpose. It supports all Levels and Versions of SBML, and provides many powerful features, including
facilities to help migrate from the use of ibSBML (a popular library for SBML that is not written in Java).

This document provides an introduction to JSBML and its use. It is aimed at both developers
writing new Java-based applications as well as those who want to adapt libSBML-based applications to

using JSBML. This user guide is a companion to the JSBML API documentation.

The JSBML home page ishttp://sbml.org/Software/JSBML.
The JSBML discussion group is https://groups.google.com/forum/#! forum/jsbml-development.

JGBML

http://sbml.org/Software/JSBML
https://groups.google.com/forum/#!forum/jsbml-development

Contents

1

Getting started with JSBML 4
1.1 Obtainingand using JSBML o L e e e e e e e e e e e e 4
1.1.1 The JSBML archive withdependencies o o o i i i i e e e e e 4
1.1.2 The JSBML archive without dependencies o i v i i i e e e e e e e e e e e e 4
1.1.3 Mavendependencies v v i it i e e e e e e e e e e e e e e e e e e e 5
114 TheJdSBMLSOUrce archive o v v vt e 5
1.1.5 The JSBML source code repository v v v v v v v i e e e e e e e e e e e e e e e e 5
116 SettingUp EClIPSE . . . v o v i i i e 6
1.1.7 Optional extensions, modules and examples available fordSBMLo, 6
1.2 Writing your first JSBML application o o o o o e e e e e e e e e e e e e e e 7
1.2.1 Reading and visualizing an SBMLDocument object i .t it e e e 7
1.2.2 Creating and writing an SBMLDocument object L o o e 8
1.3 MOre eXamples v v i et e 9
Differences between JSBML and libSBML 10
2.1 Why are there differences? o o i e 10
2.2 Differences between the class hierarchies o . L e e e e e 10
2.2.1 Common interface for hierarchical structures: AbstractTreeNode 12
2.2.2 Common root of SBML components: AbStractSBase v v v v v v bt e e e e e e e e e e 13
2.2.3 Interface for SBML components with identifiers: NamedSBase 0o 13
2.24 Interface for SBML components with units: SBaseWithDerivedUnit 14
225 Interface for SBML components containing a mathematical formula: MathContainer 14
2.2.6 Interface for SBML components that may change the value of a variable: Assignment 14
2.3 Differences between the APIs of JSBML and lIbSBML o i i i i e e e e e e e e 18
2.3.1 Level and Version ValuePair o v i i i i i e 18
2.3.2 Abstract syntax trees for mathematical formulas L. e e e 18
233 Compartments . . . v vt e 19
2.3.4 Model history . . . v o i e 19
235 Unitsandunitdefinitions o Lo e e e e e e 19
2.3.6 Cloning when adding child nodes to instancesof SBase 20
2.3.7 EXCEPHONS . v . v i i i e 21
2.3.8 Nointerface 1ibSBMLCONSTANTS & v v v v v v v v e v e 22
239 Noclass LibSBML . . . v ¢ v v i o e 22
2.3.10 Noindividual ListOf* classes, butagenericListOf o .. 22
2.3.11 Useofdeprecation i o i i i e 23
Additional features provided by JSBML 24
3.1 Change liSteners o i e 24
3.2 Determination of the variable in AlgebraicRules. i i i i i it e e e e e e e e e e 24
3.3 The find* Methods o o i it e 25
3.4 Other utility classes provided by JSBML o i i e e e e e e e e e e e e e e e e e e e 25
3.4.1 Mathematical functions and constants o Lo e 25
3.4.2 Sometools for String manipulation L L L e e e e e e e e e e e e e e e 25
3.5 Loggingfacilities o oL e e e e e e e e e e e e e e e e e 25
3.5.1 Changing the log4j configuration i i i e e e e e e e e e e e e e e e e 25
3.5.2 Some example configurations L. e 26
3.6 USBMLMOUIES « . v v v v e 27
3.6.1 The 1ibSBMLio module: using libSBML for parsing SBML into JSBML data structures 27
3.6.2 The CellDesigner module: turning a JSBML-based application into a CellDesigner plugin 27
3.6.3 The libSBMLcompat module: a JSBML compatibility module for lilbSBML 30
3.6.4 The android module: a compatibility module for Android systems 30
3.6.5 The compare module: facilities for doing comparisons between lilbSBMLand JSBML 30
3.6.6 The tidy module: to produce a tidy XML output o o i i e e e e e e e e e e e e 30
3.7 Offinevalidation. o o e e e e e e e e e e e e e e 30
3.7.1 Basic procedure for using offline validation in JSSBML o oo 30
3.7.2 Providing custom constraints to the offline validator0, 31

Page 2 of 57

Section Contents

4 Implementing extensions in JSBML

4.1
4.2

4.3

4.4
45
46

Organizingthesourcecode v v i v i v it e e e
Creating the object hierarchy

4.2.1 Introducing new components and extending others

422 ListOfs i e e e e e e e e e
423 Methods for creatingnewobjectso oL
4.2.4 The methods equals, hashCode,andclone
Implementing the reader and writer for an SBML package
4.3.1 Reading o i e
4.3.2 WHEING . . . v e
Implementation checklist o o o oo
Eclipsecodetemplateso L e
SBML packages Overview v v v v i e e e e e e e e e e e e e e

5 Acknowledgments
A Frequently Asked Questions (FAQ)
B Open tasks in JSBML development

References

JSBML User Guide B Contents

Page 3 of 57

Getting started with JSBML JGML

JSBML is a Java™ library that will help you to read, write and manipulate SBML (Systems Biology Markup Language)
files [11, 12]. This chapter provides information for quickly getting started with using JSBML.

Before you can use JSBML, you will need to obtain a copy of the library. Section 1.1 below describes different ways of
doing this, and explains which additional libraries you may need. JSBML also requires the use of a Java Runtime
Environment (JRE) version 1.6 or later [33]. In the rest of this document, we assume that you have already installed a
suitable JRE or Java Development Kit (JDK), and know how to configure the Java class path on your system.

It is also essential to understand SBML in order to be able to use it (and JSBML) properly. If you are not already
familiar with SBML, a good starting point for learning about it is the latest SBML specification [35]. You can find
answers to many questions in the SBML FAQ [34] and optionally by asking on one of the SBML discussion lists [36].

1.1 Obtaining and using JSBML

We provide four options for obtaining a copy of JSBML: (1) download the JAR file distribution for JSBML complete
with dependencies, that is, packaged with third-party Java libraries needed by JSBML; (2) download the JAR file
distribution for JSBML excluding dependencies; (3) download the source code distribution; and (4) obtain the
source code directly from the project’s GitHub [24] repository. These four options are described below.

1.1.1 The JSBML archive with dependencies

The version of the archive that includes dependencies is a merged JAR file that contains all of JSBMLs required third-
party libraries. You can download it from the JSBML download directories on both GitHub and SourceForge ([22, 23]).
Once you have installed the JAR file on your computer, it is sufficient to add it to your project’s Java build and/or
class path in order to use JSBML.

1.1.2 The JSBML archive without dependencies

The version of the JSBML archive that excludes dependencies is a JAR file that contains only JSBML classes. You can
download it from the JSBML download areas on SourceForge and GitHub ([22, 23]). Since it does not include the
third-party libraries needed by JSBML to operate, you will need to obtain and download those libraries separately.
Table 1.1 lists what they are. Once you have installed the JSBML JAR file and these third-party libraries on your
computer, you will need to add them all to your project’s Java build and/or class path in order to use JSBML.

Table 1.1: List of other, third-party libraries needed by JSBML.

Library name Purpose Source URL

biojava-ontology-4.0.0.jar biojava ontology-related classes [17]. biojava.org

Unit-test support library; only needed if you

junit-4.8.jar . i
intend to run the tests in the tests folder.

WWww.junit.org

stax2-api-3.1.4.jar Used for reading and writing XML. docs.codehaus.org/display/WSTX/StAX2
woodstox-core-5.0.1.jar Used for reading and writing XML. woodstox.codehaus.org

Used for reading and writing XML. Provides a

staxmate-2.3.0.jar . .
more user-friendly StAX interface.

staxmate.codehaus.org

Used for reading and writing XML, specifically

xstream-1.3.1.jar ;)
parsing results from the SBML validator.

xstream.codehaus.org

Portion of the Jigsaw library (version from Dec.

jigsaw-dateParser. jar o . - jigsaw.w3.org

2010), containing classes for date manipulation.
log4j-1.2-api-2.3.jar
log4j-api-2.3.jar))
log4j-core-2.3.jar Libraries for logging diagnostics. logging.apache.org/log4j
log4j-slf4j-impl-2.3.jar
slf4j-api-1.7.21.jar Logging interface library. slf4j.org

JSBML User Guide B Chapter 1. Getting started with JSBML Page 4 of 57

http://biojava.org
http://www.junit.org
http://docs.codehaus.org/display/WSTX/StAX2
http://woodstox.codehaus.org
http://staxmate.codehaus.org
http://xstream.codehaus.org
http://jigsaw.w3.org
http://logging.apache.org/log4j
http://www.slf4j.org

Qe W N e

1

1

™

>l ant compile

Section 1.1. Obtaining and using JSBML

1.1.3 Maven dependencies

JSBML can also be obtained through Apache Maven [2]. If you are already using Maven in your project, you can add
JSBML as a dependency by adding these lines into your project’s pom. xml file:

<dependencies>
<dependency>
<groupId>org.sbml. jsbml</groupId>
<artifactId>jsbml</artifactId>
<version>1.2</version>
</dependency>
</dependencies>

Maven instructions to add to your pom.xml.

The jsbml artifact will include jsbml-core plus the JSBML extensions that support all available SBML Level 3
packages. With this approach, there is no need to list all the JSBML extensions by hand, and when a new one is
developed, you will get it without having to make too many changes to your pom. xml files.

If you want to select the JSBML extensions that get included in your project, you can opt to list them one by
one, although this is not recommended practice. Instructions for doing this can be found at http://sbhml.org/
Software/JSBML/docs/Maven_Configuration.

1.1.4 The JSBML source archive

The source distribution for JSBML is similar to the JAR distribution that excludes third-party dependency libraries,
except that the JSBML files are not compiled into class files; you must compile them yourself. As with the other
options described above, the source distribution is available from the JSBML download areas on SourceForge and
GitHub ([22, 23]), as an archive file in either ZIP or gzip’ed TAR format.

You may download the archive in whichever format is more convenient for you, and unpack it on your computer
somewhere. The act of unpacking the archive will create a folder on your computer named after the distribution
version; for example, this may be “jsbml-1.2". Next, compile the Java source code. JSBML comes with a build file for
Apache Ant [1]; you can use other approaches for compiling the JSBML classes and performing other tasks, but Ant
provides an especially convenient approach. For the rest of the instructions below, we use Ant. Here is an example
of how to compile the JSBML class files after you have unpacked the source code archive:

cd jsbml-1.2

Compiling JSBML with Ant; this example uses Bash shell syntax.

Next, if you wish to run the self-tests included with JSBML, you can do so by running the following command:

ant test

Running the unit tests provided with JSBML.

Finally, if you want to produce a JAR file containing all the JSBML compiled class files, run the following command:

ant jar

Creating a JAR file.

1.1.5 The JSBML source code repository

The fourth approach to obtaining a copy of JSBML is to retrieve it directly from the project GitHub repository [24].
Here is an example of how to retrieve the latest version of the JSBML sources:

git clone --recursive git@github.com:sbmlteam/jsbml.git jsbml
cd jsbml

Downloading the latest JSSBML sources from the JSBML project’s GitHub repository.

JSBML User Guide B Chapter 1. Getting started with JSBML Page 5 of 57

http://sbml.org/Software/JSBML/docs/Maven_Configuration
http://sbml.org/Software/JSBML/docs/Maven_Configuration

™

Section 1.1. Obtaining and using JSBML

(The name you give to the copy on your computer is up to you. We used “jsbml” in this example, but you could
name the folder something else if you wish.) Once you have retrieved the folder from the repository, you can compile
the source files and create a JAR file. Please refer to the instructions in Section 1.1.4 on the preceding page.

The JSBML git repository contains copies of all the third-party libraries listed in Table 1.1 on page 4 and needed by
JSBML. They are located in the folder “jsbml”/core/1ib.

1.1.6 Setting up Eclipse

To set up Eclipse to work with JSBML, first add the core/src, core/test and core/resources folder of the JSBML
distribution to your Eclipse build path, and add all of the . jar files found in the core/1ib folder.

Next, you need to do an extra step to configure the annotation processor, because the different parsers in JSBML are
registered automatically using Java annotations. To configure the annotation processor in Eclipse, follow the instruc-
tions given on the web page https://github.com/niko-rodrigue/spi/blob/wiki/EclipseSettings.md. The
JAR file of the annotation processor is located in the JSBML source tree at “ jsbml” /core/1ib/spi-full-0.2.4. jar.
If you cloned the full JSBML source tree, you can find in it a folder named dev, which contains a README. txt file
that has also these instructions and other important information. Finally, you can run the Eclipse ParserManager
class to check that the list of parsers are not empty and that they contain the parsers you need.

1.1.7 Optional extensions, modules and examples available for JSBML

JSBML provides a number of additional extensions, modules and example programs that you may find useful in
your work. The JSBML extensions are optional add-ons that implement support for SBML Level 3 Packages; these
packages extend SBML syntax to support, for example, storing the layout of a model’s graphical diagram directly in
the SBML file. The JSBML modules provide additional features and interfaces, for example, to allow CellDesigner [13]
plugins to use JSBML. Finally, the JSBML examples are full-fledged applications that demonstrate the use of JSBML in
actual running software. Each of these optional components of JSBML is available from the project’s code repository
(and in some cases, from the download areas on SourceForge and GitHub [22, 23]).

JSBML Extensions

The extensions folder in the JSBML source tree contains a separate subfolder for each currently-implemented
JSBML extension. Each of these has its own Ant build script, located in a file named “build.xml” within the
extension’s subfolder. To build, for example, the 1layout extension, you could do the following:

cd extensions/layout
>l ant compile

Compiling the JSBML “l1ayout” extension.
JSBML Modules

The currently-available modules are summarized in Table 1.2 on the following page. Binary versions of the modules
can be found at the JSBML download sites ([22, 23]); you can also build them from the JSBML source tree. Within
the modules folder, you will find a separate subdirectory for each module. Most their own Ant build scripts, located
in a file named “build.xml”. You can build a module by performing steps such as in the following example:

cd modules/tidy
ant jar

Compiling the JSBML “layout” extension.

Note: at the time of this writing, only the tidy, CellDesigner and the 1ibSBMLio module have been tested exten-
sively. You can find more information and explanation about the JSBML modules in Section 3.6 on page 27.

JSBML Examples

The examples folder contains a separate subfolder for each sample application. At the time of this writing, there is
only one example available. Similar to the extensions and modules, you can build the sample application from the
source code. Please refer to the “README. txt” file in the examples/sbmlbargraph folder to learn more.

JSBML User Guide B Chapter 1. Getting started with JSBML Page 6 of 57

https://github.com/niko-rodrigue/spi/blob/wiki/EclipseSettings.md

N

Section 1.2. Writing your first JSBML application

Table 1.2: JSBML modules available today.

Module name Purpose

android Support for writing JSBML-based programs for Android OS.

celldesigner A bridge module that supports writing JSBML-based plugins for CellDesigner [13]
compare Facilities for doing comparisons between libSBML and JSBML

1ibSBMLcompat A module that allows easier switching between libSBML and JSBML by providing wrapper classes replicating
much of libSBMLs API in JSBML (in development)

1ibSBMLio A libSBML communications layer.

tidy A warper around the SBMLWriter class that use the jtidy library [25] to format properly the resulting XML.

1.2 Hello World: writing your first JSBML applications

In this section, we present two examples of using JSBML. The first is a program that reads a file containing an SBML
document and displays its components in a Java JTree graphical object. The second example illustrates the creation
of an object representing an SBML document (which, in JSBML, is represented programmatically using an object of
class SBMLDocument), as well as writing that object to a file. These basic examples should help serve as a foundation
for writing your own, more elaborate programs.

1.2.1 Reading and visualizing an SBMLDocument object

Figure 1.2 on the following page shows the listing of a simple program called “JSBMLvisualizer”. The source is
included in the JSBML distribution, in the “doc/user_guide/src” subdirectory. As with most simple JSBML-based
programs, to compile and execute “JSBMLvisualizer”, you would execute the following sequence of commands:

javac -classpath classpath JSBMLvisualizer.java
java -classpath classpath JSBMLvisualizer

Compiling and executing the example program.

In the example commands above, replace the placeholder text

classpath with the actual Java class path for the JSBML libraries ~ SBML Level 2 Version 4

and its dependencies on your particular computer; we do not show S etofCompartments

an exact value here because it depends on where you have installed _ llstcgg;’:g;”:”t

the JAR files for JSBML and the third-party libraries. oL

When run, the program expects to be given the path name of a - Itciparamsters

valid SBML file as its sole argument. It uses the static method = fstrgzzi;tilm

read() defined by the JSBML object class SBMLReader to read the = listofReactants

file; SBMLReader returns an object of class SBMLDocument, the main S | etoteroducts
SBML document container in JSBML. Next, the program constructs S itict sw{reactionl] : compartment1+s1
a new JSBMLvisualizer object, which is derived from the stan- = compartment*k1#51
dard Java JFrame class. It invokes the class constructor (line 9) with e
the identifier of the model in the SBML file, obtained by calling e
getModel () .getId() on the SBMLDocument object; this sets the = fV;';ti o1
JFrame’s title to the identifier of the model. Since JSBMLs SBase - s1<01

object (and all objects derived from it) implement the TreeNode in- o

terface, it is possible to create a JTree directly from the information - ES‘SOE"GI““SS‘Q”W““
in an SBMLDocument object instance. (To keep our examples short 1

and focused on the essentials of using JSBML, we have omitted error

checking steps. A real application program should guard against Figure 1.1: Tree representation of the con-

tents of the SBML test file “case®0026.xm/".

various situations, such 'as getModel O or. getId(O ret}lrning nu'll, In JSBML, the hierarchically structured
and take Steps to deal with them appl‘oprlately. You mlght also like SBMLDocument can be traversed recursjve[y
to read SBML files in a separate thread and monitor the progress of because all instances of SBase, the parent
reading the file in some progress bar.) class, implement the interface TreeNode.

Figure 1.1 shows the example output when applying the program to an SBML test model. Each element in the model
shows up as an item in the hierarchy displayed by the Java JTree object. In the working application, the user can

JSBML User Guide B Chapter 1. Getting started with JSBML Page 7 of 57

Section 1.2. Writing your first JSBML application

,,»}

public class JSBMLvisualizer extends JFrame {

Vi
* Generated serial version identifier.

*/

private static final long serialVersionUID = 6864318867423022411L;

Vi
* @param tree
: The SBML root node of an SBML file
*/
public JSBMLvisualizer(SBase tree) {
super ("SBML Structure Visualization");
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
getContentPane() .add(new JScrollPane(new JTree(tree)));
pack(Q);
setAlwaysOnTop(true);
setLocationRelativeTo(null);
setVisible(true);

* Main. Note: this doesn’t perform error checking, but should. It is an illustration only.

* @aram args path to an SBML file.

* @throws Exception

*/

public static void main(String[] args) throws Exception {
UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName());
new JSBMLvisualizer(SBMLReader.read(new File(args[0])));

}

Figure 1.2: Parsing and visualizing the content of an SBML file.

click on the control boxes (i.e., the boxed “+” and “-” symbols next to the element names) to collapse or expand the
views of the substructures of an SBML model.

We hasten to add that this simple program lacks many features that a proper application should possess. We kept
this example purposefully as simple as possible so that it is easier to focus on the main point of the example (which
is, how read to an SBML file). Perhaps the most important missing aspect is checking for and handling errors
that may be encountered when trying to read and parse the file given as argument to the program. Not all SBML
files are valid, owing to the unfortunate reality that not all software tools in the world produce syntactically and
semantically correct SBML. The JSBML library is flexible and attempts to carry on in the face of problems, because
it is the responsibility of the calling application to decide when and how problems should be handled. A realistic
application should be coded defensively: it should be prepared for the possibility of receiving badly-formed input,
check for any warnings and errors reported by SBULReader when it attempts to read the SBML file, and deal with
them appropriately. Elsewhere in this document, we provide examples of checking for errors.

Reading a file is nice, but what about writing an SBML file? That is the topic of the next example.

1.2.2 Creating and writing an SBMLDocument object

Our next example, shown in Figure 1.3 on the following page, illustrates how to construct an in-memory represen-
tation of an SBML model and write it to a file. The program first creates an SBMLDocument object, then attaches a
Model object to it, and then to the Model adds one Compartment, two Species, and one Reaction objects. To write
the contents to a file named “test.xml”, the program uses a static method on the JSBML class SBMLWriter.

This program also illustrates the preferred approach to the creation of JSBML object instances. The only constructor
you should need to use is the constructor of the SBULDocument, specifying the SBML Level and Version you want
to use. Each JSBML class should have createXYZ methods, where XYZ is the subclass name. For example, you
may have model .createSpecies(String), model.createReaction(String) or reaction.createReactant().
These methods will guarantee that callers create a proper representation of the SBML model.

JSBML User Guide B Chapter 1. Getting started with JSBML Page 8 of 57

Section 1.3. More examples

/** Creates an {@link SBMLDocument} and writes its contents to a file. **/
public class JSBMLexample implements TreeNodeChangelListener {

public JSBMLexample() throws Exception {
// Create a new SBMLDocument object, using SBML Level 3 Version 1.
SBMLDocument doc = new SBMLDocument(3, 1);
doc.addTreeNodeChangeListener (this);

// Create a new SBML model, and add a compartment to it.

Model model = doc.createModel("test_model™);

Compartment compartment = model.createCompartment("default");
compartment.setSize(1d);

// Create a model history object and add author information to it.

History hist = model.getHistory(); // Will create the History, if it does not exist

Creator creator = new Creator("Given Name", "Family Name", "Organisation", "My@EMail.com");
hist.addCreator(creator);

// Create some sample content in the SBML model.

Species specOne = model.createSpecies("test_specl"”, compartment);
Species specTwo = model.createSpecies("test_spec2", compartment);
Reaction sbReaction = model.createReaction("reaction_id");

// Add a substrate (SBO:0000015) and product (SBO:0000011) to the reaction.
SpeciesReference subs = sbReaction.createReactant(specOne);
subs.setSBOTerm(15);

SpeciesReference prod = sbReaction.createProduct(specTwo);
prod.setSBOTerm(11);

// For brevity, we omit error checking, BUT YOU SHOULD CALL doc.checkConsistency() and check the error log.

// Write the SBML document to a file.
SBMLUWriter.write(doc, "test.xml", "JSBMLexample", "1.0");
}

/** Main routine. This does not take any arguments. */

public static void main(String[] args) throws Exception {
new JSBMLexample();

3

/* Methods for TreeNodeChangelListener, to respond to events from SBaseChangedListener. */
@Override
public void nodeAdded(TreeNode sb) {
System.out.println("[ADD] " + sb);
}

@Override
public void nodeRemoved(TreeNodeRemovedEvent evt) {
System.out.println("[RMV] " + evt.getSource());

}

@Override
public void propertyChange(PropertyChangeEvent ev) {
System.out.println("[CHG] " + ev);
3
3

Figure 1.3: An example of Creating a new SBMLDocument object and writing its content into a file. (This file is available
as “doc/user_guide/src/org/sbml/jsbml/demo/JSBMLexample. java”in the JSBML distribution.)

1.3 More examples

Figure 3.3 on page 27 illustrates the conversion of libSBML data structures into JSBML data objects. Figure 3.4 on
page 28 demonstrates the implementation of CellDesigner’s abstract class PluginAction and Listing 3.1 on page 29
gives a complete example for writing CellDesigner plugins with JSBML. More detailed explanations of JSBMLs
modules can be found in Section 3.6, and more complex examples of using JSBML are available from the JSBML
SourceForge repository. (Please see Section 1.1.7 on page 6 for information about how to obtain them.)

JSBML User Guide B Chapter 1. Getting started with JSBML Page 9 of 57

Differences between JSBML and libSBML JSBML

Prior to the availability of JSBML, the most widely-used API library for SBML offering a Java interface has been
libSBML [7]. As a result, many Java application developers working with SBML are already accustomed to the classes,
methods and general approach provided by libSBML. This chapter discusses the main differences between these
two libraries, and is aimed at current libSBML users who want to transition to using JSBML. We also provide some
programming examples and hints for how to use and work with JSBML. In addition, we provide an overview of the
type hierarchy and API of JSBML.

2.1 Why are there differences?

In developing a pure Java Application Programming Interface (API) for working with SBML, our intention was not to
simply reimplement the Java API already provided by libSBML [7]. We took the opportunity to rethink the API from
the ground up to produce something more natural for Java programmers; moreover, we benefited from being able
to take a fresh look at today’s entire set of SBML specifications [19, 20, 21] and redesign, for example, JSBMLSs type
hierarchy without the constraints of backwards compatibility that libSBML faces.

JSBML has also been developed as a library that provides more than only facilities for reading, manipulating, and
writing SBML files and data streams. Although SBML only defines the structure of representations of biological
processes in files and does not prescribe how its components should be stored in computer memory, many software
developers nevertheless find it convenient to follow similar representational structures in their programs. With
this in mind, we designed JSBML with the intention that it be directly usable as a flexible internal data structure
for numerical computation, visualization, and more. With the help of its modules, JSBML can also be used as a
communication layer between applications. For instance, JSBML facilitates the implementation of plugins for
CellDesigner [13], a popular software application for modeling and simulation in systems biology. Finally, JSBML
(like libSBML before it) hides some of the differences and inconsistencies in SBML that grew into the language over
the years as it evolved from Level to Level and Version to Version; this makes it considerably easier for developers to
support multiple Levels/Versions of SBML transparently.

Where possible, we maintained many of ibSBMLs naming conventions for methods and variables. Owing to the very
different backgrounds of the two libraries, and the fact that libSBML is implemented in C and C++ , some differences
are unavoidable. To help libSBML developers transition more easily to using JSBML, we provide a compatibility
module that implements many libSBML methods as adaptors around the corresponding JSBML methods.

2.2 Differences between the class hierarchies

Wherever multiple SBML elements defined in at least one SBML Level/Version combination share attributes,
JSBML provides a common superclass, or at least a common interface, that gathers methods for manipulating the
shared properties. Consequently, JSBMLs type hierarchy is richer than libSBMLS (see Figure 2.1 to Figure 2.5 on
pages 11-17).

Just as in libSBML, all SBML objects derived from SBMLs SBase extend the JSBML abstract class SBase, but in
JSBML, SBase is an interface rather than an object class. This allows more complex relations to be defined between
derived data types. In contrast to libSBML, JSBMLs SBase extends the interface TreeNodeWithChangeSupport,
which in turn extends three other interfaces: Cloneable, Serializable, and TreeNode (Figure 2.2). This brings with
it various advantages. One is that, because all elements defined in JSBML override the clone () method from the
class java.lang.Object, all JSBML elements can be deeply copied and are therefore cloneable. Further, extending
the interface Serializable makes it possible for JSBML objects to be stored in binary form without having to write
them explicitly to an SBML file. In this way, programs can easily load and save their in-memory objects or send data
structures across a network connection without the need of additional file encoding and subsequent parsing.

The third interface extended by SBase, TreeNode is defined in Java’s Swing package; however, TreeNode is actually
independent of any graphical information. (We hasten to add that JSBML does not depend on any particular
graphical user interface, and no other classes are initialized when loading TreeNode from Java Swing.) TreeNode
defines recursive methods on hierarchically structured data types, such as iteration over all successors. This means
that, if a developer so desires, all instances of JSBML's SBase interface can be passed directly to the Java Swing

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 10 of 57

Section 2.2. Differences between the class hierarchies

‘(weibelp sy} ul J18pJoq pa. B Yyiim payiew umoys) utbnydasegsiderisqy vojejuswsadwi joessqe sy pue utbnydasegds
80BJIB]UI 8Y] SPPE (| UOISIBA TGS ‘Sebexoed g 1aA87 TNGS 11oddns o} 18pio uj "papasu 8.k s1oa[qo JO SalyoIeIaly SSOJoB SU0BIado 10 SPONDIIL JO S8OUB)SUI JI8ABIBYM UBYM
asn o] Asea way) seyew yolym ‘seinqlie pue spoylaw uowwoo Auew aseys (sesseoqns Jisyj (e pue) Asyl ‘sny; f1aoddnssbuey)y1 TMIPONDIIL WO POALISP SS8|ayiionau
aJe a@segs woij pealsp buiaq Ajjenjoe se JNgS Aq paulsp jou a.e Jey) sjusuodwod JNGS usAe “JNGSI Ul "Seoelajul pue Sasse[o asay) Jo Aljeuonoun) 8yl apiroid osje asegs
JO S8SSB|OQNS ||\ "9PONDDIL PUB ‘DTRZITRTIJISS ‘DTRIUOTD S82BL8jUl BABP 8y} Spusixe uin) ul yoiym ‘(JWGSr Aq paulep ssejo iayjoue) 1xoddnsabuey)yl IMSPONSSIL
aorlIB)UI 8Y] pudixe dseds bunew Ag -siewweiboid eaer Jo) saiiqedes [npuemod aiow Jojjo INq “TNGSQll Ul Jusjeainba ou aAey welbeIp Siy) ul S8oBldlUl pUB S8SSE[O Jay]o
Aueyy TNGSql Ul Seinjes) Buipuodsa.iod aAey jou op Jeyl TGS, ul sedA] Blep ‘Joeiisqe Saseo JSow Ul ‘feuonippe aJe anjq ul paiojod sjuswsalq “JNGSql ul AI0ISTHTSPON
pue I01BIIDTOPON O] puodse.iod ‘AI0AISTH pue I01edd) MojeA ul paiojod suswsje oy “JNGS, ul SJornijsuod JNgS uew oyl jo Ayoseisly odA) eyy :p°z ainbi4

uswyedwoo Jowesed sapadg

souasejey
seads

oIny ainy
ey wewubissy

ainy
ofesqably

soussejeysaiads
JoYIPOI

o|qeueA
<<odRpOU>>

=N
uensuo fero wen meq JewuBissy wowubissy | 1 \ oousiojeysodS / op0, odA| adAL mmu_.szwxm onoser fuuenp
u el 1ea Anowonoilg onaury ueng i \ oduig | 19PON uewyedwon soadg ammm.n(N Hoeey <<aoepolU>>
i
<

uswnooq
was

JuowuBissy

osegspawey [€
<<eoepolU>>

10BASqY

JBUIBIIODUIEN
wensqy

wnumesegs |-~ 777 7
<<eoBpRIUP> I

1
" N WINPEALBALIM
1
1

asegs
JoeAsqy

JOUIBOOUIBIN
uonelouuy g \ esegSpalEN

1012010
N <<eoepiojuP>>

so\depy
9pON@RIL

Juswa|3
uoyerouuy

wbnig
asegsioesqy

oseggpaweN
<<eoBjIOWUB>

7 apon

JouaisTeBUBD
9poN©aIL
oidwis

wbnid
osegs
<<eoepolUP>

apooei
Joedsqy

2 v
woddngebueyouim
9pON@8IL

<<ooRpOUB> N

JousisroBueyD
apoNeel]
<<eoRpiEIUP>

woAzebuey)
BpON@8IL

. I N N
. N N
s i N N
61
wangetueo I s, agezimes ageouong aponarL n
<<aoejiolu>> <<eoeRluP> i i ’ *
@ab ejep enepr
g

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML

Page 11 of 57

Section 2.2. Differences between the class hierarchies

class JTree for easy visualization. The program shown in Figure 1.2 on page 8 (and whose output is presented
in Figure 1.1 on page 7) demonstrates the simple code needed to parse an SBML file and immediately display its
contents in a JFrame. The ASTNode class in JSBML is also derived from all these three interfaces and can hence be
cloned, serialized, and visualized in the same way.

«interface»
TreeNode
\
\

s N

«interface» «interface» «interface»
Cloneable Serializable Comparable<T>
~
X ~ \7
/ /s AN | ~N/ /

Term

-id

- name
- def
-term

| TreeNodeChangeListenerl

| AnnotationE lement

'
! l
«interface» Triple
TreeNodeWithChangeSupport - triple
X R
e
Ve \
7 7 \
P Abstrac tTreeN ode
«interface»
SBase # listOfListeners
parent
7 0
o - / \ : listener
Ve / \
s AbstractSBase
' "
7 - annotation
- extensions
«interface» «interface» ~W
SBaseWithDerive dUnit NamedSBase - metald XMLToken |
- usedNamespaces D
- declaredNamespaces
7/ - notesXM LNode
/ 7 / \ - sboTerm
/ 7 / \ | Q 0..1Ngnnotation
7 \ 0.1 ;
notes
/ s / «use»
/ 7 / \
g \
I - / SBO)
7
L L Abstrac tNamedS Base - alias2sbo
«interface» «interface» - - prefix
NamedSBaseWithDerive dUnit UniqueNamedSBase -id - sbo
- name .
[P K - sbo2alias
Ny - terms
| N
N
I ~
| N
N
| N
«interface» Abstrac tNamedS Ba s eW ithUnit
CallableSBase # unitsID
Q
0.1
units

UnitDefinition

Annotation

- about

- annotationNamespaces

- extensions

- history

- listOfCVTerms

- nonRDFannotation

- rdfAnnotationNamespaces

History

- creation

- listOfCreators

- listOfModification
- modified

0S> 0.*

CVTerm

- qualifier
- resourceURIs
- type

modification \greator

Creator

- email

- familyName
- givenName
- organisation

Figure 2.2: The interface SBase. This figure shows the most important top-level data structures in JSBML, with a focus on
the differences compared to libSBML. For the sake of clarity, we have omitted all the methods on the classes shown here.
As can be seen in this diagram, all data types that represent SBML constructs in JSBML extend AbstractTreeNode.
Derivatives of SBase extend either one of the two abstract classes AbstractSBase or AbstractNamedSBase, which
in turn also extend AbstractTreeNode. The class SBO implements facilities for parsing the ontology file provided on
the SBO web site (http://www.ebi.ac.uk/sbo/main/)in OBO format (Open Biomedical Ontologies), using a parser
provided by the BioJava project [17]. SBO stores its ontology in the classes Term that are interrelated in Triples consisting
of subject, predicate, and object (each being an instance of Term).

2.2.1 Common interface for hierarchical structures: AbstractTreeNode

When reading the SBML specifications [19, 20, 21], it quickly becomes apparent that an SBML model has a tree-
shaped, hierarchical structure, with SBase being the superclass of nearly all other SBML components. In JSBML, other

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML

Page 12 of 57

http://www.ebi.ac.uk/sbo/main/

Section 2.2. Differences between the class hierarchies

kinds of objects besides SBase are also organized hierarchically within an SBMLDocument. To unify the programming
interfaces for all of these kinds of objects, JSBML defines abstract data types as top-level ancestors for its SBase
implementation as well as all other hierarchical elements, such as Annotation, ASTNode, Creator, CVTerm, History,
and XMLNode (for notes in XHTML format).

As mentioned above, the interface TreeNodeWithChangeSupport defines a cloneable and serializable version of
TreeNode. (See the diagram in Figure 2.2 on the previous page.) In addition, it also provides methods to notify
dedicated TreeNodeChangeListener class objects about any changes within the data structure. Its abstract imple-
mentation, AbstractTreeNode, implements many of the methods inherited from TreeNodeWithChangeSupport
and also maintains a list of change listeners (implemented as TreeNodeChangeListeners). Furthermore, this class
contains a basic implementation of the methods equals and hashCode, which both make use of a recursive call
over all descendants within the hierarchical SBML data structure. By basing the object definitions on this class, the
implementation of all derived classes has become much simpler.

2.2.2 Common root of SBML components: AbstractSBase

With SBase being an interface rather than an object class, most SBML-related object classes in JSBML extend the
abstract implementation AbstractSBase, as shown in Figure 2.2 on the preceding page. One of the features of this
abstract class is that it tracks the SBML Level and Version of every concrete object implementing it. The need for
tracking each object’s Level+Version combination individually (a feature shared with libSBML) may seem odd at
first. The need arises because a software system may need to work with more than one combination at a given time;
it may also need to create individual SBML components before they are hooked into SBMLDocument, which again
requires that individual objects know the SBML Level and Version for which they were created.

2.2.3 Interface for SBML components with identifiers: NamedSBase

Some classes of objects derived from SBase in SBML contain an identifier, colloquially often simply called the id.
JSBML gathers all elements that have SBML identifiers under the common interface NamedSBase. The JSBML class
AbstractNamedSBase extends AbstractSBase and implements this interface.

The interface UniqueNamedSBase is shared by those elements whose identifiers must be unique within the model.
The identifiers of all instances of NamedSBase that do not implement UniqueNamedSBase but belong to the same
group, such as all UnitDefinition instances, must be unique if these identifiers are defined. The Boolean method
isIdMandatory() on NamedSBase indicates if an identifier must be defined for an element in order to create a valid
SBML data structure. This is required in JSBML because the Model object stores direct pointers in the form of a hash
from the identifier of the corresponding object if isIdMandatory () returns true. The method decides if registering
an element for its identifier has been a success even if no identifier has been defined for this element. It is necessary
to have the method isIdMandatory (), because even if something implements UniqueNamedSBase, the identifier
might be optional, as is the case with SimpleSpeciesReference . But the Model class has to decide if and where
to store the identifier-to-element mapping in its hash. For details, see the Model class, where you can find some
methods named registerIds, in which the Boolean method is called.

The only elements with non-unique identifiers are UnitDefinition, whose identifiers exist in a separate namespace,
and LocalParameter, whose identifiers may shadow the identifiers of global elements. (However, within a given list
of UnitDefinition objects or list of LocalParameter objects, duplicate identifiers are not allowed.)

Internally, JSBML only uses the attribute id for unique identifiers. When you work with SBML Level 1, where the
SBML specifications only define name attributes (i.e., no identifiers) for elements, calls to setName (String) are
redirected to setId(String). For all other SBML Levels, an SBML element’s name can be specified separately from
the id and does not have to be unique. In contrast to the identifier, there is no syntax check on the name because it
can consist of any UTF-8 character. The class that manipulates identifiers and names is AbstractNamedSBase; all
classes with identifiers and names (optional or mandatory) are derived from AbstractNamedSBase. Accordingly,
getName () returns the identifier if working with SBML Level 1, but internally it is redirected to getId(). For all
other Levels, getName () and getId() may yield different values, depending on what is set for the class.

Summarizing, all classes in JSBML that implement the (empty) interface UniqueNamedSBase are types of SBase,
more precisely NamedSBase (interface) or AbstractNamedSBase (abstract class), whose identifier must be unique
through the entire SBML model if it is set. UnitDefinition and LocalParameter do not implement this in-
terface. These are NamedSBases, whose identifier may override the identifiers of elements that do implement

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 13 of 57

Section 2.2. Differences between the class hierarchies

UniqueNamedSBase, but not other UnitDefinitions or other LocalParameters within the same KineticLaw. A
Level and Version dependent syntax check ensures the validity of identifiers. In this way, the correctness of the
model is ensured and the Model class can centrally maintain hashes for elements with identifiers. This significantly
speeds up the getXXX(String id) methods.

2.2.4 Interface for SBML components with units: SBaseWithDerivedUnit

Many SBML components represent some quantitative value with which a unit of measurement is associated.
However, the numerical value of an SBML component does not necessarily have to be defined explicitly in the
model; it may instead be determined by a mathematical formula contained in a given SBase object in the model. This
implies that the unit associated with the value may be derivable. In JSBML, the interface SBaseWithDerivedUnit is
used to represent all components that either explicitly or implicitly contain some unit. Figure 2.3 on the next page
shows this part of JSBMLSs type hierarchy in more detail.

If the SBML component can be addressed with an identifier (which means that it has an id field in SBML), it
will also implement the JSBML interface NamedSBaseWithDerivedUnit, and if it can appear within a formula
(which in JSBML, is represented using ASTNode, discussed further below), the entity will further implement the
interface CallableSBase, a special case of NamedSBaseWithDerivedUnit. When a component can be assigned a
unit explicitly, in JSBML the SBaseWithUnit serves as its superclass. JSBML further defines the convenience class
AbstractNamedSBaseWithUnit; it extends AbstractNamedSBase and implements interfaces SBaseWithUnit and
NamedSBaseWithDerivedUnit. All elements derived from this abstract class may therefore declare a unit and can
be addressed using an unambiguous SBML identifier.

In JSBML, the interface Quantity describes an element that is associated with a value, has at least a derived unit,
and can be addressed using its unambiguous identifier. JSBML uses the abstract class QuantityWithUnit for a
Quantity that explicitly declares its unit. If the corresponding SBML component includes a Boolean flag to indicate
whether it is a constant or a variable, JSBML represents such a type using the interface Variable.

SBML variables that have a defined unit are represented as Symbol objects. (See Figure 2.3 on the following page.)
Thus, the SBML elements Compartment, Parameter, and Species are all special cases of Symbol in JSBML. The
specification of SBML Level 3 introduced another type of Variable, which does not explicitly declare its unit:
SpeciesReference. Level 3 also introduced LocalParameter, which is a QuantityWithUnit but not a Variable
because it is always constant. Section 2.2.6 explains the interfaces used for changing the values of Variables.

2.2.5 Interface for SBML components containing a mathematical formula: MathContainer

The interface MathContainer in JSBML gathers all those elements that may contain mathematical expressions
encoded in abstract syntax trees (i.e., instances of ASTNode). The abstract class AbstractMathContainer serves as
actual superclass for the majority of the derived types. Figure 2.4 to Figure 2.5 on pages 16-17 give a better overview
of how these data structures are organized and how they relate to each other and other ones in JSBML.

2.2.6 Interface for SBML components that may change the value of a variable: Assignment

JSBML provides a unified interface, Assignment, for all objects that may change the value of some variable in
SBML. This interface uses the term variable for the element whose value can be changed depending on some
mathematical expression that is also present in the Assignment (because the interface Assignment extends the
interface MathContainer). Therefore, an Assignment contains methods such as set-/getVariable(Variable v)
and also isSetVariable() as well as unsetVariable().

In addition, JSBML also provides the methods set-/getSymbol (String symbol) in the InitialAssignment class
to make it easier to switch from 1ibSBML to JSBML. However, in JSBML, the preferred way is to apply the methods
setVariable(), either with String or Variable instances as arguments. Figure 2.5 on page 17 shows the class
hierarchy surrounding the Assignment interface in more detail.

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 14 of 57

«interface»

Section 2.2. Differences between the class hierarchies

SBase
. r N
~N
- |
7~
1
«interface» «interface»
SBaseWithDerive dUnit NamedSBase Abstrac5Base
~ NA
- 4 - 4 ~N
7 _ ~N
_ - ! _ ! ~ -
N
«interface» «interface» «nterface» Abstrac tNamedS Base
SBaseWithUnit NamedSBaseWithDerive dUnit UniqgueNamedSBase
NA ~
.« - b
>
- ~ |
7 ~

~ |

«interface»
CallableSBase

SimpleS peciesReference

“gszrr:";‘i‘t’j» ,I UnitDefinition
A X ’
, I
/ \ 1
A
«interface»
Variable

LocalParameter Symbol SpeciesReference
0..*
| Species | | Parameter | | Compartment outside
0..1

Figure 2.3: Part of JSBML's type hierarchy focusing on the interface Variable. In JSBML, those components of a model
that may change their value during a simulation are referred to as variables. The class Symbol serves as the abstract
superclass for variables that have units of measurement associated with them. Instances of Parameter do not contain
any additional fields. In Species, a Boolean switch decides whether its value is to be interpreted as an initial amount or
as an initial concentration. In contrast to Variables, LocalParameters represent constant unit-value pairs that can only
be accessed within their declaring KineticLaw.

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML

Page 15 of 57

ASTNode

- definitionURL

- denominator

- exponent

-id

- style

- className

- encoding

- isSetNumberType
- listOfNodes

- mantissa

- name

- numerator

- parentSBMLObject
- type

- unitld

- userObject

- variable

Section 2.2. Differences between the class hierarchies

«interface»

«interface»

«interface»

Cloneable TreeNode Serializable
K ~
N 4 7
N | 7
N
N |
«interface»
TreeNodeWithChangeSupport
< R
i’ \
s \
7
Abstract TreeNode A
- - «interface»
listOfListeners SBase
parent N,
b .
N
\
\

TreeNodeChangelListener

T
|
kcall»
|

Y

«interface»
ASTNodeCompiler

«interface»
CallableSBase

«interface»
SBaseWithDerivedUnit

4R

«interface»
NamedSBaseWithDerivedUnit

«interface»
MathContainer

AbstractMathContainer

- math

AbstractSBase

Figure 2.4: Abstract syntax trees (ASTs). The class AbstractMathContainer serves as the superclass for several
model components in JSBML. It provides methods to manipulate and access an instance of ASTNode, which can be
converted to or read from text strings containing formulas in a C-like infix syntax. Internally, AbstractMathContainers
only deal with instances of ASTNode. It should be noted that these abstract syntax trees do not implement the SBase
interface, but extend AbstractTreeNode instead.

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML

Page 16 of 57

Section 2.2. Differences between the class hierarchies

‘TNYD TRIGSIBTY pUe ‘YIBHAIISWOTYDITOIS ‘AITIOTI] ‘ARTD(JOf 8SED
8y} S/ SIL] "SPOYIaW 10 Spjalj [BUOKIPPE UMO Jidy] Jo AUB Uejuod Jou Op IUTe1U0IYILHIDRIASAY PUSIXS JBy) SOSSE|O aLW oS Jey) 8joN "I9T TdWo)dPONISY Jo uonejuswsadw ue
Buisn pejenjers 8q ued 8say] ‘s}oslqo SPONLSY JO WLO) 8Y] Ul PaIOIS 8Je SeA[eSWay] SeiNWLIo) 8y "TWGSS Ul SBjnw.io) [eoiewayiew ajgndiuew pue 8i0js Jey) Sjuaws|o J[e 1o}
SSBjoJadns ay) S8INiISU0D ‘IFUTLIUOIYIRIDRIISAY SSBJO PaALIBp Ajjoalip Sii AlginonJed ‘IsUTeIUO)YLR] 80BLSIUI 8 "SUOISS8IdxXd [BolWSYIeW 10} SI8UIBIU0Y) :6°g 84nbil4

anyaiey _ _ a|nyjuswubissy

ale|qeuen ~

a|nyoreiqably JIojeWeled|eoo0] asyun #

anolaxy
\
n
In
n
N
aisyun - 1
oueu - obessou - Jeisisiad - pr—— p— aiswunawn - 1
p! - anjeaenul - UIeWAIBLIOII0}S _ _ oy _ aisiunaouelsgns - I
uonuyaguonouny jutesuod 1066u1 Juawubissyeniu| Juswubissyiuang slajeweled[eooyois!| - \ I
meToneurY] , "
NP |

>
_-N |
. _ - N ,
L0 _--
Ypew - nnuiMmesegs
48UIRJLUODYIENIORIS QY «a0BHaUIN

aseggpatenanbiun
«aoepaju»

S e JunparuegUIMesegSpaweN
N «aoBpAU»

JaureyuoQuyieN
«aoBUBUN

A,

asegspaweN nunpaIeauNMesegs
«@oBUBUIN» «aoBpU»

asegs
RELIETE TR

9PON931110BISqY

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML

Page 17 of 57

Section 2.3. Differences between the APIs of JSBML and libSBML

2.3 Differences between the APIs of JSBML and libSBML

We strove to make JSBML be closely compatible with libSBML. However, because of the different programming
languages used, some differences are impossible to overcome. In other cases, an exact translation from libSBMLs
C/C++ code to Java would be inelegant and unnatural for Java users, conflicting with another important goal of
JSBML: to provide an API whose classes and methods behave, and are organized like, those in other Java libraries.

In this section, we discuss the most important differences in the APIs of JSBML and libSBML. We also provide some
examples of how the classes and methods in JSBML may be used.

2.3.1 Level and Version ValuePair

In libSBML, the Level and Version information is recorded as individual integers; by contrast, in JSBML it is stored
in a generic object, ValuePair, stored within an AbstractSBase instance. The class ValuePair implements the
Java interface Comparable and takes two values of any type that both also implement Comparable. Storing the
information in this way allows users to check for a specific Level/Version combination more naturally, as the
example in Figure 2.6 demonstrates. The method getLevelAndVersion() in AbstractSBase delivers an instance
of ValuePair with the Level and Version combination for the respective element.

if (mySBase.getLevelAndVersion() .compareTo(Integer.valueOf(2), Integer.valueOf(2)) < 0) {
throw new IllegalArgumentException("Cannot create a " + mySBase.getElementName() +
" with Level = " + getLevel() + " and Version = " + getVersion() + ".");

W N =

Figure 2.6: Example program fragment showing how to check for a minimal expected SBML Level/Version combination.

2.3.2 Abstract syntax trees for mathematical formulas

Both libSBML and JSBML define a class called ASTNode for in-memory storage and evaluation of abstract syntax
trees (ASTs) that represent mathematical formulas. These can be parsed either from Strings containing formulas
in a C-like infix syntax, or from a MathML representation. JSBMLs ASTNode class provides various methods to
transform ASTs to other formats, for instance, Strings in BIgX syntax. Several static methods also make it easy to
create syntax trees. The next example creates a new ASTNode which represents the sum of the two other nodes:

1| ASTNode myNode = ASTNode.sum(myLeftAstNode, myRightASTNode) ;

SBML specifies that mathematical formulas may contain references to the following kinds of components in a model:
Parameters, LocalParameters, FunctionDefinitions, Reactions, Compartments, Species, and in SBML Level 3,
SpeciesReferences. In JSBML, all of these classes implement a common interface, CallableSBase, which extends
the interface NamedSBaseWithDerivedUnit. This organization ensures that only identifiers of these particular
SBML components can be set in instances of ASTNode.

Constructors and other methods for CallableSBase

JSBML provides useful constructors and methods to work with instances of CallableSBase. The set method
changes the type of an ASTNode to ASTNode . Type . NAME and directly sets the name to the identifier of the given
CallableSBase. The get method looks for the corresponding object in the Model and returns it. If no such object
can be found or the type of the ASTNode is something different from ASTNode . Type . NAME, it throws an exception.

public void setVariable(CallableSBase variable) { ... }

public CallableSBase getVariable() { ... }
Getter and setter for CallableSBase.

The following are examples of methods for creating and manipulating complex ASTs. JSBML provides several static
methods (such as sum shown above) that create small trees from objects in memory. Other methods, such as plus,
frac and pow, change existing tree structures:

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 18 of 57

W N =

Section 2.3. Differences between the APIs of JSBML and libSBML

public ASTNode plus(CallableSBase nsb) { ... }

public static ASTNode frac(MathContainer container,
CallableSBase numerator, CallableSBase denominator) { ... }

public static ASTNode pow(MathContainer container,
CallableSBase basis, CallableSBase exponent) { ... }

Some examples for convenience methods, some of them static methods, provided by JSBML for working with ASTNodes.

In contrast to the static ASTNode. sum function at the beginning of this section, the frac and the pow methods
above take instances of CallableSBase as their arguments instead of ASTNode objects. Consequently, the parent
MathContainer must be passed to the methods in order to ensure that valid data structures are created. (In case of
methods that take ASTNode objects as arguments, such as the static ASTNode . sum, the parent MathContainer can
be taken from the first given node object.)

Finally, with the following ASTNode constructors, dedicated single nodes can be created whose type (from the
enumeration ASTNode . Type) will be NAME and whose name will be set to the identifier of the given CallableSBase.

public ASTNode(CallableSBase nsb) { ... }

public ASTNode(CallableSBase nsb, MathContainer parent) { ... }

The ASTNodeCompiler class

JSBML provides the interface ASTNodeCompiler; it allows users to create customized interpreters for the contents
of mathematical formulas encoded in abstract syntax trees. It is directly and recursively called from the ASTNode
class and returns an ASTNodeValue object, which wraps the possible evaluation results of the interpretation. As
alluded to above, JSBML provides several implementations of this interface; for instance, ASTNode objects can
be directly translated to C language-like Strings, BIgX, or MathML for further processing. In addition, the class
UnitsCompiler, which JSBML uses to derive the unit of an abstract syntax tree, also implements this interface.

2.3.3 Compartments

In SBML Level 3 [19], the domain of the attribute spatialDimensions on Compartment is no longer {0, 1,2, 3}, which
can be represented with a short value in Java, and is instead a real-numbered value (i.e., a value in R), which
requires a double value in Java. For this reason, the method getSpatialDimensions() in JSBML always returns a
double value. For consistency with libSBML, the Compartment class in JSBML also provides the redundant method
getSpatialDimensionsAsDouble() that returns the identical value; it is marked as a deprecated method.

2.3.4 Model history

Before SBML Level 3, only the Model object could have an associated history, that is, a description about the
person(s) who build the model, including names, email addresses, modification and creation dates. In Level 3
of SBML, it is possible to annotate every construct with a history. This is reflected in JSBML by the name of the
corresponding object—History—whereas it is named ModelHistory in libSBML. All instances of SBase in JSBML
contain methods to access and manipulate its History. Also, JSBML does not have libSBML:s classes ModelCreator
and ModelCreatorList because JSBML gathers its Creator objects in a generic List<Creator> in the History.

2.3.5 Units and unit definitions

There are differences between libSBML and JSBML:s interfaces for handling units. We describe them next.

The exponent attribute of units

In SBML Level 3 [19], the data type of the exponent attribute of a Unit object changed from int in previous
Levels to double values. To provide a uniform interface no matter which Level of SBML is being dealt with,
JSBMLs method getExponent () only returns double values. In libSBML, getExponent () always returns int,
and there is an additional method, getExponentAsDouble (), to handle the cases with double values. JSBML pro-

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 19 of 57

Section 2.3. Differences between the APIs of JSBML and libSBML

vides getExponentAsDouble () for compatibility with libSBML, but it is a redundant method in JSBMLs case and
therefore is marked as deprecated.

Predefined unit definitions

A model in JSBML always contains all predefined units defined by SBML. These can be accessed from an instance of
Model by calling the method getPredefinedUnit(String unit).

MIRIAM annotations [28] have been an integral part of SBML models since Level 2 Version 2. Recently, the Unit
Ontology (UO) [15] has been included in the set of supported ontology and online resources of MIRIAM annota-
tions [28]. Since all the predefined units in SBML have corresponding entries in the UO, JSBML automatically equips
those predefined units with the correct MIRIAM URI in form of a controlled vocabulary term (CVTerm) if the SBML
Level/Version combination of the model supports MIRIAM annotations. In addition, the enum Unit.Kind also
provides methods to directly obtain the entry from the UO that corresponds to a certain unit kind and also contains
methods to generate MIRIAM URIs accordingly. In this way, JSBML facilitates the annotation of user-defined units
and unit definitions with MIRIAM-compliant information.

Access to the units of an element

In JSBML, all SBML components whose value can be associated with a unit of measurement implement the interface
SBaseWithUnit. This interface provides methods to access an object representing the unit. Currently, the interface is
implemented by AbstractNamedSBaseWithUnit, ExplicitRule, and KineticLaw. Figure 2.1 on page 11 provides
an overview about the relationships between these and other classes and interfaces.

AbstractNamedSBaseWithUnit is the abstract superclass for Event and QuantityWithUnit. In the class Event,
all methods to deal with units are deprecated because the timeUnits attribute was removed in SBML Level 2
Version 2. The same holds true for instances of ExplicitRule and KineticLaw which both can only be explicitly
populated with units in SBML Level 1 for ExplicitRule and before SBML in Level 2, Version 3 for KineticLaw. By
contrast, the abstract class QuantityWithUnit serves as the superclass for LocalParameter and Symbol, which is
then the superclass of Compartment, Species, and (global) Parameter. With SBaseWithUnit being a subclass of
SBaseWithDerivedUnit, users can access the units of such an element in two different ways:

getUnit(): This method returns a String representation of the unit kind or the identifier of a unit definition in the
model that has been directly set by the user during the life time of the element. If nothing has been declared,
this method returns an empty String.

getDerivedUnit(): This method gives either the same result as getUnit () if some unit has been declared explicitly,
or it returns the predefined unit of the element for the given SBML Level/Version combination. If neither a
user-defined nor a predefined unit is available, this method returns an empty String.

For convenience, JSBML also provides corresponding methods to the ones above for directly obtaining an instance
of UnitDefinition. However, care must be taken when obtaining an instance of UnitDefinition from one of the
classes implementing SBaseWithUnit because it might happen that the model containing this SBaseWithUnit
does actually not contain the required instance of UnitDefinition and the method returns a UnitDefinition
that has just been created for convenience from the information provided by the class. It might therefore be useful
for callers to either check if the Model contains this UnitDefinition or to add it to the Model.

In case of KineticLaw it is even more difficult, because SBML Level 1 provides the ability to set the substance unit
and the time unit separately. To unify the API, we decided to also provide methods that allow the user to simply pass
one UnitDefinition or its identifier to KineticLaw. These methods then try to guess if a substance unit or time
unit is given. Furthermore, it is possible to pass a UnitDefinition representing a variant of substance per time
directly. In this case, the KineticLaw will memorize a direct link to this UnitDefinition in the model and also try
to save separate links to the time unit and the substance unit. However, this may cause a problem if the containing
Model does not contain separate UnitDefinitions for both entries.

2.3.6 Cloning when adding child nodes to instances of SBase

When adding elements such as a Species to a Model, libSBML will clone the object and add the clone to the Model.
In contrast, JSBML does not automatically perform cloning. This has the advantage that modifications on the
object belonging to the original pointer will also propagate to the element added to the Model; furthermore, this is

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 20 of 57

Section 2.3. Differences between the APIs of JSBML and libSBML

more efficient at run-time and also more intuitive for Java programmers. If cloning is necessary, users should call
the clone () method explicitly. Since all instances of SBase, and also Annotation, ASTNode, CVTerm, and History,
extend AbstractTreeNode (which in turn implements the interface Cloneable—see Figure 2.1 on page 11), all these
elements can be cloned naturally. However, when cloning an object in JSBML, such as an AbstractNamedSBase,
all children of this element will recursively be cloned before adding them to the new element. This is necessary
because the data structures specified in SBML define a tree, in which each element has exactly one parent. It is
important to note that some properties of the elements must not be copied when cloning:

1. The pointer to the parent node of the top level element that is recursively cloned is not copied and is left as
null, because the cloned object will get a parent set as soon as it is added or linked again to an existing tree.
Note that only the top-level element of the cloned subtree will have a null value as its parent. All subelements
will point to their correct parent element.

2. Thelist of TreeNodeChangeListener objects is used in all other setXX() methods. Copying pointers to these
may lead to unexpected behaviors, because during deep cloning, the listeners of the old object will suddenly
be informed about all changes to values within the new object. In cloning, all values of all child elements
will be touched, i.e., all listeners will have to be informed many times, but each time they will receive the
same value. Since they do not extend the Cloneable interface, we cannot clone them either; for this reason,
the cloned object has no TreeNodeChangeListener object attached to it. The user is responsible for adding
TreeNodeChangeListeners on the cloned object if they want to be notified of any changes to it.

3. Since release 1.0, JSBML supports storing user objects in any object derived from AbstractTreeNode. These
user objects are organized in a map data structure with object as key type, pointing to arbitrary user-defined
objects. Note that generally no deep cloning of these user objects is possible, but JSBML keeps a pointer to
these user objects in the cloned element.

2.3.7 Exceptions

In case of an error, JSBML methods will usually throw an exception, whereas libSBML methods return a numeric
error code instead. The libSBML approach is rooted in the need to support C-like languages, while exception
handling is more natural in Java. The JSBML approach of using exceptions helps programmers and users to avoid
creating invalid SBML data structures already when dealing with these in memory.

As per usual Java practice, JSBML methods declare that these may potentially throw exceptions. In this way, pro-
grammers can be aware of potential sources of problems already at the time of writing the source code. Examples of
the kinds of exceptions that JSBML methods may throw include ParseException, which may be thrown if a given
formula cannot be parsed properly into an ASTNode data structure, and InvalidArgumentException, which may
be thrown if inappropriate values are passed to methods.

The following are some examples of situations that lead to exceptions:

e An object representing a constant such as a Parameter whose constant attribute has been set to true cannot
be used as the Variable element in an Assignment.

¢ Aninstance of Priority can only be assigned to an Events if its level attribute has at least been set to three.

e Another example is the InvalidArgumentException that is thrown when trying to set an invalid identifier
String for an instance of AbstractNamedSBase.

e JSBML keeps track of all identifiers within a model. For each namespace it contains a separate map of
identifiers within the Model. It is therefore not possible to assign duplicate identifiers in case of elements that
implement the interface UniqueNamedSBase. For UnitDefinitions and LocalParameters separate maps
are maintained. Since local parameters are only visible within the KineticLaw that contain these, JSBML
will only prohibit having more than one local parameter within the same list that has the identical identifier.
All these maps are updated upon any changes within the model. When adding an element with an already
existing identifier for its namespace, or changing some identifier to a value that is already defined within this
namespace, JSBML will throw an exception.

¢ “Meta” identifiers must be unique through the entire SBML file. To ensure that no duplicate meta identifiers
are created, JSBML keeps a map of all meta identifiers on the level of the SBMLDocument, which is updated

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 21 of 57

Section 2.3. Differences between the APIs of JSBML and libSBML

upon any change of elements within the data structure. In this way, it is not possible to map the meta identifier
of some element to an already existing value or to add nodes to the SBML tree that contain a meta identifier
defined somewhere else within the tree. In both cases, JSBML will throw an exception. Since meta identifiers
can be generated in a fully automatic way (method nextMetaId() on SBMLDocument), users of JSBML should
not care about these identifiers at all. JSBML will automatically create meta identifiers where missing upon
writing an SBML file. (See Section 3.3 on page 25.)

¢ In case that spatial dimension units of a Species are defined whose surrounding Compartment has zero
dimensions or that has only substance units, JSBML also throws an exception.

Hence, you have to be aware of potential exceptions and errors when using JSBML, on the other hand this will
prevent you from doing obvious mistakes. The class SBMLReader in JSBML catches those errors and exceptions.
With the help of the logging utility, JSBML notifies users about syntactical problems in SBML files. JSBML follows
the rule that illegal or invalid properties are not set.

2.3.8 No interface 1ibSBMLConstants

JSBML does not contain an equivalent to libSBMLs 1ibSBMLConstants. The reason is that in JSBML, constants
are encoded in a more natural Java fashion, using the Java construct enum. For instance, all the fields starting with
the prefix AST_TYPE_* have a corresponding field in the ASTNode class itself. There you can find the enumeration
ASTNode. Type. Thus, instead of typing 1ibSBMLConstants.AST_TYPE_PLUS, you type ASTNode. Type.PLUS. The
same holds true for Unit.Kind. * corresponding to the 1ibSBMLConstants.UNIT_KIND_* fields.

2.3.9 No class 1ibSBML

JSBML contains no class called 1ibSBML simply because the library is called JSBML. In its place, there is a class
named JSBML. This class provides some methods similar to the ones provided in libSBMLs 1ibSBML, such as
getJSBMLDottedVersion() to obtain the current version of the JSBML library, which is 0.8 or 1.0-a* at the time
of writing this document. However, many other methods that you might expect to find there, if you are used to
libSBML, are located in the actual classes that are related with the function.

Here is an example of a method that is located on the relevant class. To convert between a String and a correspond-
ing Unit.Kind you would use the following:

1| Unit.Kind myKind = Unit.Kind.valueOf(myString);

Converting a string to a unit kind in JSBML.

Analogous to the above, the ASTNode class provides a method to parse C-like infix formula Strings according to the
specification of SBML Level 1 [21] into an abstract syntax tree. Therefore, in contrast to the 1ibSBML class, the class
JSBML contains only a few methods.

2.3.10 No individual ListOf* classes, but a generic ListOf

JSBML does not have a specific List0£* class for each type of SBase elements, which is unlike the case in libSBML.
In JSBML, we use a generic implementation List0f<? extends SBase> that enables the same class to be used for
each of the different ListOf* classes defined in SBML while keeping a type-safe class.

To help developers work with List0f* lists more conveniently, JSBML provides several methods that use the Java
Filter interface to search and filter the lists. For example, to query an instance of a List0£f* list in JSBML for
specific identifiers, or names, or both, you can apply the following filter:

1| NamedSBase nsb = myList.firstHit(new NameFilter(identifier));

Example of searching a list for an object with a particular identifier.

This will return the first element in the list with the given identifier. In SBML, a List0£* list object usually must not
contain multiple elements with the same identifier, so the element will usually be unique. The firstHit method
stops after finding one element that satisfies the given Filter. The ListOf<? extends SBase> class also offers a
filter method that takes a Filter object as argument and collects all elements accepted by that Filter object.

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 22 of 57

Section 2.3. Differences between the APIs of JSBML and libSBML

Various filters are already implemented in JSBML and made available for use in your programs, but you can easily
add your own custom filter. You only need to implement the Filter interface defined in the JSBML package
org.sbml. jsbml.util.filters. In that package, you can also find an OrFilter and an AndFilter, which take as
arguments multiple other filters. With the SBOFilter you can query for certain SBO annotations [26, 27] in your list;
similarly, the CVTermFilter helps you to identify SBase instances with a desired MIRIAM (Minimal Information
Required In the Annotation of Models) annotation [28]. For instances of ListOf<Species>, you can apply the
BoundaryConditionFilter to look for those species that operate on the boundary of the reaction system.

2.3.11 Use of deprecation

The intention of JSBML is to provide a Java library that supports the latest specifications of SBML. But we also want
to support earlier specifications. So JSBML provides methods and classes to cover elements and properties from
earlier SBML specifications as well, but these are often marked as being deprecated to help users avoid creating
models that refer to these elements.

JSBML also contains many methods added for greater compatibility with libSBML, but which programmers would
probably not use unless they were transitioning existing software from libSBML. For instance, a method such as
getNumXyz () is not considered to be very Java-like (but such methods are common for a C++ programming style).
Usually, Java programmers would expect the method being called getXyzCount () instead. For cases like this, JSBML
provides alternative methods and marks these methods that originate from libSBML as deprecated.

JSBML User Guide B Chapter 2. Differences between JSBML and libSBML Page 23 of 57

Additional features provided by JSBML JGML

The previous chapter covered many features of the JSBML API and how they compare to those provided by libSBMLs
API In addition to the features described in that chapter, JSBML also provides a number of capabilities that are not
found in libSBML. This chapter briefly introduces the most important additional capabilities.

3.1 Change listeners

JSBML offers the ability to listen to change events in the life of an SBML document. To benefit from this facility,
simply let your class implement the interface TreeNodeChangeListener and add it to the list of listeners in your
instance of SBMLDocument. You only have to implement three methods:

nodeAdded (TreeNode node): This method notifies the listener that the given TreeNode instance has just been
added to the SBMLDocument object. When this method is called, the given node is already fully linked to the
SBMLDocument, i.e., it has a valid parent that in turn points to the given node.

nodeRemoved (TreeNodeRemoveEvent evt): This method notifies the listener that a TreeNode has just been re-
moved, and therefore is no longer part of the SBMLDocument. The deleted element can be accessed using the
getSource() method of the given event object. The SBMLDocument will no longer contain pointers to this
node; however, the event object will contain a pointer to its former parent, and it can be accessed by calling
getPreviousParent on the event object. (This makes it possible to recognize where in the tree this node was
located and even to revert the deletion of the node.)

propertyChange (PropertyChangeEvent evt): This method provides detailed information about the change in a
value within the SBMLDocument. The object passed to this method is a TreeNodeChangeEvent, which provides
information about which TreeNode has been changed, which of its properties has been changed (as a String
representation of the name of the property), the previous value, and the new value.

These methods can help software track what their SBMLDocument objects are doing at any given time. Furthermore,
these features can be very useful in a graphical user interface, where, for example, the user might need to be asked
if he or she really wants to delete some element or to approve changes before making these persistent. Another
way this can be used is for writing log files of the model-building process automatically. To this end, JSBML already
provides the implementation SimpleTreeNodeChangeListener which notifies a logger about each change.

Note that the class TreeNodeChangeEvent extends the class java.beans.PropertyChangeEvent, which is derived
from java.util.EventObject. It should also be pointed out that the interface TreeNodeChangeListener extends
the interface java.beans.PropertyChangeListener which in turn extends the interface EventListener in the
package java.util. In this way, the event and listener data structures fit into common Java API idioms and allow
users also to make use of, e.g., EventHandlers to deal with changes in an SBML model.

As mentioned in Section 2.2.1 on page 12, all major objects implement the interface TreeNode, and its listeners are
notified about all changes that occur in any implementing data structure. The use of TreeNodeChangeListeners
allows a software application not only to keep track of changes in instances of SBase, but also changes inside of, e.g.,
CVTerm or History.

3.2 Determination of the variable in AlgebraicRules

JSBMLs OverdeterminationValidator provides methods to determine if a given model is overdetermined; it uses
the algorithm of Hopcroft and Karp [18].

OverdeterminationValidator simultaneously determines the free variable of each AlgebraicRule if possible.
The class AlgebraicRule also provides a convenience method, getDerivedVariable(), to compute and return
this free variable. However, we do not recommend calling this method except in limited circumstances, because each
call invokes the matching algorithm—an operation that may be expensive for large models. JSBML does not store
the results of applying the matching algorithm, because a change in the model’s structure could also change these
results and lead to an inconsistency. For models that contain multiple AlgebraicRule objects, it is instead more
efficient to compute the matching once by invoking OverdeterminationValidator. Please see the documentation
for AlgebraicRule for more details.

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 24 of 57

Section 3.3. The find* methods

3.3 The find* methods

JSBML provides developers with a number of find* methods on a Model to help query for elements based
on their identifiers or names. Software can search for various instances of SBase (for instance, CallableSBase,
NamedSBase, and NamedSBaseWithDerivedUnit); using methods such as findLocalParameters, findQuantity,
findQuantityWithUnit, findSymbol, and findVariable, software can also search for the corresponding model
element. They enable software to work with SBML models more easily, without the need for explicit separate
iteration loops for these common operations.

As of JSBML version 1.0, the find* methods do no longer query the model in an iterative way. Instead, the maps
described in Section 2.3.7 on page 21 are used to access elements based on their id attribute. Similarly, the
SBMLDocument can also directly access any of its subelements for a given metaid. Such a search can be performed
in logarithmic runtime, i.e., O(log, n).

3.4 Other utility classes provided by JSBML

JSBML also provides additional utility classes besides those mentioned above. In the paragraphs below, we describe
some of these classes in more detail. All of them are gathered in the package org.sbml. jsbml.util, where you can
also find a growing number of additional helpful classes.

3.4.1 Mathematical functions and constants

The class org.sbml. jsbml.util.Maths contains several static methods for mathematical operations not provided
by the standard Java class java.lang.Math. Most of these methods are basic operations, for instance, cot (double
x) or In(double x).The JSBML class Maths also provides some less commonly used methods, such as csc(double
x) or sech(double x) as well as double constants representing Avogadro’s number and the universal gas constant
R =8.314472J-mol~! -K~!. In this way, the functions and constants implemented in class Maths complement
standard Java with methods and numbers required by the SBML specifications [19, 20, 21].

3.4.2 Some tools for String manipulation

The JSBML class StringTools provides several methods for convenient String manipulation. These methods
are particularly useful when parsing or displaying double numbers in a Locale-dependent way. To this end, this
class predefines a selection of useful number formats. It can also wrap String elements into HTML code, mask
non-ASCII characters using corresponding HTML codes, efficiently concatenate Strings, or deliver the operating
system-dependent new line character.

3.5 Logging facilities

JSBML includes the logger provided by the log4j project [4]. Log4j allows us to use six levels of logging (TRACE, DEBUG,
INFO, WARN, ERROR, and FATAL) but internally, JSBML mainly uses ERROR, WARN, and DEBUG. The default configuration
of log4j used in JSBML can be found in the folder resources with the name log4j.properties. In this file, you
will find some documentation of which JSBML classes do some logging and at which levels.

If a software package using JSBML does not change the default settings, all the log messages, starting at the info
level (meaning info, warn, error and fatal), will be printed on the console. Some of these messages might be useful
to warn end-users that something has gone wrong.

3.5.1 Changing the log4j configuration

If you want to modify the default log4j behavior, you will need to create a custom log4j configuration file. The best
way to do this, as described in the log4j manual [4], is to use the environment variable log4j.configuration to
point to the desired configuration file. One way to accomplish this is to add the following option to your java
command (shown here for Unix/Linux and Mac OS X, but other operating systems have analogous facilities):

1| -Dlog4j.configuration=/home/user/myLog4j.properties

Command line option making log4j use a different configuration file. This syntax applies to Unix-like systems.

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 25 of 57

w ™

P

Section 3.5. Logging facilities

2| log4j.rootCategory=INFO, console

All logging output sent to the console

Console Display
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.layout=org.apache.log4j.PatternLayout

Pattern to output the caller’s file name and line number.
log4j.appender.console.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} - %5p (%¥F:%L) - %m%n

Log the messages from the SimpleTreeNodeChangelListener at the DEBUG Level
Allow to see all the changes that happened to the SBML elements
log4j.logger.org.sbml. jsbml.util=DEBUG

Figure 3.1: A simple log4j configuration example. This sets the logging level of loggers in the org.sbml. jsbml.util fo
DEBUG, causing all changes to SBML elements to be logged.

;| log4j.appender.mail.layout=org.apache.log4j.PatternLayout

22| log4j.appender. file.maxBackupIndex=5

26| log4j.appender.file.layout.ConversionPattern=%d{IS08601} %5p %c{1}:%L - %m%n

Log4j configuration file.
Logging is sent to a file and by email from the info level.
log4j.rootLogger=info, file, mail

Email appender definition.
It will send by email all messages from the error level.
log4j.appender.mail=org.apache.log4j.net.SMTPAppender

The following set of properties defines how often email messages are send.
log4j.appender.mail .BufferSize=1
log4j.appender.mail.SMTPHost="smtp.myservername.xx"
log4j.appender.mail .From=fromemail@myservername.xx
log4j.appender.mail . To=toemail@myservername.xx
log4j.appender.mail.Subject=Log ...
log4j.appender.mail.threshold=error

log4j.appender.mail.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n

File appender.
log4j.appender. file=org.apache.log4j.RollingFileAppender
log4j.appender.file.maxFileSize=100KB

log4j.appender.file.File=test.log
log4j.appender.file.threshold=info
log4j.appender.file.layout=org.apache.log4j.PatternLayout

Figure 3.2: Example of configuring log4j to send email messages for log events at the ERROR level.

3.5.2 Some example configurations

Figure 3.1 gives a short example of a log4j configuration file. The effect of this particular configuration is to change
the threshold of all loggers in the org. sbml. jsbml .util package to DEBUG, which results in all changes that happen
to SBML elements to be logged. The class SimpleTreeNodeChangeListener will then output the old value and the
new value whenever a setter methods is used on the SBML elements.

If your application is deployed in a server such as Tomcat [3], it may be useful to define a log4j “appender” that will
send some messages by email. Figure 3.2 gives an example of doing this. It configures log4j so that any messages at
the ERROR level are send by mail. All the messages are also written to a rolling log file.

Note that using log4j’s alternative, XML-based approach to defining configurations instead of a properties file,
you can configure log4j to direct some log messages to one appender and others to an other appender, using the
LevelRange filter. In this way, it would be possible to cause DEBUG messages to be written to a separate file.

Finally, be warned that when you enable the debug level on some loggers, they may produce copious output. You
may wish to investigate some of the freely-available software for log viewing [42] to work with the log files.

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 26 of 57

Section 3.6. JSBML modules

3.6 JSBML modules

JSBML modules extend the functionality of JSBML and are provided as separate libraries (packaged as JAR files).
With the help of the current JSBML modules, JSBML can be used, for example, as a communication layer between
your application and libSBML [7] or between your program and the program known as CellDesigner [13]. In addition,
the JSBML project plans to offers a compatibility module that helps to write code compatible with libSBML by
providing the same package structure and API as libSBMLSs Java language interface.

In the rest of this section, we provide examples of how to use the JSBML modules.

3.6.1 The 1ibSBMLio module: using libSBML for parsing SBML into JSBML data structures

The capabilities of the SBML validator constitutes one of the major strengths of ibSBML [7] in comparison to JSBML,
which does not yet contain a standalone validator for SBML, but makes use of the online validation provided at
http://sbml.org. However, if the platform-dependency of ibSBML does not hamper your application, or you want
to switch slowly from libSBML to JSBML, you may still read and write SBML models using libSBML in conjunction
with JSBML.

To facilitate this, the module 1ibSBMLio provides the classes LibSBMLReader and LibSBMLWriter. Figure 3.3
provides a short code example illustrating the use of LibSBMLReader. The program displays the content of an SBML
filein a JTree, similar to what is shown in Figure 1.1 on page 7.

As of version 1.0 of JSBML, the 1ibSBMLio module also contains specialized TreeNodeChangeListeners that syn-
chronize any change in the JSBML data structure with corresponding libSBML data structures.

public class 1ibSBMLio_example {

public static void main(String[] args) {
try {
6 // Load 1ibSBML:
7 System.loadLibrary("sbmlj");
8 // Extra check to be sure we have access to 1ibSBHML:
9 Class.forName("org.sbml.libsbml.libsbml");

1
3 /** @aram args the path to a valid SBML file. */
4

1 // Read SBML file using 1ibSBML and convert it to JSBML:
12 LibSBMLReader reader = new LibSBMLReader();
13 SBMLDocument doc = reader.convertSBMLDocument (args[0]);

15 // Run some application:

16 new JSBMLvisualizer(doc);
17 } catch (Throwable e) {

18 e.printStackTrace();

Figure 3.3: A simple example showing how to convert libSBML data structures into JSBML data objects. To run this
example, you need libSBML installed on your system. You may need to set environment variables, e.g., the LD_LIBRARY_-
PATH under Linux, to values appropriate for your system. For details, please see the libSBML documentation [30].

3.6.2 The CellDesigner module: turning a JSBML-based application into a CellDesigner plugin

Once an application has been implemented based on JSBML, it can easily be accessed from CellDesigner’s plugin
menu [13]. To support this, it is necessary to extend two classes that are defined in CellDesigner’s plugin APL
Figure 3.4 to 3.1 on pages 28-29 show a simple example of (1) how to pass a model data structure in a CellDesigner
plugin to the translator in JSBML, and (2) creating a plugin for CellDesigner which displays the SBML data structure
in a tree, like the example in Figure 1.1 on page 7.

Listings Figure 3.4 to 3.1 on pages 28-29 show how to translate a plugin’s data structure from CellDesigner into
aJSBML data structure. With the help of the class PluginSBMLWriter, it is possible to notify CellDesigner about
changes in the data structure. Note that the program in listing 3.1 on page 29 is only completed by implementing

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 27 of 57

http://sbml.org

Section 3.6. JSBML modules

/** A very simple implementation of a plugin for CellDesigner. */
public class SimpleCellDesignerPlugin extends CellDesignerPlugin {

public static final String ACTION = "Display full model tree";
public static final String APPLICATION_NAME = "Simple Plugin";

/** Creates a new CellDesigner plugin with an entry in the menu bar. */
public SimpleCellDesignerPlugin() {
super() ;
try {
System.out.printf("\n\nLoading %s\n\n", APPLICATION_NAME);
SimpleCellDesignerPluginAction action = new SimpleCellDesignerPluginAction(this);
PluginMenu menu = new PluginMenu(APPLICATION_NAME);
PluginMenuItem menultem = new PluginMenultem(ACTION, action);
menultem.setName("some_id");
menu.add(menultem) ;
addCellDesignerPluginMenu(menu) ;
} catch (Exception exc) {
exc.printStackTrace();
}
3

/** This method is to be called by our CellDesignerPluginAction. */
public void startPlugin() {
PluginSBMLReader reader
= new PluginSBMLReader(getSelectedModel(), SBO.getDefaultPossibleEnzymes());

// In CellDesigner, the SBMLDocument object is not accessible, so we must create a new one
// after obtaining the model from the reader.

Model model = reader.getModel();

SBMLDocument doc = new SBMLDocument (model.getLevel(), model.getVersion());
doc.setModel (model) ;

new JSBMLvisualizer(doc);

}

// Include also methods from superclass, not needed in this example.
@Override

public void addPluginMenu() { }

@Override

public void modelClosed(PluginSBase psb) { }
@Override

public void modelOpened(PluginSBase psb) { }
@Override

public void modelSelectChanged(PluginSBase psb) { }
@Override

public void SBaseAdded(PluginSBase psb) { }
@Override

public void SBaseChanged(PluginSBase psb) { }
@Override

public void SBaseDeleted(PluginSBase psb) { }

Figure 3.4: A simple implementation of CellDesigner’s abstract class PluginAction.

the methods from the superclass, Cel1DesignerPlugin; it is sufficient to leave the implementation empty.

As of JSBML version 1.0, this module also contains a specialized implementation of the TreeNodeChangeListener
interface for synchronization of changes in JSBMLs data structures with CellDesigner.

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 28 of 57

Section 3.6. JSBML modules

/**% Simple CellDesigner plugin to display the SBML data structure as a tree. When the underlying SBMLDocument
is changed by CellDesigner, the tree will refresh itself and all nodes will become unexpanded. */

s|public class SimpleCellDesignerPlugin extends AbstractCellDesignerPlugin {

public static final String ACTION = "Display full model tree";
public static final String APPLICATION_NAME = "Simple Plugin";
protected DefaultTreeModel modelTree = null;

public SimpleCellDesignerPlugin() {
super() ;
addPluginMenu();

3

@Override
public void addPluginMenu() { // Initializing CellDesigner’s menu entries
PluginMenu menu = new PluginMenu(APPLICATION_NAME);
PluginMenultem menultem = new PluginMenultem(ACTION, new SimpleCellDesignerPluginAction(this));
menultem.setToolTipText("Displays the data structure of the model.");
menu.add(menultem) ;
addCellDesignerPluginMenu(menu) ;

}

// After the model is changed, refreshes the Tree by resetting the Root node.
@Override
public void modelSelectChanged(PluginSBase sbase) {
super.modelSelectChanged(sbase);
modelTree.setRoot (getSBMLDocument());
}

// After a PluginSBase addition, refreshes the Tree by resetting the Root node.
@Override
public void SBaseAdded(PluginSBase sbase) {
super.SBaseAdded(sbase);
modelTree.setRoot (getSBMLDocument());
}

// After a PluginSBase modification, refreshes the Tree by resetting the Root node.
@Override
public void SBaseChanged(PluginSBase sbase) {
super.SBaseChanged(sbhase) ;
modelTree.setRoot (getSBMLDocument());
3

// After a PluginSBase deletion, refreshes the Tree by resetting the Root node.
@Override
public void SBaseDeleted(PluginSBase sbase) {
super.SBaseDeleted(sbhase);
modelTree.setRoot (getSBMLDocument());
3

// If the CellDesigner model is closed, we nullify the Tree.
@Override
public void modelClosed(PluginSBase sbase) {
super.modelClosed(sbase);
modelTree.setRoot (null);

}

@Override
public void run() { // Initializes plugin and sets WindowClosed() events.
JSBMLvisualizer visualizer = new JSBMLvisualizer(getSBMLDocument());
visualizer.addWindowListener(new WindowAdapter() {
@Override
public void windowClosed(WindowEvent e) {
setStarted(false);
getReader() .clearMap();
}
B
3
}

Listing 3.1: A simple example for a CellDesigner plugin using JSBML as a communication layer.

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 29 of 57

Section 3.7. Offline validation

3.6.3 The 1ibSBMLcompat module: a JSBML compatibility module for libSBML

The goal of the libSBML compatibility module in JSBML is to provide the same package structure as libSBMLs Java
bindings, and provide identically-named classes and APIs. Using the module, it will be possible to switch an existing
application from libSBML to JSBML or the other way around without changing any code. This module is in early
development phase.

3.6.4 The android module: a compatibility module for Android systems
The JSBML Android module is intended to provide all those classes from the Java standard distribution that are
required for JSBML, but might be missing on Android systems.

3.6.5 The compare module: facilities for doing comparisons between libSBML and JSBML

During the early development of JSBML, we developed a set of classes in order to check that what JSBML was reading
in memory was equivalent of what libSBML was reading in memory. Those classes were used (and can still be used)
to detect inconsistency between JSBML and libSBML and helped to find bugs in both libraries. They are part of
JSBMLs compare module.

3.6.6 The tidy module: to produce a tidy XML output

The tidy module was created to allow users to write a pretty XML output. It uses the JTidy library, which is a port of
HTML Tidy, an HTML syntax checker and pretty printer. In order to use the tidy module in JSBML, you just need to
replace in your code the use of the SBMLWriter class by the TidySBMLWriter class.

3.7 The JSBML offline validator

The JSBML offline validator is a self-contained SBML validation facility that implements some of the validation
processes included in libSBML. At the time of this writing, the offline validator is incomplete and unsuitable for
production use. We included it here so that users can experiment with it. We hope to improve this facility so that in
time it can be used to validate SBML files reliably.

3.7.1 Basic procedure for using offline validation in JSBML

The following sections describe the basic steps required to use the offline validator in your code.

Create an instance of ValidationContext

ValidationContext is the center of the validation process. The constructor for this class requires two arguments,
for the Level and Version of SBML you want to validate. These values can be changed after creating the context
object, but note that doing so will clear any loaded constraints (discussed below).

// Create a new instance
2| ValidationContext ctx = new ValidationContext(3, 1);

Setup a ValidationContext.

TheValidationContext is designed to be reusable, so you can use a single instance of ValidationContext to perform
several validations. To do so, repeat the next two steps.

Prepare the context

Next, provide ValidationContext with the JSBML SBML objects that you want to validate. For each such ob-
ject, use the method loadConstraintsForClass(Class<?> clazz) with the objects class as parameter (e.g.,
“object.getClass()") or by using a static reference (e.g., “Species.class"). The context will traverse the class
hierarchy to load all the constraints that are necessary to achieve validation. For example, if you use a custom class
which is derived from Species, the validator will recognize this and also load the constraints for the Species class.

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 30 of 57

W N =

™

5| ctx.loadConstraintsForClass(myObject.getClass());

Section 3.7. Offline validation

// Load constraints to validate a MyClass object
ctx.loadConstraintsForClass(MyClass.class);

// Load constraints to validate the class from myObject
// Load constraints to validate a single attribute
ctx.loadConstraintsForAttribute(myObject.getClass(), "name");

// NOTICE: the loadConstraints methods clears the root constraint.
// After the third command, the context will only contain the constraints to check the "name" attribute.

Three different ways to load constraints.

Run the validation

Finally, start the validation procedure. The method validate(Object o) will return a Boolean whose value will be
true when no constraint was broken and false otherwise.

// Perform the validation
boolean isValid = ctx.validate(myObject);

Validate.

If you invoke the validate method on an object that is not assignable to the class for which the constraints were
loaded, this method will simply return false and print a log message. To get a list of all the errors and broken
constraints, use a instance of LoggingValidationContext instead.

Control the validation

There are several ways to control the behavior of the validation process.

1. Enable/disable check categories. With check categories, it’s possible to control which subset of rules will be
loaded.

2. Recursive validation. The validation context can perform a recursive validation and also validate the child
objects. This is realized by using the TreeNode Interface. If a class inherits from TreeNode (which is the case
by SBase) and this option is enabled, the context will also load the constraints for the class of every child
returned by the TreeNode iteration methods. If one of the children is also a TreeNode, the recursive validation
will go on. This option is enabled by default.

3. Track the validation. To follow the validation process in real time, use the ValidationListener interface. It
provides two methods:

e willValidate(ValidationContext ctx, AnyConstraint<?> c, Object o)
which is called every time before a constraint will perform a check

e didvalidate(ValidationContext ctx, AnyConstraint<?> c, Object o, boolean success)
which is called after the check. The boolean success will be the result of the check from this constraint.

If you want to get more information about the constraint, you can retrieve its error code. If the constraint
isjust a ConstraintGroup and therefore just a collection of constraints, the error code should be equals to
CoreSpecialErrorCodes.ID-GROUP. In any other case you could use this error code to create the SBULError
object assoscieted with it by using the SBMLErrorFactory.

3.7.2 Providing custom constraints to the offline validator

It is easy to provide custom constraints. When the ConstraintsFactory looks for the constraints for a given class, it
uses Java reflection to search for a constraint declaration for that class. A constraint declaration is just a simple class
that has the name of the class it wants to declare constraints for, followed by the word “Constraints”. For example, the
class that provides the constraints for Species is called SpeciesConstraints. This class must at least implement
the ConstraintDeclaration interface, but it is best if it also extends AbstractConstraintDeclaration because

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 31 of 57

Section 3.7. Offline validation

the latter implements most functions and also caches the constraints. Notice that any constraint declaration must
be located in the package “org.sbml. jsbml.validator.offline.constraints”.

To declare new constraints, follow these steps:

1. Create constraint declaration. First you have to create the class in which you put the code for the constraints
and select which constraints should be loaded to validate a certain check category.

// Be sure to use this package, otherwise the ConstraintFactory won’t find your constraints.
package org.sbml.jsbml.validator.offline.constraints;

// This class will contain the constraints for a MyClass object
public class MyClassConstraints extends AbstractConstraintDeclaration {

// To be filled with your code. ..

e - SR N SR S

Create constraint declaration class

2. Select the error codes which should be checked. Next, you have to collect the error codes to perform a proper
validation. There are two methods, one for the complete validation in a single check category and one for the
attribute validation. Inside this methods you will have a Set<Integer> to which you should add every error
code that should be validated in this check category. You could use the level and version parameter to avoid
loading unnecessary constraints.

1 Vai
2 * In this method you add all the error codes to the set, which should be

3 * covered for the given combination of check category, level and version.

4 */

5| public void addErrorCodesForCheck(Set<Integer> set, int level, int version,
6 CHECK_CATEGORY category) {

8

switch (category) {

9 case GENERAL_CONSISTENCY:

10 // A helper function to add a range to the set (including the last one)
1 addRangeToSet(set, 6, 9);

13 if (level > 1)
14 {

15 set.add(15);
16 }

18 // other cases...

20 }

21 }

22

23 Vi

24 * This method works just like the one above, expect that this time you should
25 * collect the error codes to validate only a single attribute of a object.

26

27 * Because the attribute validation is used to catch invalid values in the setters,
28 * you should only select error codes which has severity "ERROR" in the given
29 * level and version.

30 5

31 public void addErrorCodesForAttribute(Set<Integer> set, int level,

32 int version, String attributeName) {

33 switch (category) {

34 case "name":

35 set.add(8);

36 break;

37

38 // other cases...

39

40 }

a1 }

Select error codes

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 32 of 57

Section 3.7. Offline validation

3. Provide the logic for the constraints. Now you only have to write the constraint, this is done by provding a
validation function. In the most cases you will just create a anonymus class and put your code in the check (*)
method. This method should return false if the constraint is broken. Keep in mind that the constraints are
cached and will be reused and shared between different ValidationContext objects.

You could avoid caching by using negative numbers as your error codes. Beside of this, it’s possible (and
sometime necessary) to have different constraints with the same error code. Choose your error codes wisely,
because classes like the LoggingValidationContext will use the error code to load a SBMLError object for
this constraint.

1 Vi
2 * Here you provide the real logic for a constraint in form of a ValidationFunction
3 * these function should return true if everything is fine and false otherwise.

" */

5 public ValidationFunction<?> getValidationFunction(int errorCode) {

6 ValidationFunction<MyClass> func = null;

8 switch (errorCode){
9 case 4:
10 func = new ValidationFunction<MyClass> {
11
12 public boolean check(ValidationContext ctx, MyClass mc){
13
14 //If there is a name. ..
15 if (mc.isSetName())
16 {
17 // it shouldn’t be empty.
18 return !mc.getName().isEmpty(Q);
19 }
20 return true
21 }
2 i
23 break;
24
25 // the other cases...
26
27 }
28
29 return func;
30 }
Select error codes

JSBML User Guide B Chapter 3. Additional features provided by JSBML Page 33 of 57

JGML

Implementing extensions in JSBML

In this chapter, we describe how to get started with writing an extension for JSBML to support an SBML Level 3
package. We use a concrete (though artificial) example to illustrate various points. This example extension is
named, very cleverly, Example, and while it does not actually do anything significant, we hope it will help make the
explanations more understandable. This chapter applies to JSBML version 1.0 only; the 0.8 branch of JSBML does
not support extension packages.

4.1 Organizing the source code

In the JSBML SVN repository, all extensions are found in the subdirectory named extensions inside the trunk
directory. (The process for checking out a local copy of the repository is described in Section 1.1.5 on page 5.) Each
extension is named after the corresponding SBML short name for the SBML Level 3 package; for example, fbc for
the Flux Balance Constraints package, 1ayout for the Layout package, and so on. The source directories for the
extensions follow some basic conventions for their organization and contents.

When creating a new extension for JSBML, please follow the conventions /
used in the existing extension directories. These conventions are illustrated
in Figure 4.1. There should be a build script in a file named “build.xml” for

| build.xml

use with Ant [1], and several subdirectories. The doc subdirectory should — ?ici/mg /

contain documentation about the extension, preferably with a subdirectory | 1ib/

ofits own, img, containing atleast a UML diagram of the type hierarchy of the | resources/

package. This can be in the form of, for instance, a Graphviz [6] file type_- | src/

hierarchy.dot, so that the diagram can be generated in different image | org/

formats. The extension directory should also contain a 1ib subdirectory | sbml/

where any package-specific, third-party libraries are located; a resources | jsbml/
subdirectory for any non-source files that may be required by the extension ext/
code; an src subdirectory for the Java source code comprising the extension; | NaME/

and finally, a test subdirectory containing tests for the extension code, xml/

preferably in JUnit [5] format.

Note the structure of the src subdirectory. AJSBML extension must define at
least two packages: org. sbml. jsbml.ext.NAME, for the data structures and
code for defining and manipulating the SBML components specified by the
extension, and org.sbml . jsbml.xml .parsers, for the code that reads and

Lparsers/

| test/

Figure 4.1: Typical structure
of the source directory for
a JSBML 1.0 extension. The

root of the tree shown here is
the extensions/NAME sub-
directory, which is located
within the trunk subdirec-
tory of the JSBML SVN
repository.

writes SBML files with the extension constructs. Per Java conventions, these
source subdirectories are organized hierarchically based on the package
components, which leads to the nested structure shown in Figure 4.1.

4.2 Creating the object hierarchy

A JSBML extension may need to do different things depending on the details of the SBML Level 3 package that it
implements. In this section, we discuss various common actions and how they can be written in JSBML.

4.2.1 Introducing new components and extending others

Most SBML Level 3 packages extend existing SBML core components or define entirely new components. A common
need for packages is to extend the SBML Model object, so we begin by explaining how this can be achieved.

Figure 4.2 on the following page shows the beginnings of the definition for a class named ExampleModel that
extends the plain SBML Model. Technically, an extension really only needs to implement the SBasePlugin interface,
but because the abstract class AbstractSBasePlugin implements important and useful methods, it is generally
preferable to extend that one instead. In this example, our constructor for ExampleModel accepts an object that
is a Model, because that is what we want to extend. The call to the super constructor will save the given model as
the SBase object that is being extended, and it will store it in an attribute named extendedSBase. Our example
ExamplelModel class also adds a method, getModel), to retrieve the extended model object.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 34 of 57

Section 4.2. Creating the object hierarchy

public class ExampleModel extends AbstractSBasePlugin {

// Basic constructor.
public ExampleModel (Model model) {
super (model) ;

}

// Returns the model.
public Model getModel() {
return (Model) getExtendedSBase();
}
}

3| public int getBar() {

Figure 4.2: How to extending AbstractSBasePlugin to create an extended Model.

In most cases, extensions will also introduce new components that have no counterpart in the SBML core. We
illustrate this here by creating a component called Foo with three attributes: id, name, and an integer-valued attribute,
bar. We assume that in the (hypothetical) package specification for Example, Foo is derived from SBase; let us also
assume that Example provides the ability to attach a list of Foo objects to an extended version of Model. We show in
Section 4.2.2 on page 37 how to create the list structure; here, we focus on the definition of Foo. We define the class
Foo by extending AbstractSBasePlugin, and add methods for working with the attributes. In Figure 4.3, we list the
code so far, focusing on just one of the attributes, bar.

// Use Integer, so we can denote unset values as null public Integer bar;

if (isSetBar()) {
return bar.intValue(Q);
3
// This is necessary because we cannot return null here.
throw new PropertyUndefinedError(ExampleConstant.bar, this);

}

public boolean isSetBar() {
return this.bar != null;

}

public void setBar(int value) {

Integer oldBar = this.bar;

this.bar = bar;

firePropertyChange (ExampleConstant.bar, oldBar, this.bar);
}

public boolean unsetBar() {
if (isSetBar()) {
Integer oldBar = this.bar;
this.bar = null;
firePropertyChange (ExampleConstant.bar, oldBar, this.bar);
return true;
}

return false;

}

Figure 4.3: Implementation of the five necessary methods that should be created for every attribute on class Foo. Note:
if attribute bar had been a boolean-valued attribute, we would also provide the method isBar (), whose implementation
would delegate to getBar ().

A few points about the code of Figure 4.3 are worth mentioning. The identifiers on SBML components are often
required to be unique; for many components, the scope of uniqueness is the entire set of main SBML components
(e.g., Species, Compartments, etc.), but some have uniqueness requirements that are limited to some subset of
entities (e.g., unit identifiers). For the purposes of this example, we assume that the identifiers of Foo objects in

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 35 of 57

s|public Foo(String id, int level, int version) {

|}

7| /** Clone constructor */

5| 3

Section 4.2. Creating the object hierarchy

a model must be unique across all identifiers in the model. All entities that have such uniqueness constraints
should implement the JSBML interface UniqueNamedSBase; in our example, this is taken care of by the abstract
superclasses, so nothing needs to be done explicitly here.

The code in Figure 4.3 on the preceding page illustrates another point, the need call to firePropertyChange() in
set and unset methods. This is needed in order to ensure that all listeners are notified about changes to the objects.
Finally, note that in cases that the return type is a Java base type, such as int or boolean, but the corresponding
internal element (e.g., Integer or Boolean) is set to null, the program must throw a PropertyUndefineError in
the get method to prevent incorrect results (see line 8).

The last basic matter that needs to be addressed is the definition of appropriate class constructors for our class Foo.
The minimum we need to define is a constructor that takes no arguments. Even though some or all of the attributes
of a class may be mandatory, default constructors that take no arguments still need to be defined in JSBML. This is
due to the internal working of parsers that read SBML files and create the data structure in memory. All attributes
can be set after the object has been created.

Beyond this, the precise combination of constructor arguments defined for a class is a design issue that must be
decided for each class individually. Attempting to define a separate constructor for every possible combination
of arguments can lead to a combinatorial explosion, resulting in complex class definitions, confusing code, and
excessive maintenance costs, so it is better to decide which combinations of arguments are the most common and
focus on them. In Figure 4.4, we show a recommended selection of constructors. They include a constructor that
takes an identifier only, another that takes SBML Level and Version values only, and another that takes all arguments

public Foo() {
super() ;
initDefaults();

}

public Foo(String id) {
super(id);
initDefaults();

3

public Foo(int level, int version){
this(null, null, level, version);

}

this(id, null, level, version);

public Foo(String id, String name, int level, int version) throws LevelVersionError {
super(id, name, level, version);
if (getLevelAndVersion() .compareTo(Integer.valueOf(3), Integer.valueOf(1l)) < 0) {
throw new LevelVersionError(getElementName(), level, version);

initDefaults();
}

public Foo(Foo foo) {
super (foo) ;
bar = foo.bar;

}

public void initDefaults() {
addNamespace (ExampleConstant .namespaceURI) ;
bar = null;

Figure 4.4: Constructors for class Foo. Note the code testing for the SBML Level and Version, on lines 21-23; since this
extension implements a hypothetical package for SBML Level 3, the code here rejects anything before Level 3 Version 1
by throwing the JSBML exception LevelVersionError.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 36 of 57

Section 4.2. Creating the object hierarchy

together. If you delegate the constructor call to the super class, you have to take care of the initialization of your
custom attributes yourself (by calling a method like initDefaults()). If you delegate to another constructor in
your class, you only have to do that at the last one in the delegation chain.

4.2.2 ListOfs

Our hypothetical Example extension adds no new attributes to the extended Model itself, but it does introduce the
ability to have a list of Foo objects as a child of Model. In JSBML, this will be implemented using Java generics and
the class ListOf, such that the type of the list will be List0f<Foo>. (Unlike in libSBML, there will not be an actual
separate ListOfFoo class.) In Figure 4.5, we show the basic implementation of the methods that would be added
to Model to handle ListOf<Foo>: isSetListO0fFoos(), getListOfFoos(), setListOfFoos(List0f<Foo>), and
unsetListOfFoos().

Typically, when adding and removing Foo objects to the Model, direct access to the actual ListOf object is not
necessary. To add and remove Foo objects from a given SBML model, it is more convenient to have methods to add
and remove on Foo object at a time. We show such methods in Figure 4.6 on the next page. The methods also do
some additional consistency checking as part of their work.

To let a ListOfFoo appear as a child of the standard Model, some important methods for TreeNode need to be
implemented (see Figure 4.7 on the following page). Method getAllowsChildren() should return true in this
case, since this extension allows children. The child count and the indices of the children is a bit more complicated,
because they vary with the number of non-empty ListO0fs. So, for every non-empty List0f child of our model
extension, we increase the counter by one. (Note also that if callers access list entries by index number, they will
need to take into account the possibility that a given object’s index may shift.)

public boolean isSetListOfFoos() {
return (listOfFoos != null) && !listOfFoos.isEmpty();
}

public ListOf<Foo> getListOfFoos() {

if (!isSetListOfFoos()) {
Model m = getModel();
listOfFoos = new ListOf<Foo>(m.getLevel(), m.getVersion());
listOfFoos.addNamespace(ExampleConstants.namespaceURI) ;
listOfFoos.setSBaseListType(ListOf.Type.other);
m.registerChild(listO0fFoos);

3

return this.listOfFoos;

}

public void setListOfFoos(ListOf<Foo> listOfFoos) {
unsetListOfFoos();
this.listOfFoos = listOfFoos;
getModel () .registerChild(this.list0fFoos);

}

public boolean unsetListOfFoos() {

if (isSetListOfFoos()) {
ListOf<Foos> oldFoos = this.listOfFoos;
this.listOfFoos = null;
oldFoos. fireNodeRemovedEvent () ;
return true;

}

return false;

}

Figure 4.5: Implementation of the methods isSetList0fFoos(), getList0fFoos(), and setList0fFoos().

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 37 of 57

Section 4.2. Creating the object hierarchy

public boolean addFoo(Foo foo) {
return getListOfFoos().add(foo);
3

public boolean removeFoo(Foo foo) {
return isSetListOfFoos() ? getListOfFoos().remove(foo) : false;

}

public boolean removeFoo(int i) {
if (!isSetListOfFoos()) {
throw new IndexOutOfBoundsException(Integer.toString(i));
}
return listOfFoos.remove(i);

}

// If the object class has an id, one should also add the following:
public boolean removeFoo(String id) {
return getListOfFoos().removeFirst(new NameFilter(id));

}

™

Figure 4.6: Implementation of List0f methods addFoo(Foo foo), removeFoo(Foo foo), removeFoo(int i).

4.2.3 Methods for creating new objects

Since a newly created instance of type Foo is not part of the model unless it is added to it, create* methods should
be provided that take care of all that (see Figure 4.8 on the next page). These create methods should be part of the
model to which the Foo instance is to be added, in this case ExampleModel.

public boolean getAllowsChildren() {
return true;

}

public int getChildCount() {
int count = 0;
if (isSetListOfFoos()) {
count++;
}

return count; // Same for each additional ListOf* or other subelement in this package.

}

public SBase getChildAt(int childIndex) {
if (childIndex < 0) {
throw new IndexOutOfBoundsException(childIndex + " < 0");
}

// Important: there must be an index shift according to the number of child elements in the superclass.

int pos = 0;
if (isSetListOfFoos()) {
if (pos == childIndex) {
return getListOfFoos();
}
poOS++;
3
// Same for each additional ListOf* or other subelements in this package.
throw new IndexOutOfBoundsException(MessageFormat.format(
"Index {0,number,integer} >= {1,number,integer}", childIndex, ((int) Math.min(pos, 0))));

Figure 4.7: Methods which need to be implemented to make the children available in the extended model.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 38 of 57

Section 4.2. Creating the object hierarchy

public class ExampleModel extends AbstractSBasePlugin {

3 /) ..

5 // only, if ID is not mandatory in Foo
s public Foo createFoo() {
7 return createFoo(null);

s}

0| public Foo createFoo(String id) {

1 Foo foo = new Foo(id, getLevel(), getVersion());
12 addFoo(foo0);

13 return foo;

14 }

16 public Foo createFoo(String id, int bar) {
7 Foo foo = createFoo(id);

8 foo.setBar(bar);

19 return foo;

20 }

21 }

Figure 4.8: Convenience method to create Foo objects.

4.2.4 The methods equals, hashCode, and clone

Three more methods should be implemented in an extension class: equals, hashCode and clone. This is not
different than when implementing any other Java class, but because mistakes here can lead to bugs that are very
hard to find, we describe the process in detail.

Whenever two objects 01 and 02 should be regarded as equal, i.e., all their attributes are equal, the o1.equals(02)
and the symmetric case 02.equals(ol) must return true, and otherwise false. The hashCode method has two
purposes here: allow a quick check if two objects might be equal, and provide hash values for hash maps or hash
sets and such. The relationship between equals and hashCode is that whenever o1 is equal to 02, their hash codes
must be the same. Vice versa, whenever their hash codes are different, they cannot be equal.

Figure 4.9 and Figure 4.10 on the next page are examples of how to write these methods for the class Foo with
the attribute bar. Since equals accepts general objects, it first needs to check if the passed object is of the same
class as the object it is called on. Luckily, this has been implemented in AbstractTreeNode, the super class of
AbstractSBase. Each class only checks the attributes it adds to the super class when extending it, but not the
ListOfs, because they are automatically checked in the AbstractTreeNode class, the super class of AbstractSBase.

1| @Override
2| public boolean equals(Object object) {
3 boolean equals = super.equals(object); // recursively checks all children

if (equals) {

5 Foo foo = (Foo) object;

6 equals &= foo.isSetBar() == isSetBar();

7 if (equals && isSetBar()) {

8 // Note: strictly speaking, this is only possible if the return type is some Object. For simple data

9 // types, such as boolean, int, short, etc., the corresponding wrapper classes should be called instead
10 // or a direct comparison should be performed.

1 equals &= (foo.getBar().equals(getBar()));

IS

13 /) ..

14 // further attributes
15 }

16| return equals;

17| }

Figure 4.9: Example of the equals method.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 39 of 57

Section 4.3. Implementing the reader and writer for an SBML package

1| @Override

2 public int hashCode() {

3 final int prime = 491; // Some arbitrarily large prime number.
4 int hashCode = super.hashCode(); // Recursively checks all children.

5 if (isSetBar()) {

6 hashCode += prime * getBar().hashCode();
|}

8 Y/

9 // further attributes

1 return hashCode;

Figure 4.10: Example of the hashCode method. The variable prime should be a large prime number to prevent collisions.

figlst:ModelExtClone and Figure 4.12 illustrates implementations of clone () methods. To clone an object, the call
to the clone () method is delegated to a constructor of that class that takes an instance of itself as argument. There,
all the elements of the class must be copied, which may require recursive cloning.

Although JSBML defines all SBML elements in a hierarchical data structure, it is still not possible to recursively clone
child elements within the constructor of some abstract superclasses because these can be of various types and they
cannot simply be organized as a list of children.

1| @Override public ExampleModel clone() {
2 return new ExampleModel(this);

3|3

5| public ExampleModel (ExampleModel model) {
6 super(model); // This step is critical!

7 // Deep cloning of all elements:

8 if (model.isSetListOfFoos()) {

9 listOfFoos = model.listOfFoos.clone();
10 }

11 }

Figure 4.11: Example of the clone method for the ExampleModel class.

@Override public Foo clone() {
return new Foo(this);

}

W N =

s| public Foo(Foo f) {
6 super(f); // This step is critical!

8 // Integer objects are immutable, so it is sufficient to copy the pointer
9] bar = f.bar;

0|}

Figure 4.12: Example of the clone method for the Foo class.

4.3 Implementing the reader and writer for an SBML package

One last thing is missing in order to be able to read and write SBML files properly using the new extension: a
ReadingParser and a WritingParser. An easy way to provide that is to extend the AbstractReaderfliriter that
extends both interfaces, and then implement some of the required methods in a generic way. To implement the
parser, in this case the ExampleParser, one should start with two members and two simple methods, as shown in
Figure 4.13 on the next page. As this code fragment shows, an additional class ExampleConstants and an enum

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 40 of 57

Section 4.3. Implementing the reader and writer for an SBML package

ExampleListType are used. The class ExampleConstants is used to keep track of all the static Strings used in the
extension so that we are sure that the same value is used everywhere. The enum ExampleListType can be used to
keep track of which ListOf we are in while reading an XML file.

public class ExampleParser extends AbstractReaderWriter {
Vi
* The logger for this parser
*/
private Logger logger = Logger.getLogger(ExampleParser.class);

Vs

* The ExampleListType enum which represents the name of the list this parser is currently reading.
*/

private ExamplelListType grouplist = ExamplelListType.none;

/* (non-Javadoc)
* @see org.sbml.jsbml.xml.parsers.AbstractReaderliriter#getShortLabel ()
*/
public String getShortLabel() {
return ExampleConstants.shortLabel;

}

/* (non-Javadoc)
* @see org.sbml.jsbml.xml.parsers.AbstractReaderliriter#getNamespaceURI ()
*/
ublic String getNamespaceURI() {
return ExampleConstants.namespaceURI;

}

}

Figure 4.13: The first part of the parser for the extension.

4.3.1 Reading

The class AbstractReaderWriter provides more or less all the features needed to read the XML file for your
extension—you just need to implement one method from the Reader interface. In a future version of JSBML, this
method may be implemented in a generic way using the java reflection API.

The processStartElement () method is responsible for handling start elements, such as <1ist0OfFoos>, and cre-
ating the appropriate objects. The contextObject is the object that represents the parent node of the tag the
parser just encountered. First, you need to check for every class that may be a parent node of the classes in your
extension. In this case, those are objects of the classes Model, Foo and ListOf. Note that the ExampleModel has no
corresponding XML tag and the core model is handled by the core parser. This also means that the context object of
a ListOfFoos is not of the type ExampleModel, but of type Model. But since the ListO0fFoos can only be added to an
ExamplelModel, the extension is retrieved or created on the fly.

The groupList variable keeps track of the current location in nested structures. If the 1istOfFoos starting tag is
encountered, the corresponding enum value is assigned to that variable. Due to Java’s type erasure, the context
object inside a 1istOfFoos tag is of type List0f<?> and a correctly set groupList variable is the only way of
knowing the current location. If we have checked that we are, in fact, inside a 1istOfFoos node, and encounter a
foo tag, we create a Foo object and add it to the example model. Technically, it is added to the ListO0fFoos of the
example model, but because ExampleModel provides convenience methods for managing its lists, it is easier to call
the addFoo () method on it.

The processEndElement () (see Figure 4.15 on the following page) method is called when a closing tag is encoun-
tered. The groupList attribute needs to be updated to reflect the step up in the tree of nested elements. In this
example, if the end of </1ist0fFoos> is reached, we certainly are inside the model tags again, which is denoted by
none. Of course, more complicated extensions with nested lists will require more elaborate handling, but it should
remain straightforward. If you do not use an enum or something else to keep track of which ListOf you are in, and
if you do not need to do other things when a closing XML tag is encountered, you do not need to implement this
method.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 41 of 57

-

Section 4.3. Implementing the reader and writer for an SBML package

// Create the proper object and link it to its parent.

>|public Object processStartElement(String elementName, String prefix,

boolean hasAttributes, boolean hasNamespaces, Object contextObject) {

if (contextObject instanceof Model) {
Model model = (Model) contextObject;
ExampleModel exModel = null;

if (model.getExtension(ExampleConstants.namespaceURI) != null) {
exModel = (ExampleModel) model.getExtension(ExampleConstants.namespaceURI);
} else {

exModel = new ExampleModel (model);
model .addExtension(ExampleConstants.namespaceURI, exModel);

3
if (elementName.equals("listOfFoos")) {

ListOf<Foos> listOfFoos = exModel.getListOfFoos();
this.groupList = ExampleListType.listOfFoos;
return listOfFoos;

} else if (contextObject instanceof Foo) {
Foo foo = (Foo) contextObject;

// 1f Foo would have children, that would go here

}
else if (contextObject instanceof List0f<?>) {
ListOf<SBase> listOf = (ListOf<SBase>) contextObject;

if (elementName.equals("foo") && this.groupList.equals(ExampleListType.listOfFoos)) {
Model model = (Model) listOf.getParentSBMLObject();
ExampleModel exModel = (ExampleModel) model.getExtension(ExampleConstants.namespaceURI);

Foo foo = new Foo(Q);
exModel.addFoo(foo0);
return foo;
}
}
return contextObject;

}

Figure 4.14: Extension parser: processStartElement ().

public boolean processEndElement(String elementName, String prefix,
boolean isNested, Object contextObject) {

if (elementName.equals("listOfFoos") {
this.grouplist = ExampleListType.none;
3

return true;

}

Figure 4.15: Extension parser: processEndElement ().

The attributes of an XML element are read into the corresponding object via the readAttributes() method that
must be implemented for each class. An example is shown in Figure 4.16 on the next page for the example class Foo.
The AbstractReaderWriter will use these methods to set the attribute values into the java objects.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 42 of 57

Section 4.4. Implementation checklist

@Override
2| public boolean readAttribute(String attributeName, String prefix, String value) {

1| boolean isAttributeRead = super.readAttribute(attributeName, prefix, value);

6 if (!isAttributeRead) {
7 isAttributeRead = true;

9 if (attributeName.equals(ExampleConstants.bar)) {
10 setBar(StringTools.parseSBMLInt (value));

1 } else {

12 isAttributeRead = false;

13 }

14 }

16 return isAttributeRead;

Figure 4.16: Method to read the XML attributes.

4.3.2 Writing

The method getListOfSBMLElementsTolWrite () must return a list of all objects that have to be written because of
the passed object. In this way, the writer can traverse the XML tree to write all nodes. If the classes of the extension
follow the structured advice in Section 4.2 on page 34, this method does not need to be implement and the basic
implementation from AbstractReaderWriter can be used. This basic implementation makes use of the method
TreeNode.children() to find the list of children to write.

In some cases, it may be necessary to modify writeElement (). For example, this can happen when the same class
is mapped to different XML tags, e.g., a default element and multiple additional tags. If this would be represented
not via an attribute, but by using different tags, one could alter the name of the XML object in this method.

The actual writing of XML attributes must be implemented in each of the classes in the writeXMLAttributes(). An
example is shown in Figure 4.17 for the class Foo. Then the AbstractReaderWriter class will use these methods to
write the attributes.

1| public class Foo extends AbstractNamedSBase {

3| public Map<String, String> writeXMLAttributes() {

4 Map<String, String> attributes = super.writeXMLAttributes();
5 if (isSetBar()) {

6 attributes.remove("bar");

7 attributes.put(Foo.shortLabel + ":bar", getBar());

9 // Note that in case of double values, the user’s locale needs to be taken into account in order to

10 // prevent the Writer from numbers in the wrong format. Even in the case of Integer it can be important,
11 // because in some languages very strange number symbols are used (e.g., Thai or Chinese) and hence, the
12 // UTF-8 encoding of XML in SBML will lead to SBML files that cannot be parsed again. SBML only accepts

13 // English doubles. Since bar represents an integer, less errors are to be expected.

14 }

16 // ... Handling of other class attributes ...

17 }

Figure 4.17: Method to write the XML attributes.

4.4 Implementation checklist

The following is a checklist summarizing the different aspects of an extension that need to be implemented.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 43 of 57

Section 4.5. Eclipse code templates

¢ Add the extension to an existing model (see Figure 4.2 on page 35).

¢ Add the five necessary methods for each class attribute:

getBar()

isSetBar

setBar(int value)

unsetBar()
¢ Add the default constructors (see Figure 4.4 on page 36).
e If the class has children, check if all list methods are implemented (see the program fragments in Figure 4.7 on
page 38, Figure 4.5 on page 37, Figure 4.6 on page 38, Figure 4.7 on page 38):
— isSetListO0fFoos()
— getListOfFoos()
— setListOfFoos(ListOf<Foo> listOfFoos)
— createFoo()
— addFoo(Foo foo)
— removeFoo(Foo foo)
— removeFoo(int 1)
— getAllowsChildren()
— getChildCount ()
— getChildAt(int i)

¢ All necessary create methods are implemented (see Figure 4.8 on page 39).

¢ Implement the equals() method (see Figure 4.9 on page 39).

¢ Implement the hashCode () method (see Figure 4.10 on page 40).

¢ Implement the clone () method (see Figure 4.11 on page 40 and Figure 4.12 on page 40).

e Implement the toString () method.

e Implement the writeXMLAttribute () method (see Figure 4.17 on the previous page).

e Implement the readAttribute(String, String, String) method (see Figure 4.16 on the preceding page).

¢ Implement the reader/writer method (see Figure 4.13 on page 41, Figure 4.14 on page 42, and Figure 4.15 on
page 42).

4.5 Eclipse code templates

We created a set of Eclipse templates that would ease a lot the creation of all the methods described in the previous
section of this chapter. These templates can be downloaded from the JSBML sources repository athttps://jsbml.
svn.sourceforge.net/svnroot/jsbml/trunk/dev/eclipse/.

The file JSBML_templates.xml define some code templates to autogenerate some code, following the checklist
define in the previous section. It can be included in "Java" -> "Editor" -> "Templates".

To use these templates while programming write "JSBML" and press "CTR + tab". Then all available JSBML code
templates are listed. Then select the desired template by pressing "enter". If you have several fields to rename use
"tab" to rename them all in one go.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 44 of 57

https://jsbml.svn.sourceforge.net/svnroot/jsbml/trunk/dev/eclipse/
https://jsbml.svn.sourceforge.net/svnroot/jsbml/trunk/dev/eclipse/

4.6 SBML packages overview

Section 4.6. SBML packages overview

In this section, we briefly overview the state of the SBML Level 3 packages currently implemented for JSBML. Each
package description is accompanied by a class hierarchy describing the current state of development for the package.
Note smaller package descriptions correspond to packages in active standards development; however, packages are

up to date with respect to the latest released standards.

Abstract <<interface>>
SBase NamedSBase
. X7 [P AVS -
Z | > ~
L ~
Abstract Co<m<lgtr(ter:1fg(r::;;e d Abstract <<interface>> <<interface>> AbstractSBase
MathContainer P SBase NamedSBase Unique Named SBase Callable SBase Plugin
X Y AR V4
N _ — 7 0 N « 7 7
\ _ - : « /
Function Qualitative - Qual Model
e Species Transition Input Output Plugin

Pl

<<enumeration>>

Sign

Qualitative Models Extension

\

<<enumeration>>
Input
Transition Effect

<<enumeration>>

Transition Effect

Output

Figure 4.18: Class diagram of the qualitative models extension. The SBML Level 3 Qualitative Models package (qual,
for short) allows species in a model to have non-quantitative or non-continuous concentrations [9]. This may manifest as
Boolean or discrete values, and is primarily employed in modelling gene regulation, signalling pathways, and metabolic
networks using logical/Boolean networks [38] or Petri nets [8], which in turn, do not rely on traditional quantitative coeffi-

cients to encode relationships between biochemical entities.

\

I

<<interface>>
AbstractSBase Named
SBase N~ o
~
N
e | N

. . \

- <<interface>> N
Abstract Abstract Unique List Of \

SBasePlugin NamedSBase Named

A SBase)
N A R p

- N /

s g 4 : = N /

Groups N CT T T T
| Member | List Of
'\P/:Od?I | Constraint | Group Koty I' Member Constraints
ugin . o l
Group
Kind

Groups extension

Figure 4.19: Class diagram of the groups extension. The SBML Level 3 Groups package is a simple facility that allows
a modeler to indicate relationships between elements in an SBML model. Coupling groups information with annotation
and SBO terms [10] allows these sets of objects to be contextualized, and properly convey the roles of groups for other

programmers and modellers.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML

Page 45 of 57

Section 4.6. SBML packages overview

<<interface>>

SBase
. ~ Q
- \
- \
\
Abstract \
SBase \
\
\
\
\
- \
<<interface>> \
Abstract Unique \)
NamedSBase Named N AbstractSBasePlugin
SBase \
\
4 v N
N
’ ’ : N . \
\
PGrgtr;?n s Gene Product Objective & moiEco At::sérga
A Objective) Association SBase
Association >
Plugin
~
- l\
Gene
Logical Operator Product FBC Model Plugin FBC Reaction Plugin FBC Species Plugin
Ref
And Or

Flux Balance Constraints extension

Figure 4.20: Class diagram of the SBML Level 3 flux balance constraints extension. Constraints-based modelling [29]
utilizes a class of models in which the canonical stoichiometric relations between reactions and metabolites are specified
as constraints for convex analysis and mathematical optimization. Although species, reactions, and stoichiometry can be
encoded using the SBML L3V'1, Flux Balance Constraints (fbc, [32]) enable a constraints based perspective. For example,
the constraints based approach called Flux Balance Analysis (FBA) often aims to find the maximum growth rate of the cell
given a set of uptake possibilities and the ratio of molecules needed for cell growth. The mathematical formulation for this
optimization problem has variables of reaction fluxes and constraints of mass balances around the metabolites and bounds
on the variable reaction fluxes. Because this formulation is underdetermined, an objective, usually one that maximizes a
biomass function which corresponds to growth rate, is supplied which optimizes the reaction fluxes. Therefore, the fbc
package extends the SBML Level 3 core to specifically encode for bounds on fluxes, constraints, and objective functions,
which facilitates a fluid interface to existing constraints-based modelling software and optimization solvers.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 46 of 57

<<interface>>
NamedSBase

. [}V\ /
] N

Ab:

SBase

stract

Section 4.6. SBML packages overview

Named SBase
Reference Filter

rd 3
<<interface>> <<'”‘e.”a°e>> Abstract
: Unique Abstract
Compartmentalized SBase
SBase r;gr:ses NamedSBase Plugin
ﬂ . - =~
1 7 N\, ~ -
1 / ‘\ = N RN
1
. . Layout
\ . . Graphical Bounding . Curve
\ Dimensions Layout Obiject B Point Curve Segment l;/llodgl
ugin
\
! \ \
\
\
\ Abstract .
Line
\ Reference
3 Glyph Segment
\
‘ / \ AN
\
\ ~—
Compartment Reference Species Reaction SpeciesReferences Text General Cubic
Glyph Glyph Glyph Glyph Glyph Glyph Glyph Bezier

T

Species Reference
Role

Layout extension

Figure 4.21: Class diagram of the layout extension. SBML encodes a core set of components (species, reactions) that
make up biochemical networks. The layout extension supports specifying graphical information for these components.
The structure for this extension mirrors the SBML Level 3 core hierarchy by introducing graphical object (glyph) coun-
terparts to reactions and species. Different glyph types can optionally correspond to elements in standard SBML, and
there can be many glyphs for one element. In addition, layout elements of non-standard model components can be
specified using the generic GraphicalObject class. Although this extension is powerful enough to encode the position of
all biochemically related graph components, it should be noted that the scope of this package does not include rendering
of these components. This functionality is provided by the Render package. Ultimately, the 1ayout extension provides a

common language that biochemical graph editors and viewers can utilize to couple a model to a graph layout.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML

Page 47 of 57

<<interface>>
Named
SBase

N

<<interface>>
Unique
Named
SBase

LA

| \

\ External

\y Model

N Definition

N

N

Abstract
SBase

/

Abstract
NamedSBase

T

Section 4.6. SBML packages overview

Abstract
Model SBasePlugin
N
Comp
Submodel Dm?ﬁén SBaseRef SBase
Plugin

<<interface>>
Id
Manager

Abstract
\ Named ReplacedBy ReplacedElement
\ | SBaseRef

\
\
\
\
Deletion Port

Comp
SBML Document
Plugin

Comp
Model
Plugin

Hierarchical model composition extension

AN

Figure 4.22: Class diagram of the hierarchical model composition extension. As the amount of information for biochemical
networks increases, models tend to increase in complexity as well. The Hierarchical Model Composition extension (comp;
[39]) attempts to contextualize this complexity by providing a generic framework to encode models as hierarchical entities
in an SBML document. This functionality also allows for storing multiple instances of a model within an enclosing model
or document, which can be used to build libraries of models within a document or to independently manage different
parts of a large model. Classes allow modellers to access elements within sub-models and interface with other sub-
models, and comp provides a standardized approach to define sub-model differences with respect to parent or reference
models. Overall, comp is a powerful extension to the SBML Level 3 core that gives modellers and programmers options to
standardize the encoding of complex, modular modelling frameworks.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML

Page 48 of 57

Section 4.6. SBML packages overview

Abstract Abstract <cinterface>>
SBase Plugin 1dManager
)

. I
o I
e = :
‘

‘

‘

‘

‘

‘

!

!

m\y..n s
\Iolum- Plugin

...-A- S

Spatal
Symbol
Reference

Diffusion
Coefficent

Boundary.
Condition

Parametric
Object

7
Polygon Geometry Diftusion
Kind Kind

Sampled [E— Comparmont | [Adacent Oomain | | Sampied | [Function | | Coordinate | | Coordinate
Field = Mapping Obyuc\ Semon Soohon Type Volume Kind Reere Component
K

S-;;gg;d mm
G.om.w Geomulry Geomul'y

Compression Data Parametric
Kind Kind

Commu
Geometry Kind

Interpolation Mixed
Kind Ge

csa
Paoutapimitve ‘ sotOporator Transformation Pr\mmve

KW
cse
ra»on Tmnslaﬂwn Hom mmﬂ e Rmaﬂun sme

Figure 4.23: Class diagram of the spatial processes extension. The Spatial Processes extension (spatial, [37]) provides
the ability to the SBML Level 3 core to specify subcellular, geometric locations for components in biochemical models.
Although subcellular locations can be abstractly represented via compartments in the SBML core specifications, spatial
enables the encoding of a cellular coordinate system which can describe non-uniform molecular distributions, diffusive
transport, and spatially localized reactions. The Geometry class holds the spatial information and the extended Species,
Reaction, Compartment, and Parameter objects have mappings to the spatial objects that hold information on
molecular transport coefficients, geometric domains, and coordinates. Spatial is therefore able to store the geometric
information commonly used in spatial modelling tools for the biochemical entities from standard SBML.

Primitive
Kind

Spatial extension

<<I8t:llr;%?:>> Abstract <</_'\"St$r,{;%ee>> <<interface>> Abstract) Abstract'
SBase NamedSBase Compiler Id Manager SBasePlugin MatchContainer
A S AT VA K [r
- - —-X ~ N <
- N
z - N II) S S
Vector Arrays Binersian Arrays Statically Computable gg:g: sl Arrays
Compiler Flattening Compiler Compiler Plugin Math
Arrays extension
Arrays Index Extended SBase Dimension Arrays Arrays

Constraint Validator Validator Validator Validator Math Validator
SBase With Dimension Arrays Dimension Dimension Index Array Index Attributes Dirzslgsion
Check Math Check ID Check Size Check Dim Check Check Dim Ch\:eck

Arrays validators and checks

Figure 4.24: Class diagram of the arrays extension. Arrays (arrays, [41]) extends SBML variables to include arrays of
values, thereby representing repeated or regular model structures more efficiently. Arrays provides the ability to access
sets of values with indices instead of explicit declaration and creation of sub-data objects.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML

Page 49 of 57

Section 4.6. SBML packages overview

Abstract Abstract
SBase Plugin SBase
Req
SBase Cﬁ;&ed
Plugin

Required Elements extension

Figure 4.25: Class diagram of the required elements extension. Required Elements (req, [40]) allows a model to indicate
which components have had their mathematical meanings changed by (e.g.) the use of another SBML package.

Abstract
SBase
Abstract <<interface>> Abstract
NamedSBase Id Manager SBasePlugin
/ K ! / l\
. Distrib Draw From Distrib Distrib Function
Uzl Input Distribution SBasePlugin Definition Plugin

Distributions extension

Figure 4.26: Class diagram of the distributions extension. Distributions (distrib, [37]) encodes statistical distributions
and their sampling.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML Page 50 of 57

Section 4.6. SBML packages overview

<<interface>>
SBase

AN

Vi \
<<interface>> <<interface>>
Named ASstgsagt SBase
SBase Plugin
Java data types | I
— 1
<<interface>> <<interface>> <<interface>> Gﬁ:nheéﬁacr?ﬁ Abstract Abstract
Serializable Comparable Cloneable qSBase NamedSBase SBasePlugin
- A%S
- . & =
~ o N | | Ny
~ o N . ~
CBO SpatialComponent DynElement Dys|SB§se
ugin
/ ’ ?
DynCompartment DynEvent
Plugin Plugin

Dynamic Structures extension

Figure 4.27: Class diagram of the dynamic structures extension. Dynamic Structures (dyn, [16]), supports the definition

of dynamical behaviors for model entities.

Abstract
SBase
",‘\Zsrgzgt Abstract) .<<interfa
SBase SBase Plugin Uni medSBase (-

/ T ~ i -) B
- = - N N
- N ~
P s ~ ~
—Z N
q 5 Render Abstract N
To)(() - Grsatd(;ent DeCf‘violp_r /’G@;znt Information Render Style Transformation \

P Base Plugin \\
\
|

. Global Render Render 1
RadialGradient GLr:;::ﬂ LI(; (;gll'nF::t?od: r Render Layout List Of Ié?clzl Transformation2D 1
Information Plugin Layouts Plugin Y |
1
1
1
<<interface>> :
Graphical liesE <<interface>> Font
Primitive1D 9 Point3D Render :
Style
74 1
N o i .
< e / \ N 1
2 | 7 N N |
Graphical Render Render 4 Text Font Text VText /
Primitive2D Curve Point , / Family Anchor Anchor 4
/7
7
-
-
_-
B Render -~
. Line . Render | - —
Ellipse Ending Polygon Rectangle g:zblz:r Group

Rendering elements extension

Figure 4.28: Class diagram of the rendering extension. Rendering (render, [14]) couples with [?] to provide symbol and

style information for network diagrams.

JSBML User Guide B Chapter 4. Implementing extensions in JSBML

Page 51 of 57

Acknowledgments JGBML

The development and support of JSBML is a substantial undertaking and many people have put in time and effort
on this project. The authors especially thank the following individuals for their many contributions to JSBML (in
alphabetical order):

¢ Students from the Leibniz Institute of Plant Genetics and Crop Plant Research (IKP), Gatersleben, Germany:
Sebastian Frohlich.

¢ Students from the Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tiibingen, Germany:
Meike Aichele, Alexander Diamantikos, Jakob Matthes, Sarah Rachel Miiller vom Hagen, Sebastian Nagel,
Eugen Netz, Jan Rudolph, Alexander Peltzer, and Simon Schéfer

¢ PhD students at the Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tiibingen, Germany:
Roland Keller and Johannes Eichner.

In addition, JSBML has been fortunate to participate in the Google Summer of Code. Here are various information
for these projects.

¢ Arrays package development, Leandro Watanabe: http://lhwatanabe.blogspot.com/
¢ CellDesigner Layout interface, Ibrahim Vazirabad: http://jsbmlcelldesigner2014.blogspot.com/

¢ ASTNode interface revamp, Victor Kofia: http://kofiav.github.io/2015/08/03/astnode-vs-astnode2/

The development of JSBML is currently funded by the following organizations:

¢ The National Institute of General Medical Sciences (USA) via grant number R0O1 GM070923,
e The EMBL European Bioinformatics Institute (Germany and UK), and

¢ The Federal Ministry of Education and Research (BMBE Germany) via grant numbers 0315756 and 0315384C
for the Virtual Liver Network and the MedSys (Medical Systems Biology) project Spher4Sys.

Last but not least, JSBML is an open-source project, and we thank others who have helped in its progress, in the
form of comments, bug reports, bug fixes, and other contributions.

Other interested people are welcome to join the team and to contribute to the project. The JSBML Team also
explicitely encourages students who would like to participate in a large software project, to ask for current JSBML
subprojects that are in need of doing.

JSBML User Guide B Chapter 5. Acknowledgments Page 52 of 57

http://lhwatanabe.blogspot.com/
http://jsbmlcelldesigner2014.blogspot.com/
http://kofiav.github.io/2015/08/03/astnode-vs-astnode2/

A Frequently Asked Questions (FAQ) JG3ML

For questions regarding SBML, please see the SBML FAQ athttp://sbhml.org/Documents/FAQ.

Where can I ask questions about JSBML?
We recommend starting with the JSBML discussion group, both because other people may be able to answer
more quickly than one of the JSBML developers and because it can help other users to see the question and
the answer. The following is a link that will take you there: http://sbml.org/forums/jsbml-development.
You can also contact the JSBML Team at the email address jsbml-team@caltech.edu.

Why does the class LocalParameter not inherit from Parameter?
The reason is the Boolean attribute constant, which is present in the Parameter object class and can be
set to false. A parameter in the meaning of SBML is not always a constant, it might be some system vari-
able Variable and can therefore be the subject of Rules, Events, InitialAssignments and so on, i.e., all
instances of Assignment, whereas a LocalParameter is defined as a constant quantity that never changes
its value during the evaluation of a model. It would therefore only be possible to let Parameter inherit from
LocalParameter but this could lead to a semantic misinterpretation.

Does JSBML depend on SWING or any particular graphical user interface implementation?

Although all classes implement the TreeNode interface (defined in the package javax.swing. tree), all classes
in JSBML are entirely independent from any graphical user interface, such as the SWING implementation.
When loading the TreeNode interface, no other class from SWING will be initialized or loaded; hence JSBML
can also be used on computers that do not provide any graphical system without the necessity of catching a
HeadlessException. The TreeNode interface only defines methods and properties that all recursive tree data
structures have to implement anyway. Letting JSBML classes extend this interface makes JSBML compatible
with many other Java classes and methods that make use of the standard TreeNode interface, hence ensuring
a high compatibility with other Java libraries. Since the SWING package belongs to the standard Java distribu-
tion, the TreeNode interface should always be localized by the Java Virtual Machine, independent from the
specific hardware or system. Android systems might be an exceptional case, which do not provide any parts
from the SWING package of Java. Therefore, the JSBML team is currently developing a specialized android
compatibility module for JSBML. As discussed in Section 1.1.7 on page 6, you can obtain this module by check-
ing out the repository https://jsbml.svn.sourceforge.net/svnroot/jsbml/trunk/modules/android
or by downloading this as a binary from the download page of JSBML.

Does the usage of the java.beans package for the TreeNodeChangeListener lead to an incompatibility with

light-weight Java installations?
With the java.beans package being part of the standard Java distribution, such an incompatibility will not

occur. Extending existing standard Java classes leads to a higher compatibility with other libraries and should
therefore be the preferred way to go in the development of JSBML.

Does JSBML support SBML extension packages?
In version 0.8, JSBML did not provide an abstract programming interface for extension packages. Since then,
the JSBML community has actively developed extension packages for all SBML extensions, see 22 on page ??.
These packages can be used with the version 1.0 or later of JSBML.

JSBML User Guide B Appendix A. Frequently Asked Questions (FAQ) Page 53 of 57

http://sbml.org/Documents/FAQ
http://sbml.org/forums/jsbml-development
mailto:jsbml-team@caltech.edu
https://jsbml.svn.sourceforge.net/svnroot/jsbml/trunk/modules/android

B Open tasks in JSBML development JGML

The following is an incomplete list of tasks still remaining to be done to complete JSBML.
¢ JSBML does not yet provide a stand-alone validator for SBML. It currently uses the online validator for SBML.

¢ The support for SBML Level 3 should be completed by implementing all extension packages.

The toSBML () methods on SBase are missing.

¢ Constructors and methods with namespaces are not yet provided.

The libSBML compatibility module needs to be fully implemented.
¢ Also the android module is not ready yet.

¢ A more general implementation for ontology access and manipulation in order to access other ontologies
than just the SBO. See, for instance, the work of Courtot et al. [10] for details.

JSBML User Guide B Appendix B. Open tasks in JSBML development Page 54 of 57

References JGBML

(1]

[2

(3]

(4]

(3]

(6]

(7]

[8

9

(10]

(11]

(12]

(13]

(14]

[15]

(16]
(17]

Apache Software Foundation. The Apache Ant project. Available on the World Wide Web at http://ant.
apache.org/, 2015.

Apache Software Foundation. The Apache Maven project. Available on the World Wide Web athttp://maven.
apache.org/, 2015.

Apache Software Foundation. Apache Tomcat. Available on the World Wide Web at http://tomcat.apache.
org/, 2015.

Apache Software Foundation. log4j. Available on the World Wide Web at http://logging.apache.org/
log4j/1.2/,2015.

Kent Beck, Erich Gamma, and David Saff. JUnit.org. Available on the World Wide Web athttp://www. junit.
org, 2015.

Arif Bilgin, Don Caldwell, John Ellson, Emden Gansner, Yifan Hu, Stephen North, Yehuda Koren, David Dobkin,
Eleftherios Koutsofios, Bruce Lilly, Glen Low, John Mocenigo, Jeroen Scheerder, and Gordon Woodhull. Graphviz
— graph visualization software. Available on the World Wide Web at http: //www.graphviz.org/, 2015.

Benjamin J. Bornstein, Sarah M. Keating, Akiya Jouraku, and Michael Hucka. LibSBML: an API Library for
SBML. Bioinformatics, 24(6):880-881, February 2008.

Rainer Breitling, David Gilbert, Monika Heiner, and Richard Orton. A structured approach for the engineering
of biochemical network models, illustrated for signalling pathways. Briefings in bioinformatics, 9(5):404-421,
2008.

Claudine Chaouiya, Duncan Bérenguier, Sarah M Keating, Aurélien Naldi, Martijn P Van Iersel, Nicolas Ro-
driguez, Andreas Dréger, Finja Biichel, Thomas Cokelaer, Bryan Kowal, et al. Sbml qualitative models: a model
representation format and infrastructure to foster interactions between qualitative modelling formalisms and
tools. BMC systems biology, 7(1):135, 2013.

Mélanie Courtot, Nick Juty, Christian Kniipfer, Dagmar Waltemath, Anna Zhukova, Andreas Drager, Michel
Dumontier, Andrew Finney, Martin Golebiewski, Janna Hastings, Stefan Hoops, Sarah Keating, Douglas B. Kell,
Samuel Kerrien, James Lawson, Allyson Lister, James Lu, Rainer Machne, Pedro Mendes, Matthew Pocock,
Nicolas Rodriguez, Alice Villeger, Darren J. Wilkinson, Sarala Wimalaratne, Camille Laibe, Michael Hucka, and
Nicolas Le Novere. Controlled vocabularies and semantics in systems biology. Molecular Systems Biology,
7(1):543, September 2011.

Andreas Drdger. Computational Modeling of Biochemical Networks. PhD thesis, University of Tuebingen,
Tiibingen, Germany, January 2011.

Andreas Dréger, Nicolas Rodriguez, Marine Dumousseau, Alexander Dorr, Clemens Wrzodek, Nicolas Le Novére,
Andreas Zell, and Michael Hucka. JSBML: a flexible Java library for working with SBML. Bioinformatics,
27(15):2167-2168, June 2011.

Akira Funahashi, Naoki Tanimura, Mineo Morohashi, and Hiroaki Kitano. CellDesigner: a process diagram
editor for gene-regulatory and biochemical networks. BioSilico, 1(5):159-162, 2003.

Ralph Gauges, Ursula Rost, Sven Sahle, and Katja Wegner. A model diagram layout extension for sbml. Bioin-
formatics, 22(15):1879-1885, 2006.

George Gkoutos. The Ontology of Units of Measurement. Available on the World Wide Web at http://www.
obofoundry.org/ontology/uo.html, 2015.

Harold Gomez. Dynamic structures, version 1 release .1. 2014.

Richard C. G. Holland, Thomas Down, Matthew Pocock, Andreas Prli¢, David Huen, Keith James, Sylvain Foisy;,
Andreas Dréger, Andy Yates, Michael Heuer, and Mark J. Schreiber. BioJava: an Open-Source Framework for
Bioinformatics. Bioinformatics, 24(18):2096-2097, August 2008.

JSBML User Guide B References Page 55 of 57

http://ant.apache.org/
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://www.junit.org
http://www.junit.org
http://www.graphviz.org/
http://www.obofoundry.org/ontology/uo.html
http://www.obofoundry.org/ontology/uo.html

(18]

(19]

(20]

(21]

(22]

[23]

(24]

(25]

(26]

(27]

[28]

(29]

(30]
(31]
(32]

(33]

(34]

[35]

[36]

[37]

John E. Hopcroft and Richard M. Karp. An n°/? algorithm for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2:225, 1973.

Michael Hucka, Frank T. Bergmann, Stefan Hoops, Sarah M. Keating, Sven Sahle, James C. Schaff, Lucian P.
Smith, and Darren J. Wilkinson. The Systems Biology Markup Language (SBML): Language Specification for
Level 3 Version 1 Core. Technical report, Nature Precedings, October 2010.

Michael Hucka, Andrew Finney, Stefan Hoops, Sarah M. Keating, and Nicolas Le Noveére. Systems biology
markup language (SBML) Level 2: structures and facilities for model definitions. Technical report, Nature
Precedings, December 2008.

Michael Hucka, Andrew Finney, Herbert Sauro, and Hamid Bolouri. Systems Biology Markup Language (SBML)
Level 1: Structures and Facilities for Basic Model Definitions. Technical Report 2, Systems Biology Workbench
Development Group JST ERATO Kitano Symbiotic Systems Project Control and Dynamical Systems, MC 107-81,
California Institute of Technology, Pasadena, CA, USA, August 2003.

JSBML Team. The JSBML releases on GitHub. Available on the World Wide Web at https://github.com/
sbmlteam/jsbml/releases, 2015.

JSBML Team. The JSBML releases on SourceForge. Available on the World Wide Web athttp://sourceforge.
net/projects/jsbml/files/, 2015.

JSBML Team. The JSBML GitHub repository. Available on the World Wide Web at https://github.com/
sbmlteam/jsbml, 2016.

JTidy team. JTidy, HTML parser and pretty-printer in JAVA. Available on the World Wide Web athttp://jtidy.
sourceforge.net/, 2015.

Nicolas Le Novere. Model storage, exchange and integration. BMC Neuroscience, 7 Suppl 1:511, Oct 2006.

Nicolas Le Novere, Mélanie Courtot, and Camille Laibe. Adding semantics in kinetics models of biochem-
ical pathways. In C. Kettner and M. G. Hicks, editors, 2" International ESCEC Workshop on Experimental
Standard Conditions on Enzyme Characterizations. Beilstein Institut, Riidesheim, Germany, pages 137-153,
Riidessheim/Rhein, Germany, August 2006. ESEC.

Nicolas Le Novere, Andrew Finney, Michael Hucka, Upinder S. Bhalla, Fabien Campagne, Julio Collado-Vides,
Edmund J. Crampin, Matt Halstead, Edda Klipp, Pedro Mendes, Poul Nielsen, Herbert Sauro, Bruce E. Shapiro,
Jacky L. Snoep, Hugh D. Spence, and Barry L. Wanner. Minimum information requested in the annotation of
biochemical models (MIRIAM). Nature Biotechnology, 23(12):1509-1515, December 2005.

Nathan E Lewis, Harish Nagarajan, and Bernhard O Palsson. Constraining the metabolic genotype-phenotype
relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 10(4):291-305, 2012.

LibSBML Team. libSBML. Available on the World Wide Web at http://sbml.org/Software/1ibSBML, 2015.
S.L. Moodie and L.P. Smith. Distributions, version .13. 2013.
Brett G Olivier and Frank T Bergmann. Sbml level 3 package: Flux balance constraints ('fbc’). 2013.

Oracle, Inc. Java™., Available on the World Wide Web at http://www. java.com/en/download/manual. jsp,
2015.

SBML Editors. The SBML frequently asked questions and answers. Available on the World Wide Web at
http://sbml.org/Documents/FAQ, 2015.

SBML Editors. The SBML specifications. Available on the World Wide Web at http://sbml.org/Documents/
Specifications/, 2015.

SBML Team. The SBML discussion forums and mailing lists. Available on the World Wide Web at http:
//sbml.org/Forums/, 2015.

J.C. Schaff. Spatial processes, version 1 release .88. 2014.

Page 56 of 57

https://github.com/sbmlteam/jsbml/releases
https://github.com/sbmlteam/jsbml/releases
http://sourceforge.net/projects/jsbml/files/
http://sourceforge.net/projects/jsbml/files/
https://github.com/sbmlteam/jsbml
https://github.com/sbmlteam/jsbml
http://jtidy.sourceforge.net/
http://jtidy.sourceforge.net/
http://sbml.org/Software/libSBML
http://www.java.com/en/download/manual.jsp
http://sbml.org/Documents/FAQ
http://sbml.org/Documents/Specifications/
http://sbml.org/Documents/Specifications/
http://sbml.org/Forums/
http://sbml.org/Forums/

[38] Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. From boolean to probabilistic boolean networks as
models of genetic regulatory networks. Proceedings of the IEEE, 90(11):1778-1792, 2002.

[39] Lucian P Smith and Michael Hucka. Sbml level 3 hierarchical model composition. 2010.
[40] Lucian P Smith and Michael Hucka. Required elements. 2013.
[41] Leandro Watanabe and Chris Myers. Arrays, version 1 release .1. 2014.

[42] Wikipedia Foundation. Chainsaw log viewer with some alternatives. Available on the World Wide Web at
https://en.wikipedia.org/wiki/Chainsaw_(log_file_viewer), 2015.

Page 57 of 57

https://en.wikipedia.org/wiki/Chainsaw_(log_file_viewer)

	1 Getting started with JSBML
	1.1 Obtaining and using JSBML
	1.1.1 The JSBML archive with dependencies
	1.1.2 The JSBML archive without dependencies
	1.1.3 Maven dependencies
	1.1.4 The JSBML source archive
	1.1.5 The JSBML source code repository
	1.1.6 Setting up Eclipse
	1.1.7 Optional extensions, modules and examples available for JSBML

	1.2 Writing your first JSBML application
	1.2.1 Reading and visualizing an SBMLDocument object
	1.2.2 Creating and writing an SBMLDocument object

	1.3 More examples

	2 Differences between JSBML and libSBML
	2.1 Why are there differences?
	2.2 Differences between the class hierarchies
	2.2.1 Common interface for hierarchical structures: AbstractTreeNode
	2.2.2 Common root of SBML components: AbstractSBase
	2.2.3 Interface for SBML components with identifiers: NamedSBase
	2.2.4 Interface for SBML components with units: SBaseWithDerivedUnit
	2.2.5 Interface for SBML components containing a mathematical formula: MathContainer
	2.2.6 Interface for SBML components that may change the value of a variable: Assignment

	2.3 Differences between the APIs of JSBML and libSBML
	2.3.1 Level and Version ValuePair
	2.3.2 Abstract syntax trees for mathematical formulas
	2.3.3 Compartments
	2.3.4 Model history
	2.3.5 Units and unit definitions
	2.3.6 Cloning when adding child nodes to instances of SBase
	2.3.7 Exceptions
	2.3.8 No interface libSBMLConstants
	2.3.9 No class libSBML
	2.3.10 No individual ListOf* classes, but a generic ListOf
	2.3.11 Use of deprecation

	3 Additional features provided by JSBML
	3.1 Change listeners
	3.2 Determination of the variable in AlgebraicRules
	3.3 The find* methods
	3.4 Other utility classes provided by JSBML
	3.4.1 Mathematical functions and constants
	3.4.2 Some tools for String manipulation

	3.5 Logging facilities
	3.5.1 Changing the log4j configuration
	3.5.2 Some example configurations

	3.6 JSBML modules
	3.6.1 The libSBMLio module: using libSBML for parsing SBML into JSBML data structures
	3.6.2 The CellDesigner module: turning a JSBML-based application into a CellDesigner plugin
	3.6.3 The libSBMLcompat module: a JSBML compatibility module for libSBML
	3.6.4 The android module: a compatibility module for Android systems
	3.6.5 The compare module: facilities for doing comparisons between libSBML and JSBML
	3.6.6 The tidy module: to produce a tidy XML output

	3.7 Offline validation
	3.7.1 Basic procedure for using offline validation in JSBML
	3.7.2 Providing custom constraints to the offline validator

	4 Implementing extensions in JSBML
	4.1 Organizing the source code
	4.2 Creating the object hierarchy
	4.2.1 Introducing new components and extending others
	4.2.2 ListOfs
	4.2.3 Methods for creating new objects
	4.2.4 The methods equals, hashCode, and clone

	4.3 Implementing the reader and writer for an SBML package
	4.3.1 Reading
	4.3.2 Writing

	4.4 Implementation checklist
	4.5 Eclipse code templates
	4.6 SBML packages overview

	5 Acknowledgments
	A Frequently Asked Questions (FAQ)
	B Open tasks in JSBML development
	References

