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On the Radial Vibrations of a Cylindrical Elastic Shell.
By A. B. Basser, M.A., F.R.8.

[Read Dec. 12¢h, 1889.]

The usual theory of thin plates and shells assumes that the three
stresses It, S, T may bo treated as zcro; and ia a previeus paper* I
pointed oat, that this sappesition i legitimate, only in the cmse i
which theso quantitios are at least of the order of the sqnare of the
thickness of the plate or shell. I also showed that, by means of cer-
tain results given in a paper by Lord Rayleigh, it conld bo easily
proved that this smpposition is true in the case of a plane plate,
which is not under the inflaence of forces applied to its surface.

The question whether R, S, T may be treated as sero (for they
cannot actually be zero except in certain very special cases) is of the
utmost importance in the theory of the free vibrations of thin ourved
ghells. If theso stresses may be treated as zero, it is possible
to obtain the corrcct expreasion for the potenmtial emergy, and the
correct equations of motion, as far as the terms involving the cube of
the thickness ; but, if thoy may not be troated as smoh, a satisfactory
theory of thin sholls scems slmost hopeloss.  For, although the rexulin
obtained by considering (as Mr. Love has done) that part of the
potential encrgy which is solely due to the extomsion of the middle
surface, are correct as far as the terms involving the thickness are
eoncorned ; yet, inasmuch as there are reasons for thinking that the
graver tones of a bell depend primcipallyrupon flexure rather tham
extension, it is essential to take the term in A into consideration.

A perfectly rigorous solution of any question relating to the vibra-
tions of cylindrical or spherical shells, might be obtained by means
of the general equations of motion of an elastic solid, since thess

* Ante, p. 33.
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equations contain within themselves the complete solution of every
conceivable problem ; but the mathematical difficulties of integrating
these equativng, except in special cases, are so great, that an investi-
sation conducted by menns of them would be very laborious and
complicoted.  Tho radial vibrations of an infinitely long cylindrical
ghell enn, howerver, be investigated by means of these equations without
mich difficulty as far as the term in the period which involves %%, where
2k 1 thc thickness of the shell; and, by comparing the result obtained
by this inebhod with the one furnished by the theory of thin plates,
wa shall obiain evidence 1cspectmg the legitimacy of the assumption
or which the latter theory is based.

The vibrations which we are about to comsider are exclusxvely
normel, niid the displacement w is a function of » alone, and satisfies
the dilierential equation

1 dw w) _ -
(m-{-n)( " a—;—?)—pw .................. 1),

as can easily he seen by putting ¥ =v=0 in the general equations of

- motion of an elastic solid.

Putting w= We™, po/(m+n)=d .. v (2),
aw 1 aw
(1) becomes ) + T +(c ) W=0. verneennn(3),

the solution of which is
W= AJ, (ar) +BY, (ar) .ccovernneernivrercnnnnn(4),

where J and Y are the two kinds of Bessel’s functions. Since the
tangential stress parallel to the middle surface » =a is obviously
zero in this species of motion, the only surface condition is R=0, or

aw . BwW _

ar . O T ¢33
where B="7"0,
m+n’

whence, putting & = ar, (5) becomes
A {2J;(2) + BJ,(z)} + B {2Y; () + BY,(2)} = 0......... (6),
when r=ath.

This equation enables us to determine the frequency, and we shall
proceed to evaluate it as far as the term involving A%
Denoting the coefficients of 4 and B in (G) by ¢ () and x (=),
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where z is now written for aa, the equation for the frequency is

¢ (z+ah) _ x (z+ah)
¢ (x—ah) x (z—ah)’

whence, neglecting powers of 1 higher than 1% we have
ox —x9' +3a'h {¢X —x"¢ +3 (9x"~x¢")} = 0.....o... ).

In evaluating this equation the following properties of Bessel's
functions will be useful, which can easily be proved by means of the
fundamental equation which these quantities satisfy.

Let H,=JY,~Y,J,,
then it can be proved that

JY,~Y/J,=—H,/|z,
LYY T, = H, (1-9/a%),

7Y-YT =1, (552 1),

Ty — Y,,,J,___w_(gwi_l) SR (-5 8

2H, (3s +3 1)’
z

'Y, -Y,J, =~ H, (s—%}ls’- 2_8’5_§+1),J

to which may be joined

2 ‘_
Bw -y =B, (1= 24 o mﬁ’ ) oo (9):

It is also kﬁown that zH, is independent of z.
Dropping the suffix 1, which is no longer necessary, we have
¢ =af +1J,
¢ =2J'+(1+E) 7,
o' ="+ (2+E)J,
" =al"+(B+E)J";
whence #x' —x¢' = H(QA=E'—2") c0ocovvirininneinnnnn(10).
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From this equation we see that, to o first approximation,
B=1=F e (11) 5
whence, restoring the values of = and F, we obtain

3 4dmn

p = m IXXRIERTERY

verserssnnennans(18),
which is a known result.
Again,

¢ =XV =2 (Y= Y"T) +a (L+ B)J Y —Y"T)
+(1+E)Q+EB) ('Y =Y"T)

=~ E@-N+EQ+B) (3 -1)+B0+B) @+ D) (1- )

@
= 2 [ =32t 1B+ (L4 BV 2] oo (1)
Also,
o —x9” = (LT =J"Y) +ali (YT -J"Y)
+2@+E)(T"T~T"Y)+E 3+ E)X"T-T"T)
= (40 (@4 28-2) 48 (A=)} o (18).

Substituting from (10), (13), (14), in (7), we obtain
2 (1—F") —o'+a'l {§o'—2'+ 3 (1+ E)*2* +1-E*} = 0.

Now @ = aa; we may also, in the term involving A, substitate the
approximate value of 2 from (11); we thus obtain

d(1-E)—a'd+3* (1 —E)(1+4F) =0;

dmn h
b S ST S
whence P oa (mtm) 1+ 3 (1+4E) ¢ .. (15),
from which it appears that the pitch rises as the thickness increases.

We shall now prove that the same result is given by the theory of
thin plates, in which R is treated as zero.

Let dQ = dzdgp ;
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then, if T and W be the kinetic and potential energies,
b
T=1p ”j w" (a+ k') dh'dQ,
-h
where a+%’, ¢ are the coordinates of any point of the shell.
, s (dw 131 AW
Now w =w+h (dr)+h d#)

where the brackets denote the values of the differential coefficients
when r=a. Also, if we suppose that R is at most of the order of the
square of the thickness, and neglect higher powers than 2% in the
expressions for T' and W, we may write

dw

oy = 0= — Ew/r,
PO _ g+ B w/r;
d 3.3 ’
accordingly w = {1__. +1E (1+E) }
whence T=ph”{1+—-(2n 1)} i0d0 o.vvvnn.(16)-

Again, W= ]' I J"h {3 (m-+n) 4" —2noy0,} rdde
=n(1+E) ”Khw;dh'dn

= 2nh (1 +E)” { 1+ L a+ma+en } 'g,adn..(u);.

whence

{14 0 - ; i }
pa’p {1+ 5t (2B—1) } =% (1+E){1+3a,(1+E)(1+2E) ,

_ 4mn
or. p’—m{ ] ,(1+4E)} e (18),

which agrees with our former result.

Although the agreement of the results obtained by the two theories
in this partlcular case does not, of course, prove that B may be treated
a8 zero in every conceivable cnse that may arise, yet the inference is
that it may be treated as such, provided the surfaces of the shell are
free from external pressures and tangential stresses, and provided
also that the solution is not carried to a higher degree of approxima-
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tion than terms in % in the expressions for the kinetic and potential
energies, and terms in 4 in the period.

A similar method might be employed to investigate the radial
vibrations of a complete spherical shell, for the equation of motion is

ol d e 9 =
<¢F’+ r dr+a 4:?") (wrl) =0,
the solution of which is

w=r} {AJ; (ar)+DBY; (a'r)},

.and evaluating by means of (8).

Note on o Quaternary Group of 51840 Linear Substitutions.
By Dr. MoRrICE,

[Read December 12th, 1889.]

Part I
I give in Part I. a few fundamental data concerning the transforma~
tion of the double functions which will be useful to those who have
not followed the development of the subject by Witting* and Maschket
in the Mathematische Annalen.
We have the periods wy,, wy, wy w
Wy, Weyy Wy Wy
-of the hyper-elliptic integrals .
°u = a—t@idﬁ . =I y+d dz,.
‘ -[Jf(z') REZIONE

and we transform by means of the relations

= hYn "ty WUt lon
- ’ 3= 4

Py Py

where py stands for Wy Wop— Wy Wi

7

The new periods are

1, o 7'11=%31 .7'1:=§:f’

0 1 = Lu 1oy = LM
) y Ta Prs ’ 3 Pua ’

* Witting, Inaugural Dissertation, Dresden, 1887, and Math. Ann., Band 29.
+ Maschke, Jfath. Ann., Band 33, Heft 3.
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and the relation, Pis = Pas>
which exists between the old periods, becomes
s =Tq-

- The double 3-function of the first order is

‘ﬂ. VII (v” vﬂ) — el“’ (9.5 +92h2) 2 1y, ( 1)”1"-"”2"7 e"[(""x +1) 0y +(203403) va
L . ¢ gtivd (2m+g,, '.’u,ﬂ;.)
2 2
where ¢ (ny, ny) = Ty, + 2 g+ 10y,

We have now to consider the group of linear transformations of the
periods which leave the characteristic

0, 0
0, 0

unaltered, Witting gives five from which any others may be
generated by iteration and combination :

M N P Q R
’ .
wy=| wz| wy wptwi wy | —wgtwy
, .
Wp = Wip |~ W) — Wy Wy Wiy w;
’
wp=|—wy | wytwptegtuy|—wn—w, Wi | —w;
’
Wy = Wiy |—wy+wy Wi — Wi W3 W;y |~ W wy+ 0y
t=1,2.

In connexion with the theory of transformation of order k, there
have recently been established functions analogous to the sigma-
functions for elliptic integrals; ¢.e., we have a set of functions

X (v, v35 Ty Tagy )

' eki.@(v.u,) +o
§ (k=1) (ix/k) ¢ (ks e, kn )+ 2iw Lk, sootbnta)od
~Fa 3 (s Tigy T00)* -2‘"’ °
(6, 8=0,1, ... k—1),
where @ (v, v5) = A, v} +24,30,0,+ A 0],
. 190 logS
A =
1 5 1 aTu
A, =— i Jdlog 9
1 ar“ ’
10
Ayy=— .1_ s é__&ﬁ
5 1 arn,
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For a transformation of the periods which leaves the characteristic
0, 0
o ol
unaltered, these X,, functions are transformed into linear functions

of themselves, with merely numerical coefficients. The particular
case under consideration is that where k = 3.

We choose the four functions

5 = Xo—Xy,
7 = Xyp— Xy,
7y = Xy~ Xy,

= X,— Xy,

and establish the transformations which they undergo when the
w-periods undergo the transformations M, N, P, @, R

z = 73 (21 +25—2,), 8 = ::71 (e—€') 2,
z; =-:/13(e’—e) g, zé: 7— (ez,-i-e 23+Z‘),
M4 . N ;
2y = %3 (z,+ €*23—ez,), 2 7— (€2, 4+ €23+ 2,),
kz: = :/%(—z,—cz,-i-e’z,), ‘z‘———-(z,+zu+z‘),
. _ o -
2 = '—; (2, +ez5,—¢'%,), 4= 7% (=) a
’ ‘—1 L] o _1
2q = -:/-g € -—G) Zgy = ';7§ (zg"l"za'*'z‘),
P Q!
2z = 73 (e’z,-}-c 23— €'2,), B= (Z,'I'e 23+ €2,),
Lz: = 5—% —ez,— 23+ €%2,), 7= -7.5 (24 ezy+€%2,),
Z=—z,
R zf =z, (e —_ e‘i').
3= =2,
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Part II.

It appears natural to inquire what transformations are common to
the periods, on the one hand, and the four Jacobian functions z,, 2z,
24, 2,, on the other. Is it possible to find a sub-group of transforma-
tions common to the two groups, such that to the transformations of
the w's correspond the same transformations taken in a different
order P~

I know of no general method for answering these questions, and
after searching through some hundreds of the matrices, I only found
three common to the two groups; but these three have a simple
property which appears worthy of observation,

To the matrix (which occurs in both groups)

S| 001 0

00 0-1
-1 0 0 O
010 o

in the w-group, corresponds the matrix

S@|—-1 0-1 1

01 1 1
-1 1 0-1
11-1 0

in the z-group.

To the matrix (which occurs in both groups)

Tw| 0 00 1

0 010

0-100

-1 0 0 0

in the w-group, corresponds the matrix

Tiz|0 1 1 1

1 0 1-1

1 1-1 0

1-1 0 1
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in the z-group; for the sake of simplicity certain numerical factors of
the matrices are disregarded.

Now when the w's are subjected to the matrix

8.T@w)|0—1 0 0

1 00 O
0 0 0-1
0 01 O

the z’s are transformed by the same matrix, .., are covariant for
this matrix.

Moreover, we find by actual composition
S)T(E)=T(w) S(z) = {T. S(w)}‘ = {T. S(z)}‘,
BEHT@=TE 8w ={8.Tw}={8.T},
8 (w) 8(z) 87 (w) =T (2).
In terms of Witting’s matrices,
8= QM (v),
T = M* (QMRM?)® ().

Herr Burkhardt's résumé of Klein’s lectures in Mathematische Annalen,
Band zxv., Heft 2, suggests that there may be some geometrical
explanation of the curious simplicity of the sub-group in question.

Notes on the Plane Oubic and a Conic. By R. A. RoBErTs.

[Read Dec. 12¢h, 1889.]

I commence by showing that a plane cubic and & conic can be
reduced to the forms '

U=a+ By + v+l =0 .oovvirirvninnnee ),
V=az’+by+c® +du’ =0 .covvvrrvvnnnenneennn(2),

in a single way, where @, y, z, % aro four lines in the plane, and q, 8,
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v, 6, a, b, ¢, d are constants. These may thus be considered as
canonical forms for a cubic and a conic.

To prove this, I introduce the consideration of another conic =
touching the lines , ¥, z, . This conic possesses the property thut
if we substitute differential symbols in its tangential equation for
A, p, ¥, respectively, and operate on both the equations of the cubic
and conic, the results will vanish. ¥or, if we operate {in this way on
the power of any line, L" say, the result will be proportional to L"-?
multiplied by the condition that L and X should touch. Consequently,
since the cubic and conic ouly involve powers of =, y, 2, u, and the
conic 3 touches these lines, the result just stated must have place.
Now, if a conic be such that the result of substituting differential
symbols in its tangential equation and operating on a cubic vanishes,
it must satisfy three invariant relations with the cubic; for such a
result must be linear in x, ¥, 2, Ax+ By + Cz, say; and, in order that
this should vanish identically, we should have

A=D=C=0.

Hence the conic = satisfies three invariant relations with the cubic U,
and one with theconic V. DBut these four conditions are geometrically
expressed in the fact that it touches the four lines =, y, 2, u, when U
and V are written in the forms (1), (2). Thus, if U and V are written
in any other forms, and we express that 3 satisfies certain three con-
ditions with U, and one condition with ¥, and find then that these
four conditions, taken together, are equivalent to expressing that =
touches four fixed lines, we infer that these four lines are the lines
@, 9/, 2, %, when U and V are written in the forms (1), (2); and that
this is so I proceed to prove.

If the cubic be written in one of its own canonical forms, namel ¥s
U=+ +288+06meyz =0 .oovivinnninnen e (3),
and the conic V is then at the same time
V=C(abo,f,q k)@Y 2 =0 e (d),

the results of substituting differential symbols in the tangential equa-
tion of a conic 2 (4, B, O, F, @, H) (A, u, v)* and operating on the-
cubic U and the conic V are, respectively, -

(A+2mP)z+ (B+2m@) y+ (0+2mH) z,

Aa+Bb+Cc+2Ff+2Qg +2Hh;
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and, in order that these should identically vanish, we must have
A4+2mFP=0, B+2m@ =0, C+2mH =0,
Aa+ Db+ Cc+2Ff+2Gg+2HR = 0,
showing that X must be of the form
A (M —pv) + B (mp—vA) + 0 (mv*—Ap) =0 ......... (%),
where A (me—f)+B (mb—g)+0 (me—0) =0...............(6).

Now, subject to these conditions, 3 evidently touches the four lines
determined by the equations

mA— py _ mp’—vh _ i —Ap "
ma—f mb—g = ot e (O

and these must therefore be the four lines involved in the canonical
forms (1), (2). Their equation may be obtained by taking the equa-

tion of X in w, 7, z coordinates, which may be written

A? (dmyz—2z*) + B (dmez —y*) + C* (dmwy—27),
and 2BC (yz+4m'?) +204 (z2+4m’y*) + 24D (vy +4m’2*) = 0...(8),
and forming its envelope subject to the condition

A (ma—f)+ B (mb—g) + 0 (me—h) = 0.

This gives

(ma—f)? ma (3mayz —y*—z*—m'’)
+ (mb—g)? my (3mayz—z>—a*—m¥*)
+ (me—1n)* mz (Bmayz—a®—y*—m*®)
+ (mb—g)(me—h) {2 (m*—m) 52" +alyz (L —4n®) +m’e (2 +1°+2%) §
+ (me—h)(ma—f) {2 (m'—m) 2%° + vz (L—4m?®) +m’y (2" +1° + 2 }
+ (ma—f) (mb—yg) {2 (mt—m) a®y® + 2%y (1 —4m®) +m% (2*+1°+2°) }

This equation, it may be observed, is of the sccond degreo in the
cocflicients of the conic, and of the sixth in those of the cubic.

We may notice that, if polar conics of Ube described to have double
contact with ¥, the chords of contact corresponding to the four solu-
tions sre the lines z, 9, 2, 4 in the forms (1), (2). Iora polar conic
of Uis - '

am @+ By, Yt +yz, 2+ buyu® = 0,

and this will have double contact with ¥V at points lying on u =0,
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if we take

az, = a, ﬁyl =b vu=g¢
and similarly in the case of the other lines =, ¥, 2.

The coefficients a, /3, y, 6 can be found as the roots of a biquadratic
equation as follows. The diagonals of the quadrilateral z, ¥, z, % can,
it is easy to see, be written in the form

J=a'+yP 4244 =0 (10),
on the supposition z+y+z+u =0,
so that U—AJ is
(@=N) &+ (B=A) g+ (y=N) 2+ (3—N) u = 0,
and the invariant S of this cubic is proportional to
(a=2)(B=N)(y—2)(6—N)

(see Salmon’s Higler Plane Curves, Avt. 239, 3vd ed.), which thus
being equated to zero will give the required biquadratic. 1In order to
find the equation of J when the cubic and conic are written in the
forms (3), (4), we observe that the diagonals arc the common self-
eonjngate triangle of all the conics inscribed in the quadrilateral.
Hence, according to the theory of conics, their equation will be the
Jacobian of three conics of the system; for instance, if we take the
three conics to be those whose tangential equations are

(ma—f)(mp*—vX) — (mb—g) (mA*—pur) =0,
(mb—g)(my*—Au) — (me—h)(mpP—wA) = 0, ¢ ...oonn. 11,
(me— h)(zrzk“;y.v) —(ma—f)(mv*—Ap) =0,
J will be the Jacobiun of
{ (mb—g) 2+ (ma—J) y }+dm® (ma—f) (mb—g) 2
—dmz {(ma—f) @+ (mb )l yl =0,
{(fmc—-h) y+ (q’nb —¢) 2} 2+ dan? (mb—y) (me—1) &*
—dma { (mb—g)'y +(me—N)*z} =0,
{ (ma—f) 2+ (mc—1) a:}’+'4:m,3 (ma—f) (me— L)y
—dmy {(ma—f)' o+ (me—1)?z} =0,

— e

When « conic is written in the form (2) it is easily scen that the
extremities of each of the three diagonals of the quadiilateral =, ¥, 2, u
are conjugate with respect to the cnrve, so that, if it breaks up into

VOL. XXI,—NO. 374. F '
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right lines, one line can be assumed arbitrarily, and then the other
will be completely determined, namely, will pass through the three
fourth harmonics on each of the diagonals. Hence, if one line is the
line at infinity, the other will pass through the middle points of the
diagonals. Now, when a cubic is written in the form (1), its
Hessian is

By8yzu+ yduzux + dafury + aSyryz = 0,

that is, passes through the six points of intersection of the lines , y,
2, u. Hence we see that the problem, to describe a quadrilateral to
have its six intersections of sides on a cubic so that the middle points
of the diagonals should lie on a given line, admits of three solutions ;
for there arc three cubics which have a given cubic for a Hessian.

When a cubic and a conic are written in the forms (1), (2), a
certain covariant conic is also expressible linearly in terms of the
squares of @, vy, z, u. This covariant may be found as follows.
Writing a line in the form

Az+py+vzt+pu =0,

its polar conic with regard to the cubic, namely, the envelope of the
polars with regard to the cubic of the points on the line, is found to be

2y0zu A=) = Ourrrerr e enennn (13).

Now the tangential equation of ¥ is
ScdA—p)? =0 .icvreiiininiiieeen (14).

dda ag
_ N e’ & dp » ¥
2, w in the former equation, and operate on the latter, we get

Sabyd A=) = Ouoovvrrerree v (15),

which is therefore a contravariant conic.

Hence, if we substitute differential symbols

But this latter is the tangential equation of
abeda® + Beday® + ydabz® + dabeu® = 0 ...............(16).
Tf this conic be written
W+ by + P +du =0,
we have ag 1 bb tedidd =a:f 1y 0,

which shows that ¥ and the covariant (16) are reciprocally related
with regard to the cubic. This will be readily seen when the cubic
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and conic are written in the forms (3), (4). If the tangential
equation of V is then

(4,B,C, F, G, H)(\, p, »)' =0,
the tangential equation of the contravariant is
(m*A—T, m’'B—G, m*0—H, mAd—m*FymB—m?G,mC—m*H) (A, p, »)*

From these equations it is readily seen that the conic ¥ and the
contravariant will coincide if either is of the form

A (B +20uv)+ B (1 +20vX) 4+ 0 (+° +200p) = 0,
whero 6 —2m94-m = 0,
that is, is a derived conic of either of the curves of the third class
NP+ P+ 60Mr =0l (18).

If one of the coefficients of ¥ in (2) vanish, d say, the contravariant
becomes, from (15), after dividing by 9,

bea (u—v)’+caf} (v—A)*+aby (A—p)? =0,

that is, it breaks up into factors, the two points corresponding to
which lie on the line « = 0. Now z, y, 2 form a triangle inscribed
in the Hessian, so that the points where the sides meet the curve
again lie on a line ; hence, if it is possible that such a triangle should
be self-conjugate with regard to a conic, the invariant relation con-
necting the cubic and the conic is found by taking the diseriminant
of (17). This relation is therefore of the sixth degree in the
coefficients of the cubic, and the third degree in the tangential
coefficients of the coniec. .

We now procecd to show how to obtain the conditions that a conic
should be circumseribed about or inscribed in a triangle which is in-
scribed in the Hessian, so that the points where the sides mect the
curve again are collincar. Supposoc that the cubic is

az’+ By + 7/7»"+3u;3 =0,
and if a conic circumscribes the triangle zyz, we may write it
Sfyz+gea+hay = 0.

o . . d d d
Substituting the differential symbols b for z, v, 2, respec-

F 2
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tively, in the latter equation, and operating on the tangential equation
of the polar conic of a point, namely,

Syfau (A—u)?=0,
we get a covariant conic which is found to be
ou (faz+ gy +hyz) =0,

that is, it breaks up into factors in the case under consideration.
When the cubic and conic are written in the forms (3), (4), the co-
variant is

a (yz—mia®) + b (x— m’y‘;’) + ¢ (zy—m*s) + 2f (1n’yz—mat)
+2g (mx—my*) + 24 (M’.cy—mz’) =0...... e (19).

It is thus linear in the coefficients of the conic, and of the second
degree in those of the enbic, so that its discriminant, or the condition
required, is of the third degree in the cocflicients of the conic and of
ihe sixth degree in those of the cubie.

For cxample, if the civcumseribing conic is a circle which cuts a
given circle orthogonally, the foregoing relation shows that its contre
lics on a given curve of the thivd degrce. The conic and the co-
variant (19), it is casy to sce, are reciprocally related with regard to
the cubic; in fact, onc passes through the points on the Hessian
corresponding to thosc in which the otherintersects it. This follows
from the fact that, for points on the Hessian, the polar conics break
up into pairs of lines intersecting at the corresponding points.  Hence
we sce that the result given above follows at once; for, when three
points on the Hessian are collinear, the corresponding points form a
triangle whose sides meet the curve again in three points on a line. .

It may he noticed from this that, if a conic tonch the Hessian in
some point, its covariant (19) will touch the Hessian in the covre-
sponding point.

We now proceed to find the conditions that a cubic and a conic can
be reduced to the forms

U = ax’+ 3"+ y2*+ 8u® = 0,
V = U2+ my’ + 0?2’ —2muyz — 2nlzxe—2may = 0.
Now, the tangential cquation of V being

lpv+myvA+udp =0,
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and the polar conic of any point on the line  being
az’r’ + By'y’ +vy77' =0,

the result of operating with one upon the other vanishes. Again, the
polar conic of w with respect to U is

Pyyz +yazz+afxy = 0,

which circumscribes a triangle citcumscribed about V'; therefore the
invatiant relation 8*°=4A0’ is satisficd between these two conics (see
Salmon’s Conics, Art. 376).

Now, in the forms (3), (4), let the line % be
A +py+ve = 0;
then, since the result of operating on the polar conic of 2, y, z is
(A +42mI) 2+ (B+2mG) y+ (C+2mlIl) z = 0,
we must have 4+ 2mF : B4+2mG : C+2mH =X :p :v.
We then form the invariant relation
‘9’ —4A0" =0
between the conic and the polar conic of
Az+py+vz =0,
namely, N (yz—m'a?) 4+ p? (sm—miy®) + v (2y —m*?)
+2uy (mPyz —mat) + 2vA (mPzz—my®) + 20 (m*oy —mz*) =0,
and find mt A+ p+2%) + (1 —4m®) Apy
+2 (m—m*) {F (m\'—pv) + G (mp’—wA) + IT (my*—Ap)} = 0,
or m (N4 %) + (1 —don®) Apw
— (m—m*) (AN + Bu*+ Cv* + 2Fpv + 2GvA 4+ 21IAp) = 0 ...(20).



