On a Law of Combination of Operators bearing on the Theory of Continuous Transformation Groups. By J. E. CAMPBELL. Received and read March 11th, 1897.

Let y and x denote any operators which obey the distributive and associative laws, but not necessarily the commutative.

 $y_{r-1}x - xy_{r-1}$.

Let y_1 denote the operation yx - xy, y_3 ,, ,, $y_1x - xy_1$,

and

Let $[yx^r]$ denote the sum of the operations

 y_r

$$yx^{r} + xyx^{r-1} + x^{2}yx^{r-2} + \dots + x^{r}y$$

The theorem to be proved is the following :-If

$$a_1, a_2, a_3, a_4, \ldots$$

is a series of numerical constants, of which a_1 is $\frac{1}{2}$, a_3 is $\frac{1}{12}$, a_3 is zero, $a_4 = -\frac{1}{2}\frac{1}{20}$, and of which the law of formation is

$$(m+1) a_{m} = a_{m-1} - (a_{1}a_{m-1} + a_{2}a_{m-2} + \dots + a_{m-1}a_{1}),$$

then $\frac{yx^{r}}{r!} = \left[y \frac{x^{r}}{(r+1)!}\right] + a_{1}\left[y_{1}\frac{x^{r-1}}{r!}\right] + a_{3}\left[y_{3}\frac{x^{r-2}}{(r-1)!}\right] + \dots$
 $\dots + a_{r-1}\left[y_{r-1}\frac{x}{2!}\right] + a_{r}y_{r}$

From the fact that a_3 is zero, the law of formation at once shows that a_5 , a_7 , ..., the series of constants with odd suffixes, are all zero.

[This series of numbers was, I believe, discovered by Schur, in his investigation of the same problem which led me to consider them. A sketch of part of his work is given in Lie's *Transformationsgruppen*, 111., § 144. I have consulted his writings in *Math. Annal.*, Bd. XXXV., § 161, which bear most closely on my results, but have not been able to consult the references given in Lie to *Leipz. Ber.*, 1889, § 229, and 1890, § 1. I had independently arrived at the law of their formation, but had not noticed that the odd numbers were all zero except $a_{1.}$] Two lemmas are required for the proof, the first,

$$x^{r}y_{m} + [y_{m}x^{r-1}]x = [y_{m}x_{r}],$$

is obvious from the definition of the symbol [].

The second,
$$y_m x^r = x^r y_m + [y_{m+1} x^{r-1}],$$

may be proved by induction.

When r = 1,

(1) $y_m x = x y_m + y_{m+1};$ $y_m x^{\mathbf{s}} = x y_m x + y_{m+1} x;$ therefore $y_m x^s = x (xy_m + y_{m+1}) + y_{m+1} x$ $= x^2 y_m + [y_{m+1}x].$

therefore

Thus the result holds for r = 2.

Assume it holds for r;

$$y_{m}x^{r} = x^{r}y_{m} + [y_{m+1}x^{r-1}];$$

therefore $y_{m}x^{r+1} = x^{r}y_{m}x + [y_{m+1}x^{r-1}]x;$
therefore, from (1), $= x^{r}(xy_{m} + y_{m+1}) + [y_{m+1}x^{r-1}]x$
 $= x^{r+1}y_{m} + [y_{m+1}x^{r}],$

by Lemma I., so that Lemma II. is established also.

Assume that for all integral values, up to and including r, it has been established that

$$y\frac{x^r}{r!} = \left[\frac{yx^r}{(r+1)!}\right] + a_1\left[y_1\frac{x^{r-1}}{r!}\right] + \ldots + a_ry_r$$

It would, of course, follow that we have also

$$y_{1} \frac{x^{r}}{r!} = \left[y_{1} \frac{x^{r}}{(r+1)!} \right] + a_{1} \left[y_{2} \frac{x^{r-1}}{r!} \right] + \dots + a_{r} y_{r+1},$$

$$y_{2} \frac{x^{r}}{r!} = \left[y_{3} \frac{x^{r}}{(r+1)!} \right] + a_{1} \left[y_{3} \frac{x^{r-1}}{r!} \right] + \dots + a_{r} y_{r+2},$$
&c.],

then it will be proved that the theorem holds also for the value r+1.

It is obvious that the theorem holds for r = 1. [I have also verified it for the cases r = 2, r = 3, and r = 4.]

882

Since

$$y \frac{x^r}{r!} = \left[y \frac{x^r}{(r+1)!} \right] + a_1 \left[y_1 \frac{x^{r-1}}{r!} \right] + \dots,$$

therefore

$$y \frac{x^{r+1}}{r!} = \left[y \frac{x^r}{(r+1)!} \right] x + a_1 \left[y_1 \frac{x^{r-1}}{r!} \right] x + \dots$$
$$= \left[y \frac{x^{r+1}}{(r+1)!} \right] + a_1 \left[y_1 \frac{x^r}{r!} \right] + \dots - \frac{x^{r+1}}{(r+1)!} y - a_1 \frac{x^r}{r!} y_1 - \dots,$$

by Lemma I.; therefore

$$y \frac{x^{r+1}}{r!} + y \frac{x^{r+1}}{(r+1)!} + a_1 y_1 \frac{x^r}{r!} + a_2 y_3 \frac{x^{r-1}}{(r-1)!} + \dots + a_r y_r x$$

$$\equiv \left[y \frac{x^{r+1}}{(r+1)!} \right] + a_1 \left[y_1 \frac{x^r}{r!} \right] + \dots + a_r [y_r x] + \left[y_1 \frac{x^r}{(r+1)!} \right] + a_1 \left[y_2 \frac{x^{r-1}}{r!} \right] + \dots + a_r y_{r+1},$$
Lemma II

by Lemma II.

Expanding all the terms

$$y_1 \frac{x^r}{r!}, \quad y_3 \frac{x^{r-1}}{(r-1)!}, \quad \dots \quad y_r x,$$

by the theorem which has been assumed to hold for all integral values up to and including r, and subtracting from the two sides of the equation, we see that

$$y\frac{x^{r+1}}{r!} + y\frac{x^{r+1}}{(r+1)!} \equiv \left[y\frac{x^{r+1}}{(r+1)!}\right] + \sum_{m=1}^{m-r+1} b_m \left[y_m\frac{x^{r-m+1}}{(r-m+2)!}\right];$$
 here

$$\dot{b}_{m} = a_{m-1} + (r-m+2) a_{m} - [a_{1}a_{m-1} + a_{2}a_{m-2} + \dots + a_{m-1}a_{1}] - a_{m}$$

= (r+2) a_{m},

by the law of formation of the coefficients.

Dividing each side of the identity by r+2, we see that

$$y \frac{x^{r+1}}{(r+1)!} = \left[y \frac{x^{r+1}}{(r+2)!} \right] + a_1 \left[y_1 \frac{x^r}{(r+1)!} \right] + \dots + a_r \left[y_r \frac{x}{2!} \right] + a_{r+1} y_{r+1};$$

that is, the theorem also holds for r+1, and therefore holds universally, since it obviously holds for r = 1.

Since y and x are symbols obeying the distributive and associative law,

 $(x + \mu y)^r = x^r + \mu [yx^{r-1}] + \text{terms involving higher powers of } \mu$; so that, if we take μ a constant so small that its square and higher powers may be neglected,

$$(x + \mu y)^r = x^r + \mu \left[y x^{r-1} \right].$$
$$z \equiv y + a_1 y_1 + a_2 y_2 + \dots;$$

 \mathbf{Let}

then, as above, $(x + \mu z)^r = x^r + \mu [zx^{r-1}] + ...$

n = n

From the theorem we have established, we have the following equations :---

$$y = y,$$

$$yx = \frac{1}{2} [yx] + a_1y_1,$$

$$y \frac{x^2}{2!} = \left[y\frac{x^3}{3!}\right] + a_1 \left[y_1\frac{x}{2!}\right] + a_2y_2,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$y\frac{x^r}{r!} = \left[y\frac{x^r}{(r+1)!}\right] + a_1 \left[y_1\frac{x^{r-1}}{r!}\right] + \dots,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Adding these expressions, we get

$$y\epsilon^{x} = z + \left[z\frac{x}{2!}\right] + \left[z\frac{x^{9}}{3!}\right] + \dots$$
 to infinity;

therefore

$$(1+\mu y) \,\epsilon^{x} = 1 + x + \mu z + \frac{x^{3}}{2!} + \mu \left[z \frac{x}{2!} \right] + \dots + \frac{x^{r}}{r!} + \mu \left[z \frac{x^{r-1}}{(r-1)!} \right] + \dots;$$

therefore

$$(1+\mu y) \epsilon^{r} = 1 + x + \mu z + \frac{(x+\mu z)^{9}}{2!} + \dots + \frac{(x+\mu z)^{r}}{r!} + \dots,$$

if μ is a small constant whose square and higher powers may be neglected.

[It might be objected that we are dealing with an infinite series of operations, and that, for instance, the coefficient of μ^2 is an operation the result of which R when applied to any function might not be a convergent series, and hence $\mu^2 R$ could not be neglected in comparison with μ .

384

The limitation to be placed upon the subject of the operation is that, when operated upon by

$$1+(\lambda x+\mu y)+\frac{1}{2!}(\lambda x+\mu y)^{3}+...$$
 to infinity

(where λ and μ are constants), it will give a convergent series.

The coefficients of the different powers and products of λ , μ will then give convergent series.

The limitation has been implicitly assumed in the proof of Lie's theorem for

$$x'_i = 1 + (\lambda_1 X_1 + ...) x_i + \frac{1}{2!} (\lambda_1 X_1 + ...)^3 x_i + ...,$$

and it is assumed that x'_i is finite and definite.]

Let X denote the linear operator

$$\sum_{i=1}^{i=n} \xi_i (x_1, x_2, \dots x_n) \frac{\partial}{\partial x_i};$$

and Y the operator $\sum_{i=1}^{n} \eta_i (x_1, x_2, \dots, x_n) \frac{\partial}{\partial x_i};$

let Y' denote the linear operator

$$\sum_{i=1}^{i=n} \eta_i (x'_1, x'_2, \dots x'_n) \frac{\partial}{\partial x'_i},$$

obtained from Y by writing for x_i, x'_i , where

$$x'_{i} = \left(1 + tX + t^{2} \frac{X^{2}}{2!} + \dots\right) x_{i},$$

t being a constant; then it will be proved that

$$Y' \equiv Y - tY_1 + \frac{t^3}{2!} Y_2 - \frac{t^3}{3!} Y_3 + \dots,$$

$$Y_1 \equiv YX - XY,$$

$$Y_2 \equiv Y, X - XY_2,$$

where

$$Y_2 \equiv Y_1 X - X Y_1,$$
$$Y_r \equiv Y_{r-1} X - X Y_{r-1},$$

all of the Y's being linear operators.

[This is the completion of the theorem given by Lie, Transformationsgruppen, 1., p. 141 where he neglects powers of t above the first.]

Now

$$Y' \equiv Y'(x_1) \frac{\partial}{\partial x_1} + Y'(x_2) \frac{\partial}{\partial x_3} + \dots,$$

VOL. XXVIII.--- NO. 599.

Mr. J. E. Campbell on the [March 11,

this being a general property of all linear differential operators;

and
$$x_i \equiv \left(1 - tX' + \frac{t^3}{2!}X'^2 - ...\right)x'_i$$
 (a) [Lie, I., p. 53 (7a)];

therefore

386

$$Y'(x_i) \equiv Y'\left(1-tX'+\frac{t^2}{2!}X'^2-...\right)x'_i;$$

therefore since the right-hand member is now a function $x'_1, x'_2, ...,$ we have [Lie, I., p. 52 (7)]

(
$$\beta$$
) $Y'(x_i) \equiv \left(1 + tX + \frac{t^2}{2!}X^2 + \dots\right) Y\left(1 - tX + \frac{t^2}{2!}X^2 - \dots\right) x_i$.

For convenience of reference, I give a proof of these theorems only slightly modified from Lie's proof.

$$x'_i = \left(1 + tX + t^3 \frac{X^3}{2!} + \dots\right) x_i$$

therefore

$$\frac{\partial x'_i}{\partial t} = X \left(1 + tX + t^2 \frac{X^2}{2!} + \dots \right) x_i$$
$$= X x'_i;$$
$$\frac{\partial f(x'_1, x'_2, \dots x'_n)}{\partial t} \equiv \frac{\partial f}{\partial x'_1} X x'_1 + \dots$$

therefore

$$\frac{\overline{\partial (x'_1, x'_2, \dots, x'_n)}}{\partial t} \equiv \frac{\partial f}{\partial x'_1} X x'_1 + \dots$$
$$\equiv X f (x'_1 \dots, x'_n).$$

Similarly,

$$\frac{\partial^r f'}{\partial t^r} \equiv X^r f'$$

writing f' for $f(x'_1...x'_n)$.

Now, by Taylor's theorem,

$$f' = (f')_{t=0} + t \left(\frac{\partial f'}{\partial t}\right)_{t=0} + \dots$$

 $(f')_{i=0} \equiv f$ and $(X^r f')_{i=0} \equiv X^r f;$

Now,

$$f' = f + tXf + \frac{t^2X^2}{2!}f + \dots$$

therefore

This is the theorem of which (β) is a particular case. Again, X''f'is a function of $x' \dots x'_n$, and therefore, by the above theorem,

$$\tilde{X'f'} \equiv \left(1 + tX + \frac{t^3 X^3}{2!} + \dots\right) X'f;$$

therefore
$$\left(1-tX'+\frac{t^{2}X'^{2}}{2!}-...\right)f'$$

 $\equiv \left(1+tX+\frac{t^{2}X^{2}}{2!}+...\right)\left(1-tX+\frac{t^{2}X^{2}}{2!}-...\right)f \equiv f$

(proof exactly the same as proof that $e^{x}e^{-x} = 1$).

This is the theorem of which (α) is a particular case.]

Expanding the right-hand member of β , we see that it is equal to

$$\left\{Y+t\left(XY-YX\right)+\ldots\right\}x_{i}$$

It is at once seen that the coefficient of t^r in the bracket is

$$\frac{X^{rY}}{r!} - \frac{X^{r-1}Y}{(r-1)!} \frac{X}{1!} + \frac{X^{r-2}Y}{(r-2)!} \frac{X^{3}}{2!} - \dots;$$

and it is to be shown that this is

$$(-1)^r \frac{Y_r}{r!}$$

Assume
$$(-1)^{r-1} \frac{Y_{r-1}}{(r-1)!} = \frac{X^{r-1}Y}{(r-1)!} - \frac{X^{r-2}Y}{(r-2)!} \frac{X}{1!} + \dots;$$

then

$$(-1)^{r-1} \frac{\{Y_{r-1}X - XY_{r-1}\}}{(r-1)!}$$

= $-\frac{X^{r}Y}{(r-1)!} + r \frac{X^{r-1}Y}{(r-1)!} \frac{X^{t}}{1!} - r \frac{X^{r-2}Y}{(r-2)!} \frac{X^{t}}{2!} + \dots;$
ore $\frac{(-1)^{r}Y_{r}}{r!} = \frac{X^{r}Y}{r!} - \frac{X^{r-1}Y}{(r-1)!} \frac{X}{1!} + \dots,$

•

therefo

 \mathbf{but}

so that the theorem, being true when r is 1, is true universally.

Therefore
$$Y'(x_i) \equiv \left(Y - tY_1 + \frac{t^2}{2!}Y_2 - ...\right)x_i,$$

t $Y' \equiv Y'(x_1)\frac{\partial}{\partial x_1} + Y'(x_2)\frac{\partial}{\partial x_2} + ...,$

,

$$Y_1 \equiv Y_1(x_1) \frac{\partial}{\partial x_1} + Y_1(x_2) \frac{\partial}{\partial x_2} + \dots,$$

with similar expressions for Y_2 , Y_3 , ...;

therefore
$$Y' \equiv Y - tY_1 + \frac{t^2}{2!}Y_3 - \frac{t^3}{3!}Y_3 + \dots$$

I propose to employ these results to prove the theorem given 2 c 2

(Transformationsgruppen, I., p. 158) by Lie, and forming the foundation of his theory.

That theorem might be thus stated :—If $x'_1, x'_2, \dots x'_n$ is a point obtained from the point x_1, x_2, \dots, x_n by the operation

$$1 + X + \frac{X^2}{2!} + \dots;$$

and $x_1'', x_2'', \dots x_n''$ is a point obtained from the point $x_1', x_2', \dots x_n'$ by the operation $1+Y'+\frac{Y'^2}{2!}+\ldots,$

where
$$X \equiv \lambda_1 X_1 + \dots \lambda_r X_r$$
,

 $Y \equiv \mu_1 X_1 + \dots \mu_r X_r$ and

 X_k denoting the mear operator

$$\sum_{i=1}^{i=n} \xi_{ki}(x_1, x_2, \dots x_n) \frac{\partial}{\partial x_i},$$

then $x_1'', x_2'', \dots x_n''$ can be directly derived from the point $x_1, x_2, \dots x_n$ by the operation

 $1+Z+\frac{Z^{2}}{21}+\dots,$

where

where
$$Z \equiv \nu_1 X_1 + \dots \nu_r X_r$$

provided that, for all values of k, j ,

$$X_k X_j - X_j X_k \equiv \sum_{i=1}^{k} c_{kji} X_i$$

In Lie's theorem the sets λ , μ , ν and c are all constants; I shall prove that the same result holds if they are any functions of the variables.

It has been proved [Lie I., § 13] that* every transformation of the simple group

$$1 + tY + \frac{t^3}{2!}Y^3 + \dots$$

can be obtained through repeated operations with the infinitesimal transformation $1 + \partial_t Y$; it will therefore be sufficient to prove the

* Just as in ordinary algebra, we see that

$$\left(1+\frac{tY}{n}\right)^{n} \equiv 1+tY+\frac{t^{2}}{2!}Y^{2}+\ldots,$$

when n is taken a very large integer.]

theorem for the case when x_1'' , x_2'' , ... x_n'' is indefinitely near to x_1' , x_2' , ... x_n' .

We have to prove therefore that, $\mu_1, \mu_2, \dots, \mu_r$ being so small that their squares may be neglected,

$$\left(1+\mu_{1}X_{1}'+\mu_{2}X_{2}'+\mu_{r}X_{r}'\right)x_{i}'=\left(1+Z+\frac{Z^{3}}{2!}+\frac{Z^{3}}{3!}+\ldots\right)x_{i}$$

X' denoting the result of substituting x' for x in X.

Now we have proved that

$$Y' \equiv Y - t Y_1 + \frac{t^3}{2!} Y_2 - \dots;$$

and, by our hypothesis, Y_1 must belong to the family

$$\rho_1 \mathbf{X}_1 + \rho_2 \mathbf{X}_2 + \ldots + \rho_r \mathbf{X}_r,$$

where ρ_1, ρ_2, \ldots are some functions of the variables $x_1, x_2, \ldots x_n$; and, since Y_1 belongs to the family, so also must Y_2 , and, by parity of reasoning, Y_3, Y_4, \ldots . That is, Y' belongs to the family

$$\rho_1 X_1 + \rho_2 X_2 + \ldots + \rho_r X_r;$$

the theorem required will then be proved if we can prove that

$$(1+k_1X_1+k_2X_2+\ldots+k_rX_r) x_i' \equiv \left(1+Z+\frac{Z^2}{2!}+\ldots\right) x_i,$$

where k_1, k_2, k_r are small; or, remembering that

$$x'_{i} = \left(1 + X + \frac{X^{2}}{2!} + \frac{X^{3}}{3!} + \dots\right) x_{i},$$

we have to prove that

$$(1+kY)\left(1+X+\frac{X^2}{2!}+...\right)\equiv\left(1+Z+\frac{Z^2}{2!}+...\right),$$

where Y and X belong to the family

$$\rho_1 X_1 + \ldots + \rho_r X_r,$$

and when k is now a constant so small that its square may be neglected.

Now, we have already proved that

$$(1+kY) \ \epsilon^{X} \equiv 1 + (X+k\overline{Y}) + \frac{(X+k\overline{Y})^{2}}{2!} + \dots + \frac{(X+k\overline{Y})^{p}}{p!} + \dots,$$

where $\overline{Y} \equiv Y + a_{1}Y_{1} + a_{2}Y_{2} + \dots;$

 Y, Y_1, Y_2 being each members of the family, and therefore \overline{Y} also being a member; that is,

 $(1+kY) \epsilon^{X} \equiv \epsilon^{z},$

where Z is a member of the family. This proves the generalization of Lie's theorem.

It might appear that, in taking k a constant, the proof of the generalization was vitiated, but this is not so; the variables come in through k_1, k_2, \ldots , and k is merely introduced to make kY small, c.g., we might take $k = \frac{1}{m}$ where m is any large integer.

Some Notes on Symmetric Functions. By WILLIAM H. METZLER. Received March 3rd, 1897. Read March 11th, 1897.

1. In this paper I wish to state three laws by means of which certain symmetric functions are immediately obtained from those already known.

Let $g_1, g_2, g_3, \dots, g_n$ represent the *n* roots of the equation

$$x^{n} + p_{1}x^{n-1} + p_{2}x^{n-2} + \dots + p_{n} = 0, \qquad (1)$$

and let $a_1, a_2, a_3, \ldots a_r$ and $b_1, b_2, b_3, \ldots b_r$ represent the

$$\lambda = n_r = \frac{n (n-1)(n-2) \dots (n-r+1)}{r!}$$

products of those roots r and n-r at a time respectively.

The coefficient p_i may be said to be complementary to p_{n-i} with respect to n.

The first law in question may be stated as follows :----

If we have given the value, in terms of the coefficients, of the symmetric functions $\sum g_{n}^{*}g_{n}^{*}g_{n}^{*}\cdots g_{n}^{*}$, (a)

where $a \stackrel{=}{>} \beta \stackrel{=}{>} \gamma \stackrel{=}{>} \dots \stackrel{=}{>} \kappa \stackrel{=}{>} 0$ and $a + \beta + \gamma + \dots + \kappa = n$,

we can immediately write down all those terms, involving the coefficients (p_1, p_2, \dots, p_n) only in the value of

$$\sum g_{1}^{a'-a} \dots g_{n-2}^{a'-p} g_{n-1}^{a'-p} g_{n}^{a'-a}, \qquad (b)$$