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On the Radial Vilyrations of a Cylindrical Elastic Shell.

By A. B. BASSET, M.A., F.RS. , \

[Mead Dec. 12th, 1889.]

Tnc usual theory at thin plates and shells amanes that the three
stresses B, S, T may bo treated as zero ; and in a previews paper* I
pointed oat, th*t this supposition is legitimate, owly in the oase is
which these quantities are at least of the order of the square of the
thickness of the plate or shelj. I also showed that, by means of cer-
tain results given in a paper by Lord Rayleigh, it conkl be easily
proved that this supposition is true in the case of a plan* plats,
which is not under the influence of forces applied to its surface.

The question whether JR, S, T may be treated as zero (for they
cannot actually be zero except in certain very special cases) is at the
utmost importance in the theory of the free vibrations of thin carved
shells. If these streams may be treated as zero, it is possible
to obtain the correct exprexmon for the potential energy, and the
correct equations of motion, as far as the terms involving the e«b# of
the thickness; b«t, if tkey may not be treated a* sneK, a satisfactory
theory of thin shells seems almotit liopcie»ss. For, although the result*
obtained by considering (as Mr. Love has done) that part of th«
potential energy which is solely due to the extension of the middle
surface, are correct as far as the terms involving th# thickness art
concerned; yet, imwweh as ikore are reasons for thinking that the
graver tones of a bell depend pri»cipalty*upon Hex«re rather than
extension, it is essential to take the term in h* into consideration.

A perfectly rigorous solution of any question relating to the vibra-
tions of cylindrical or spherical shells, might be obtained by means
of the general equations of motion of an elastic solid, since these

* Ante, p. 33.
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equations contain within themselves the complete solution of every
conceivable problem ; but the mathematical difficulties of integrating
these equations, except in special cases, are so great, that an investi-
gation conducted by means of them would be very laborious and
complicated. Tho radial vibrations of an infinitely long cylindrical
shell c'in, however, be investigated by means of these equations without
much difficulty as far as the term in the period which involves 7i2, where
2/i iu the thickness of tho shell; and, by comparing the result obtained
by this method with the one furnished by the theory of thin plates,
svfl shall obifiin evidence respecting the legitimacy of the assumption
on which the latter theory is based.

Tho vibrations which we are about to consider aro exclusively
norrnr.l, pjid the displacement w is a function of r alone, and satisfies
tho differential equation

j ^ ( 1 ) ,

as can easily b3 seen by putting u = v = 0 in the general equations of
motion of an elastic solid.

Putting w-We'p\ jp9p/(m + n) = o» (2),

(1) becomes ^ + 1 «"T+(«•-•£) TT = O (3),

the solution of which is

W= AJX (ar)+BY1 (ar) (4),

where J and Y are the two kinds of Bessel's functions. Since the
tangential stress parallel to the middle surface r = a is obviously
zero in this species of motion, the only surface condition is R = 0, or

*W + ME=0 (5)

, i-, in—n

where E =

whence, putting x = ar, (5) becomes

A{xJ{(x)+EJx(x)}+B{xY[(x)-i-EYl(x)} = 0 (6),

when r =

This equation enables us to determine the frequency, and we shall
proceed to evaluate it as far as the term involving 7i2.

Denoting the coefficients of A and B in (6) by >̂ (x) and \ (a:),
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where x is now written for act, the equation for the frequency is

<j> (x+ah) _ x (% + ah)

<}> (x—ah) x (»—a/0'

whence, neglecting powers of h higher than /t2, we have

rt-xf+WV{fx'-xVt* W-xf)} = o (7).
In evaluating this equation the following properties of Bessel's

functions will be useful, which can easily be proved by means of the
fundamental equation which these quantities satisfy.

Let H, = J',Y,-Y',JSi

then it can be proved that

J" Y, — Y'/ J, = — E, /x,

J"'V' V " V * I 1 1
X \ X I

J, X,-X. J , - - -

.(8),

to which may be joined

(9).

It is also known that xH, is independent of x.

Dropping the suffix 1, which is no longer necessary, we have

<j>=zxJ'+EJ,

whence <P\-\<t> - H(l-^2—a?9) (10).
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From this equation we see that, to a first approximation,

x* = l-E* (11);

whence, restoring the values of x and E, we obtain

p» - 4mn .
9 pa*{m+n)

which is a known result.

Again,

*Y-xV=«* (J"'Y'~ r'T)+»(i+E)(r r - r v )

i [ + + ( + y t ] (13);
x

Also,

^ { + ( + ) + ( - ^ ) } (14).

Substituting from (10), (13), (14), in (7), we obtain

{ -JEP} = 0.

Now x = aa; we may also, in the term involving /i1, substitute tke
approximate value of x from (11) ; we thus obtain

a1 ( l - JE») -aV+*t f ( 1 - ^ ) ( 1 + 4Z<?) = 0 ;

from which it appears that the pitch rises as the thickness increases.

We shall now prove that the same result is given by the theory of
thin plates, in which B is treated as zero.

Let dil = dzdf;
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then, if T and W be the kinetic and potential energies,

where a+h', <p are the coordinates of any point of the shell.

Now w

where the brackets denote the values of the differential coefficients
when r = a. Also, if we suppose that B is at most of the order of the
square of the thickness, and neglect higher powers than 7i8, in the
expressions for T and W, we may write

dw

accordingly w' = ( 1 - —' + \E (1+E) K ] »J
La a )

whence T = ph [f ( 1+ ^ f (2^-1) Jw'aeiO (16).

Again, W— | | j * {|(m+w) A'2-2n(r,<r8} rdh'dXl

fff* — dh'dh'dQ

whence

pa (ra+n) (. >ia )

which agrees with our former result.

Although the agreement of the results obtained by the two theories
in this particular case does not, of course, prove that B may be treated
as zero in every conceivable case that may arise, yet the inference is
that it may be treated as such, provided the surfaces of the shell are
free from external pressures and tangential stresses, and provided
also that the solution is not carried to a higher degree of approxima-
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tion than terms in h? in the expressions for the kinetic and potential
energies, and terms in h? in the period.

A similar method might be employed to investigate the radial
vibrations of a complete spherical shell, for the equation of motion is

drl r dr 4<r/r dr

the solution of which is

w = r-» {AJ* (ar)+BY» (ar)},

and evaluating by means of (8).

Note on a Quaternary Group of 51840 Linear Substitutions.
By Dr. MORRICE.

[Read December \2th, 1889.]

PART I.

I give in Part I. a few fundamental data concerning the transforma-
tion of the double functions which will be useful to those who have
not followed the development of the subject by Witting* andMaschkef
in the Mathematische Annalen.

We have the periods ulu w^, w18, wM,
Wjl, WjJ, WM, h)ut

•of the hyper-elliptic integrals

v'/OO Jv
and we transform by means of the relations

1 ~ ~ — z ' s~~
Pn

where p^ stands for I D , , a>2*—ci>lt <av.

The new periods are

1, 0, r n = ^ , .

0, 1, r B =ai , rM=£L*,
.Pu Pu

* Witting, Inaugural Dissertation, Dresden, 1887, and Math. Ann., Band 29.
t Maechke, Math. Ann., Band 33, Heft 3.
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and the relation, >̂18 = jo42,

which exists between the old periods, becomes

The double ^-function of the first order is

k.VJ

where <j> (nu n3) = r n » i + 2rianjW.3 + r22Wj.

We have now to consider the group of linear transformations of the
periods which leave the characteristic

0, 0

o, o
unaltered. Witting gives five from which any others may be
generated by iteration and combination:

M N P Q B

W<2

: :

* — J., J.

In connexion with the theory of transformation of order &, there
have recently been established functions analogous to the sigma-
functions for elliptic integrals; i.e., we have a set of functions

X s fan vi; rn> rI8, r22)

where

** \Tw ri2> r2a) ~"

(«,0 = O,l,...fc-l)f

. _ i
6

. _ _ 1
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For a transformation of the periods which leaves the characteristic

0, 0

0, 0

unaltered, these Xmf> functions are transformed into linear functions
of themselves, with merely numerical coefficients. The particular
case under consideration is that where A; = 3.

We choose the four functions

z3 = Xn—Xit,

zt = XU—X%1,

and establish the transformations which they undergo when the
6>-periods undergo the transformations M, N, P, Q, R,

M\

P

z'x— —

B.i
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PART II.

It appears natural to inquire what transformations are common to
the periods, on the one hand, and the four Jacobian functions zlt z2,
zit zA, on the other. Is it possible to find a sub-group of transforma-
tions common to the two groups, sach that to the transformations of
the w's correspond the same transformations taken in a different
order ?

I know of no general method for answering these questions, and
after searching through some hundreds of the matrices, I only found
three common to the two groups; but these three have a simple
property which appears worthy of observation.

To the matrix (which occurs in both groups)

0 0 1 0

0 0 0 - 1

- 1 0 0 0

0 1 0 0

in the w-group, corresponds the matrix

8(z) - 1 0 - 1 1

0 1 1 1

- 1 1 0 - 1

1 1 - 1 0
in the z-group.

To the matrix (which occurs in both groups)

T(a») 0 0 0 1

0 0 1 0

0 - 1 0 0

- 1 0 0 0

in the ai-group, corresponds the matrix

T(z) 0 1 1 1

1 0 1 - 1

1 1 - 1 0

1 - 1 0 1
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in the z-group; for the sake of simplicity certain numerical factors of
the matrices are disregarded.

Now when the w's are subjected to the matrix

S.T(w) 0 - 1 0 0

1 0 0 0

0 0 0 - 1

0 0 1 0

the z's are transformed by the same matrix, i.e., are covariant for
this matrix.

Moreover, we find by actual composition

S(io) T(z) = T(u>) S(z)= {r.S(w)}*= {T.8(z)y,

In terms of Witting's matrices,

T = M2 (QMMPy (w).

Herr Burkhardt's resume of Klein's lectures in Mathematische Annalen,
Band xxv., Heft 2, suggests that there may be some geometrical
explanation of the curious simplicity of the sub-group in question.

Notes on the Plane Cubic and a Conic. By R. A. ROBERTS.

[Read Dee. 12th, 1889.]

I commence by showing that a plane cubic and a conic can be
reduced to the forms

= 0 (1),
V=axi+byi+czi+dut = 0 *. (2),

in a single way, where x, y, z, u aro four lines in the plane, and a, /?,
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y, ti, a, b, c, d are constants. These may thus be considei'ed as
canonical forms for a cubic and a conic.

To prove this, I introduce the consideration of another conic S
touching the lines x, y, z, u. This conic possesses the property that
if we substitute differential symbols in its tangential equation for
A, p, v, respectively, and operate on both the equations of the cubic
and conic, the results will vanish. For, if we operate Jin this way on
the power of any line, L" say, the result will be proportional to L"'2

multiplied by the condition that L and 2 should touch. Consequently,
since the cubic and conic only involve powers of x, y, z, u, and the
conic 2 touches these lines, the result just stated must have place.
Now, if a conic be such that the result of substituting differential
symbols in its tangential equation and operating on a cubic vanishes,
it must satisfy three invariant relations with the cubic; for such a
result must be linear in x, y, z, Ax+By + Cz, say ; and, in order that
this should vanish identically, we should have

A - B = 0 = 0.

Hence the conic 2 satisfies three invariant relations with the cubic U,
and one with the conic F. But these four conditions are geometrically
expressed in the fact that it touches the four lines x, y, z, u, when Xf
and V are written in the forms (1), (2). Thus, if IT and Fare written
in any other forms, and we express that 2 satisfies certain three con-
ditions with J7, and one condition with V, and find then that these
four conditions, taken together, are equivalent to expressing that 2
touches four fixed lines, we infer that these four lines are the lines
x, y, z, u, when U and Fare written in the forms (1), (2) ; and that
this is so I pi'oceed to prove.

If the cubic be written in one of its own canonical foi-ms, namely,

U = x3 + y3 + z3 + 6mxyz = 0 (3),

and the conic F is then at the same time

V = (a, 6, c,/, g, h)(x, y, zf = 0. (4),

the results of substituting differential symbols in the tangential equa-
tion of a conic 2 {A, B, 0, F, G, H) (X, fx, v)% and operating on the
cubic Uand the conic Fare, respectively,

(A + 2mF) x + (B + 2mG) y + (0-+-2mH) z,

+ 2Ff+2Gg + 2Hh ;
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and, in order that these should identically vanish, we must have

= 0, 0+2mII=0,

showing that 3 must be of the form

A (mtf-p^+B (mp*-v\) + O (mS-ty) = 0 (5),

where A (ma-f)+B (mb-g) + 0 (mc-h) = 0 (6).

Now, subject to these conditions, 2 evidently touches the four lines
determined by the equations

m\— fiv tnfx%—»>\ mK-X/i .„.
7" ~~ "" '\ — 7" ' • />

m a —/ mb — g mo—k
and these must therefore be the four lines involved in the canonical
forms (1), (2). Their equation may be obtained by taking the equa-
tion of 2 in ,T, y, z coordinates, which may be written

A2 (4myz-a?2) + IP (4nnzx-if) + C2 (4»i»y-ss),

and 2BG(j/* + 4i»V) +2CM (zx + 4mY)+2AB (asy+ 4wV) = O...(8),

and forming its envelope subject to the condition

A (ma-f) +B (mb—g) + G (mo—h) = 0.
This gives

(ma—f)2 mx (3mxyz—if—i?—m*x*)

+ (onc—hy viz

+ (mh-tj)(mc—h) {2 (m'-m) yV + » V (1 -4«i:i) +wsx (a'

+ (me-7i)(ma-/) {2 (OT4-TO) sV+yVu(l-4i»»)+OTay(«!l

+ («ia - / ) (m6 - y) { 2 (ni* - m) ̂ 2 + z%xy (1 - 4ws) + mlz (a;8+T/8+z3) }

= 0 (9).

This equation, it may bo observed, is of the second degreo in the
coefficients of the conic, and of the sixth in those of tho cubic.

We may notice that, if polar conies of Z7be described to have double
contact with V, the chords of contact corresponding to tho four solu-
tions are the lines x, y, a, xi in the forms (1), (2). For a polar conic
of Z7 is

uxx x
%+fty1 if+yzx s2 + Sux v? = 0,

and this will have double contact with V at points lying on u = 0,
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if we take
axx = a, pyx — b, yz, = c,

and similarly in the case of the other lines x, y, z.

The coefficients a, ft, y, 8 can be found as the roots of a biquadratic
equation as follows. The diagonals of the quadrilateral x, y, z, u can,
it is easy to see, be written in the form

/ = a3+2/s + z3+ws = O (10),

on the supposition x+y+z+u = 0,

so that U—A/is

and the invariant 8 of this cubic is proportional to

(u-\)(fi-\)(y-\)(&-\)

(see Salmon's Higher Plane Curves, Art. 239, 3rd ed.), which thus
being equated to zero will give the required biquadratic. In order to
find the equation of / when the cubic and conic are written in the
forms (3), (4), we observe that the diagonals are the common self-
conjugate triangle of nil the conies inscribed in the quadrilateral.
Hence, according to the theory of conies, their equation will bo the
Jacobian of three conies of the system; for instance, if we take the
three conies to be those whose tangential equations are

(ma—/) (w/i2 — v\) — (mb — g) (mX3 — (xv) = 0, ̂

(mb — </)(m»'3 — \ft) — (me—7i)(?H/U2 —t>\) = 0, > ( H ) ,

J will be the Jacobiun of

{(mb— g) x+ (ma— f) 2/]2 + 4ni3 (ma—f) (mb — g) z1

— 4>mz {(ma—fYx + (mb — >JY y] — ^

{(mc—h) y+ (mb—g) z}2 + 4w.2 (mb—g) (mc—h) x"

{ (ma—f) z + («i,c—7i) aj}2 + 4»i3 («ia —/) (i?ic — h) j / 2

(ma —/) 3 x + (we—7t)2 z ] = 0,.

When a conic is written in the form (2) it is easily seen that the
extremities of each of the three diagonals of the quadrilateral x, y, z,u
are conjugate with respect to the curve, so that, if it breaks up into

VOL. xxi.—NO. 374. F
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right lines, one line can be assumed arbitrarily, and then the other
will be completely determined, namely, will pass through the three
fourth harmonics on each of the diagonals. Hence, if one line is the
line at infinity, the other will pass through the middle points of the
diagonals. Now, when a cubic is written in the form (1), its
Hessian is

+ yluzux + $afiuxy + afiyxyz = 0,

that is, passes through the six points of intersection of the lines x, y,
z, u. Hence we see that the problem, to describe a quadrilateral to
have its six intersections of sides on a cubic so that the middle points
of the diagonals should lie on a given line, admits of three solutions ;
for there arc three cubics which have a given cubic for a Hessian.

When a cubic and a conic are written in the forms (1), (2), a
certain co variant conic is also expressible linearly in terms of the
squares of x, y, z, u. This covariant may be found as follows.
Writing a line in the form

\x-\-fiij-\-vz+pu = 0,

its polar conic with regard to the cubic, namely, the envelope of the
polars with regard to the cubic of the points on the line, is found to be

fiy = 0 .(13).

Now the tangential equation of F i s

y=0 (14).

Hence, if we substitute differential symbols -—, —, —, —- for x, ?/,
J dk* dp dv dp ' J>

z, u in the former equation, and operate on the latter, we get
2abyH\-fxy = 0 (15),

which is therefore a contravariant conic.

Bat this latter is the tangential equation of

abcdxi + Pcdayi + ydabzi + Zabcu'> = 0 (16).

Tf this conic be written

we have aa' '. bb''. cc '. dd' = a : /3 : y : 8,

which shows that Fand the covariant (16) are reciprocally related
with regard to the cubic. This will be readily seen whon the cubic
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and conic are written in the forms (3), (4). If the tangential
equation of V is then

(A, B, 0, F, G, E)(\, n, v)> = 0,

the tangential equation of the contravariant is

(mU-JF1, m?B-G, rtfO-II, mA-miF,mB-miG)mG-m1iH)(\, p, v)2

= 0 (17).

From these equations it is readily seen that the conic V and the
contravariant will coincide if either is of the form

A (\2 + 20/xv) + B (fx* + 2dv\) + 0 (v2 + 20ty) = 0,

where 02-2m20 + m = 0,

that is, is a derived conic of either of the curves of the third class

If one of the coefficients of V in (2) vanish, d say, the contravariant
becomes, from (15), after dividing by S,

bca (fx-vy + caft (v-A)2+a6y (A-/;)2 = 0,

that is, it breaks up into factors, the two points corresponding to
which lie on the line u = 0. Now x, y, z form a triangle inscribed
in the Hessian, so that the points where the sides meet the curve
again lie on a line ; hence, if it is possible that such a triangle should
be self-conjugate with regard to a conic, the invariant relation con-
necting, the cubic and the conic is found by taking the discriminant
of (17). This relation is therefore of the sixth degree in the
coefficients of the cubic, and the third degree in the tangential
coefficients of the conic.

We now proceed to show how to obtain the conditions that a conic
should bo circumscribed about or inscribed in a triangle which is in-
scribed in the Hessian, so that the points where the sides meet the
curve again are collinear. Suppose that the cubic is

and if a conic circumscribes the triangle xyz, we may write it

fyz + gzx + hxy = 0.

Substituting the differential symbols —, -r-» ~r f°r x* 2/> z-> rcspec-
d\ dfi. dv
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tively, in the latter equation, and operating on the tangential equation
of the polar conic of a point, namely,

we get a covariant conic which is found to be

Su (Jax+gfiy + hyz) = 0,

that is, it breaks up into factors in the case under consideration.
When the cubic and conic are written in the forms (3), (4), tho co-
variant is

a (yz—mV) -f b (zx—??ia2/2) + c (icy-mV) + 2f (irfiyz—mx*)

+ 2g (vi2zx - mif) + 2h (m2.c?/-mz1) = 0 (19).

It is thus linear in the coefficients of the conic, and of the second
degree in those of tho cubic, so that its discriminant, or the condition
required, is of the third degree in the coefficients of the conin and of
the sixtli degree in those of the cubic.

For example, if the circumscribing conic is a circle which cuts a
given circle orthogonally, the foregoing relation shows that its centre
lies on a given curve of the third degree. The conic and tho co-
variant (19), it is easy to see, are reciprocally related with regard to
the cubic; in fact, one passes through the points on the Hessian
corresponding to those in which tho other intersects it. This follows
horn the fact that, for points on the Hessian, the polar conies break
up into pairs of lines intersecting at the corresponding points. Hunce
we see that the result given above folloAvs at once; for, when three
points on the Hessian are collinear, the corresponding points form a
triangle whose sides meet the curve again in three points on a line. •

Jt may bo noticed from this that, if a conic touch the Hessian in
some point, its covariant (19) will touch the Hessian in the corre-
sponding point.

We now proceed to find the conditions that a cubic and a conic can
bo reduced to the forms

U = **?+ftif + yz"+Su* = 0,

V = Fa?+m*y'i+nizi--2mnyz—2nlzx—2lmxy = 0.

Now, the tangential equation of V being

= 0,
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and the polar conic of any point on the line u being

zV = 0,

the result of operating with one upon the other vanishes. Again, tho
polar conic of u with respect to U is

fiyyz + yazx + aflxy = 0,

which circumscribes a triangle circumscribed about V; therefore the
invaciaut relation 62=4A9' is satisfied between theae two conies (see
Salmon's Conies, Art. 37G).

Now, in the forms (3), (4), let the line u be

\x+fiy + vz = 0;

then, since the result of operating on the polar conic of «, y, z is

(A + 2mF) x+ (B + 2mG) y + (C + 2mII) z == 0,

we must have A + 2mF : B + 2mQ : C+2mH = X : /x : v.

We then form the invariant relation

0 2 -4A0 ' = O

between the conic and the polar conic of

\x+py + vz = 0,

namely, Xs (yz—mV) + /u,2 (zx—m?y%) + v1 (xy—m2a2)

+ 2pv (mtyz—nix*) +2v\ (trfzx—my*) + 2A/i (m*xy—mz1) = 0,

and find m* (X8+/i3 + v*) + (1 -4ms) X/iv

+ 2 (m-w4) {J1 (mX'-/uv) + G (m^-vk) + TI(mp*-Xfi)} = 0,

or m (A3+/x3 + vs) + (l-4wi;t) X/iv
2 = 0 ...(20).


