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Dr. Henrici, Prof. Hirst, the President, and Mr. Clifford, took part

in a discussion upon the paper.

The President then made his first communication to the Society of
results he had arrived at in his paper on “ Quartic Surfaces.”

Mr. 8. Roberts exhibited and explained diagrams of the Pedals of
Conic Sections which he had constructed by the methods described in
his communication of the 14th Jan. 1869 (vol. ii. p. 125).

The following presents were received :—

“A Memoir on Cubic Surfaces, and a Memoir on the Theory of
Reciprocal Surfaces,” by Prof. Cayley: from the Aunthor.

"¢ Annali di Matematica:” (Dicembre, 1869).

¢ Crelle’s Journal,” 71 Band, zweites Heft. v

‘“ Note on a Theorem relative to Neutral Series,” by A. De Morgan,
F.R.A.S., (Cambridge Phil. Society's Transactions, vol. xi. pt. 3) : from
the Author.

"4 On Interpolation, Summation, and the Adjustment of Numerical
Tables,” (Journal of Institute of Actunaries, vol. xi. p. 61); and “On an
Improved Theory of Annuities and Assurances,” (ditto vol. xv. p. 95,)
from the Author, W. S. B. Woolhouse, F.R.A.S.

“On the Nodal Cones of Quadrinodal Cubics, and the Zomal Conics
. of Tetrazomal Quartics,” by the Rev. R. Townsend, F.R.S.: from the
Author.

 Monatsbericht” (Nov. 1869).

February 10¢h, 1870.
Prof. CAYLEY, President, in the Chair,

Prof. Oppermann, of Copenhagen, was again present.

Mr. A. Ramsay was elected a Member; and Mr. E. A. L. Bradshaw
Smith, M.A., Fellow of Christ’s College, Cambridge, was_ proposed for
election.

The President having vacated the Chair, communioated the con-
cluding portion of

A Memoir on Quartic Surfaces.

The present Memoir is intended as a commencement of the theory of
the quartic surfaces which have nodes (conical points). A quartic
surface may be without nodes, or it may have any number of nodes up
to 16. I show that this is so, and F consider how many of the nodes
may be given points. Although it would at first sight appear that the
number i8 8, it ig in fact 7; viz., we can, with 7 given points as nodes

c2 '
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(but not in a proper sense with 8 or more given points), find &
quartic surface; such surface contains in its equation 6 constants,
which may be such that the surface has an additional node or nodes.
Suppose that the surface has an 8th node : —there are two distinct cases ;
viz., (1) the 8 nodes are the points of intersection of 8 quadric surfaces,
or say they are an octad, and the surface is said to be octadic; (2) the
8th node is any point whatever on a certain sextic surface determined
by means of the 7 given nodes, and called the dianodal surface of these
7 points; the quartic surface is said to be & dianome. The two cases -
are in general .exclusive of each other; viz., the 7 given points being
any points whatever, the dianodal surface does not pass through the
8th point of the octad ; so that the quartic surface with the 8 nodes is
either octadic or else a dianome. Assuming it to be a dianome, the
constants may be further determined so that there shall be a 9th node ;
it is necessary to cxamine whether this forms with 7 of the 8 nodes an
octad. Supposing that it does not (viz, that there are mot any 8
hodes in regard to which the surface is octadic), the 9th node is then
any point whatever on a certain curve of the order 18, determined by
mcans of the 8 nodes, and called the dianodal curve of these 8 points.
And, finally, the constants may be forther determined so that there
shall be & 10th node ; supposing, as before, that this does not form an
octad with any 7 of the 9 nodes (viz., that there are not any 8 nodes in
regard to which the surface is octadic), the 10th node is then any one
. of a system of 22 points determined by means of the 9 nodes, and
called the dianodal system of these 9 points. But the quartic surface
is now complectely determined ; viz., starting with any 7 given points as
nodes, we have a dianome with 8 nodes, 9 nodes, or 10 nodes, say, an
octodianome, enneadianome, or decadianome, but not with any greater
number of nodes; these can only present themselves when particular
conditions are satisfied in regard to the 7 given nodes, and to the 8th
and 9th node; and the consideration of the quartic surfaces with more
than 10 nodes would thus form a separate branch of the subject.

The case of the decadiamome (or quartic surface with 10 nodes
formed as above with 7 given points as nodes) is peculiarly interesting.
I identify this with the surface which I call a symmetroid ; viz., the
surface represented by an equation A = 0, where A is a symmetrical
determinant of the 4th order the several terms whereof are linear
functions of the coordinates (z, ¥, 2, w) ; this surface is related to the
Jacobian surface of 4 quadric surfaces (itself a very remarkable sur-
face), and this theory of the symmetroid and the Jacobian, and of
questions connected therewith, forms a large portion of the present
Memoir.

The theory of the Jacobian is connected also with the researches in
regard to nodnl quartic surfaces in general ; and, for greater clearness, it
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has seemed to me proper to commence the Memoir with certain defi-
nitions, &c., in regard to this theory. It will be seen in what manner
I extend the notion of the Jacobian. ) _

Iremark that the present researches on Quartic Surfaces were sug-
gested to me by Professor Kummer’s most interesting Memoir “ Ueber
die Algebraischen Strahlensysteme &c.,”” Berl. Abh., 1866, in which,
without entering upon the general theory, he is led to consider the
quartic surfaces, or certain quartic surfaces, with 16, 15, 14, 18, 12, or
11 nodes; the last of these, or surface with 11 nodes, being in fact a
particular case of the symmetruid.

Considerations in regard to the Jacobian of four, or more or less
than four Surfaces.
1. In the case of any four surfaces, P=0, Q=0, R=0, S=0, the
differential coefficients of P, Q, R, S in regard to the coordinates
(2, 9,7 w) may be arranged as a square matrix in either of the ways

P,QRS ; 88,003

S
’EJ:O"U

and with either a.rrangement we may form one and the same determi-
nant, the Jacobian determinant J (P, Q, R, S), or, equating it to zero,
the Jacobian surface J (P, Q, R, S) = 0, of the four surfaces.

2. In the case of more than four surfaces, adopting the arrangement
P ) Q, R’ S) T..
J,
J
é.
O

and considering the several determinants which can be formed with
any four columns of the matrix, these equated to zero establish a more
than one-fold relation between the coordinates ; viz., in the case of five
surfaces, we have J (P, Q, R, S, T) =0, a two-fold relation representing
acurve; and in the case of six surfaces, J(P,Q,R, S, T,U)=0, a
three- fold relation representmg a point-system ; and (since with four
coordinates a relation is at most three-fold) these are the only cases to’
be considered.

3

3. In the case of fewer than four surfaces, adopting the arrangement

3” 82’ 3.'., 3'9_

iQ
It
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and considering the several determinants which can be formed with
any 3 or 2 columns of the matrix, and equating these to zero, we
have in like manner & more than ome-fold relation between the co-
ordinates ; viz., in the case of three surfaces, we have J (P, Q, R) =0,
a two-fold relation representing a curve; and in the case of two sur-
fuces J (P, Q) =0, a three-fold equation representing & point-system,
(viz., this denotes the points ¢, P:8,P:4,P:8,P=0.Q:9,Q:4,Q:3.Q);
for a single surface we should have a four-fold relation, and the case is
not considered. But observe that if the notation were used, J (P) =0
would denote &P =0, §,P=0, 3P=0, §,P =0, equations which
are satisfied simultaneously by the coordinates (z, v,z w) of any node
of the surface P=0. Although in ‘what precedes I have used the
sign =, there is no objection to using, and I shall in the sequel use, the
ordinary sign ==, it being understood that while J (P, Q, R, S) =0
denotes a single equation or one-fold relation, J(P,Q,R,S,T) =0
or J(P,Q, R)=0 wil each denote a two-fold relation, and
J(P,Q,R,S,T,U)=0 or J(P,Q) =0 each of them a three-fold
relation, '

4. It is not asserted that ...J(P,Q,R)=0, J(P,Q,R,S) =0,
JP,QR,8T)=0,.. form a continuous series of analogous rela-
tions; and there might even be a propriety in using, in regard to four
or more surfaces, J, and in regard to four or fewer surfaces an in-
verted J (viz., in regard to four surfaces, either symbol indifferently) ;
but there is no ambiguity in, and I have preferred to adopt the use of,
the single symbol J.

5. Suppose that the orders of the surfaces P=0, Q=0, ... are.
a+1, b+1, ... (so that the orders of the diffcrential coefficients of
P,Q, ... are a,b,...), then we have for the orders of the several loci,

J (P, Q) =0, point-system, order a’+ a®b+ab’+b*;
J(P,Q,R) =0, curve, .,  @+U+S+botcatab;
dJ (P’ QUR,8)= 0, surface, » a+btetd;
J(P,Q, RS, T)=0, curve, » ab+tac... +de;

J(P,QR,S,T,U) =0, point-system, , abc+abd... +def.

Sce, as to this, Salmon’s “ Solid Geometry,” Ed. 2, (1865), *“On the
Order of Systems of Equations.” In particular, if a=b=¢... =1,
then the orders are 4, 6, 4, 10, 20.

As to the Surface obtained by equating to zero a Symmetn;cal
Determinant.
6. It is also shown (Salmon, p. 495) that the surface obtained by
equating to zero any symmetrical determinant has & determinate
number of nodes ; viz., if the orders of the terms in the diagonal be
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a, b, ¢, &c., then the number of nodes is = } (Za. Zab— Zabe), or, as
this may also be written, } (2a’+22abc). In particular, the formula
applies to the case of the surface

AHGL
HB F M
&, F, C, N
L M, N, D
(a, b, ¢, d) being here the orders of A, B, C,D respectively, and the
orders of F, G, &c., being } (b+c¢), } (a+¢), &e. If the terms are all
of them linear functions of the coordinates, or a=b=c=d =1, then the
number of nodes is =10. -

=0,

7. That the surface has nodes is, in fact, clear from the consideration
that any point for which the minors of the determinant all vanish will -
-be a node; and that (for the symmetrical determinant), by making the
minors all of them vanish, we establish only a-three-fold relation be-
tween the coordinates. The expression for the number of the nodes is,
I think, obtained most readily as follows: - '

The nodes will be points of intersection of the curve and surface

A, H, G.L| =0, |B F, M|=0,
|H,B,F,M” F, O,N|
G, F, O N M, N, D

these, however, contain in common the points

lH,B,F,M“:O;
G, FC N

and not only so, but they touch at the points in question; so that,
multiplying together the orders of the curve and surface, and subtract-
ing twice the order of the point-system, we obtain the expression for
the number of nodes. In the particular case where the functions are
all linear, we have a sextic curve and cubic surface intersecting in 18
points; bat the curve and surface touch in 4 points, and the number of
nodes is (18—2.4) =10. And in the same way the formula may be

established for the general case. '

8. The subsidiary theorem of the contact of the curve and surface
tequires, however, to be proved. Seeking for the equation of the tan-
gent plane of the surface at any one of the points in question, we
have first '

3B, SF, M|+ | B, F, M|+| B, F, M|=0,
' F, C, N 3F, 3C; ON F, ¢, N|
M, N, D ‘M, N, D 3M, oN, 3D
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where, in virtue of the equations
”H, B, F, M”:O,
¢, F,CN
the last term vanishes. Expanding the other two terms, the equation
becomes
D (CéB+ B3C—2FSF) — (N?*B—2MNJF + M?C) +éM (FN—CM) -
+éN(BN—MF) =0;
but, in virtue of the same equations, the coeficients of ¢M and éN each
of them vanish, and we have also

N%B -+ M?C—2MNJF = %’ (CSB+B3C—2F5F);

so that the equation becomes finally CoB+BJC—2FeF = 0. Investi-
gating by a like process the equation of the tangent of the curve

A H GL =0,
HBF M l
G, F, C N
wo find between the differentials A, 0B, &ec., & two-fold linear relation,
expressible by means of the foregoing equation CéB+BéC—2FdF = 0,
and one other equation; that is, at each of the points in question
the tangent of the curve lies in the tangent plane of the surface, or,
what is the same thing, the curve and surface touch at these points.

Surfaces represented by an equation F (P, Q) = 0, &c.

9. In the remarks which follow as to, the surfaces F@P,Q)=
F (P, Q, R) =0, &c., the function F is a rational and mtegml funchon
of (P, Q), (P,Q, R), &c., not in general homogeneouns in regard to
P,Q,R,....butof such degrees in regard to these functions respectively
28 to be homogeneous in regard to the coordinates (z, y, 7, w). '

The surface F (P, Q) = 0 has in general & nodal curve 3;F = 0,
8.F = 0; and if it has besides any nodes, these are points of the pomb-
Bystem J(P Q) =0.

The surface F (P, Q, R) = 0 has in general nodes §;F =0, §F =0,
¢gF = 0; and if it has besides any nodes, these are points on the curve
JP,QR)=

The surface F (P, Q, R, S) = 0 has not in general, but it may ha.ve,
nodes 3pF =0, §F =0, 6xF = 0, & F = 0; if it has any other nodes,
these are points on the surface J (P, Q, R, S) =0.

Nodes of a Quartic Surface; Circumscribed Oone having
its vertex at a Node.
10. A quartic surface may be without nodes ; or it may have any
number of nodes up to 16. Consider a quartic surface Having a node
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or nodes; and take the single node, or (if more nodes than one) any
one of the nodes, as the vertex of a circumscribed cone; then, con-
sidering any plane through the vertex, the section will be a quartic
curve having a node at the vertex, and the generating lines in the plane
will be the tangents from the node to the quartic curve; the number
of them is therefore 6, and the order of the circumscribed cone is thus
= 6. Each tangent intersects the quartic curve in the node count-
ing as two intersections, and in the point of contact counting as two
intersections ; there are consequently no singular tangents; and there-
fore in the circumseribed cone no singular lines arising from a singular
“tangency of the generating line. Hence, in the case of a single node on

. the sarface, the circumscribed cone is a cone of the order 6 without
nodal or stationary lines; and the class is = 80. But in the case of
more than ome node, say %4 nodes, the circumscribed conme passes
through the remaining (¥—1) nodes, and the generating line through
each of these nodes is a nodal line of the cone; that is, the cone has
(#—1) nodal lines, and its class is =80 —2%4+2. The cone is not
of necessity a proper cone; the maximum number of nodal lines is
when it breaks up into 6 planes, and we have then k—1 = 15; that is,
the number of nodes of the surface is at most = 16.

11. It is easy to form a table of the different primd facie possible
forms of the sextic cone, according to the number of nodes of the sur-
- face; viz., writing 6 for a proper sextic cone without nodal lines,
6), 6, ..: 6,y for the proper sextic cone with 1, 2, ... or 10 nodal lines ;
and so §, 5,... 5, for the proper quintic cones, 4, 4y, 4y, 44, 8, 8;, 2 for
the quartic, cubic, and quadric cones, and 1 for the plane, the table is

Nodesof :
Burfuce. ‘CIECUMSCRIBED SEXTIO CONE, .
1 |6
2 16,
8 |6,
4 |6
5 |6
6 |6; 5,1
7 |66 5,1
8- 67’ 52) 1
9 |6 5y1; 4,2
10 60; 5013 4,2; 4, 1,1) 3, 3
11 | 6y; 55’1;‘4’2)2' 4,1,1; 38,3
12 5,1; 45,2; 44,1,1; 3,8,; 3,21
13 e e 4113 .. 8,213 8,1,1,1; 2 22
14 e voe e . 3,1,L1; 2, 21,1
15 e . . . 2,1, 11
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And moreover, in the cases where there are two or more forms of the
sextic cone, then the % sextic cones may be of the different forms in
various combinations. The total number of cases primd facie possible
is thus very great; but only a comparatively small number of them
actually exist.

12, In the case where there is a plane 1, the sextic cone breaks up
into this plane, and into a (proper or improper) quintic cone inter-
secting the plane in 5 lines ; that is, there will be in the plane 6 nodes;
the plane is, in fact, a singular tangent plane meeting the surface in &
conic twice repeated; and the 6 nodes lie on this conic. Taking any
one of these nodes as vertex, the corresponding sextic cone breaks up
into the plane, and into a (proper or improper) quintic cone.

13. In the cases k=1, 2, 3, 4, 5, and % = 15, 16, there is only one
form of sextic cone; so that each node (at least so far as appears)
stands in the same relation to the surface. Considering the-last
mentioned two cases; k& = 16,—each of the 16 nodes gives 6 singular
tangent planes, but each of these passes through 6 nodes; therefore the
number of planes is = 16 : similarly, £ = 15, the number of singular
tangent planes is 15 x 4+6, =10,

For k& =14, the cones are 8, 1,1,1, or 2,2,1,1: it is easy to see.
that we have only the three cases

Cones 3,1,1,1 : 2,2,1,1
"N°maybe 14 , 0  gives (14.8+ 0.2) + 6, =7}si,,gum,.

” 8 , 6 »n (8.84 6.2)+6, =6} tangent
” 2 , 12 » (2.8+12.2) = 6, =5) planes;

and we may in the like manner limit the number of possible cases, for
other values of 2. But I do not at present further pursue the inquiry,

As to the Number of Constants contained in a Surface.

14. We say that a surface P = 0 contains or depends upon a certain
number of constants; viz., this is the number of constants contained in
the equation P =0 of the surface, taking the coefficient of any one
term to be equal to unity; thus the general quadric surface contains
9 constants; the surface can in fact be determined so as to satisfy 9
conditions ; or, as we might express it, the postulation of the surface
is =9. And if, in the general equation so containing 9 constants, % of
these are given, or, what is the same thing, if the quadric surface be
made to satisfy any % conditions, then the number of constants, or pos-
tulation of the surface, is = 9—%.

15. But a different form of expression is sometimes convenient; the
conditions to be satisfied are frequently such that, being satisfied by



1870.] Prof. Cayley on Quartic Surfaces. 27

the surfaces P=0, Q =0,...,, they will be satisfied by the surface
aP+06Q+...=0, where a, 3, ... are any constant multipliers whatever.
“When this is so, there will be a certain number of solutions P =0,
Q=0,... not connected by any such relation, or say of asyzygetic
solutions, such that the general surface satisfying the conditions in
questionisaP+BQ+... =0; and hence, taking one of these coefficients
as unity, the number of constants, or postulation of the surface, is equal
to the number of the remaining coefficients, or, what is the same thing,
it is less by unity than the number of the asyzygetic solutions P = 0,
Q=0, ... Instead of considering the number of constants, or postulation,
we may consider the number of solutions (that is, asyzygetic solutions)
or surfaces P = 0, Q = 0, ... which satisfy the conditions in question.

16. Thus, for the quadric not subjected to any conditions, there are
10 surfaces (for example, these may be taken to be the surfaces o = 0,
P=0,=0,w"=0,y2=0,22=0, 2y = 0, 2w = 0, yw=0, 2w=0);
and the general quadric surface is by means of these expressed
linearly in the form (g, ... [z, 3, 2 w)*= 0. So for the quadric surfaces
through % given points, the number of these is = 10—%; thus for the
surfaces through 4 given points, say the points (1,0,0,0), (0,1,0,0),
(0,0,1,0), (0,0,0,1), the 6 given surfaces may be taken to be yz =0,
w=0,zy =0, 2w = 0, yw = 0, zw = 0, and every other quadric surface
through the 4 points is by means of these expressed linearly in the form
(a, ... Qyz, 22, 2y, aw, yw, zw) = 0; for the quadric surfaces through 8
points there are two surfaces P=0, Q=0; and every quadric surface
through the 8 points is by means of these expressed linearly in the
form aP+8Q = 0; and (as the extreme case) if the quadric surface
passes through 9 given points, then there is the single quadric surface -
P=0. .

17. In the questions in which such quadric surfaces present them-
selves, it is in general quite immaterial what particular surfaces are
selected as the surfaces P=0, Q=0, ... ; the selection may be made at
pleasnre and, being so made, the surfaces are to be regarded as com-
pletely determinate; viz., there wonld be no gain of generality if these
-were replaced by any other surfaces aP+£Q... = 0. For instance, in
the theory of the quartic surfaces with 6 given points as nodes, we have
through the 6 given points the 4 quartic surfaces P=0, Q=0, R=0,
'S = 0, and we consider the quartic functions (a,...JP, Q, R, S)* and.
J (P, Q, R, 8): each of these is unaltered as to its form when P, Q, R, S
.ave replaced each of them by any linear function of these quantities;
viz., (a,...0P,Q, R, 8)* is changed into a new quadric function
(a, ...3P, Q, R, 8), and J (P, Q, R, 8) into a mere constant multiple
of its original value. We have herein a justification of the expressions
in question, through 6 given points there are 4 quadric surfaces, &c.
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General theory of the Quartic Surface with a given Node or Nodes.

18. A quartic surface contains 34 constants; and the number of
conditions to be satisfied in order that a given point may be a node is
= 4. Hencs, if the surface has & given points as nodes, the number of
constants is = 84—4k; and it would at first sight appear that £ might
be = 8, and that with the 8 given points as nodes we should have a
quartic surface containing 2 constants. But this is not so in & proper
gense; for through the 8 given points we bave 2 quadric surfaces
P =0, Q=0; and we can by means of these form a quartic surface
(a, b, cJ P, Q)*= 0, containing 2 constants, and having in a sense the
8 points as nodes. This, however, is no proper quartic surface, but is a
system of 2 quadric surfaces, each of them passing through the 8 points,
and the two quadric surfaces therefore intersecting in a quadriquadric
curve through the 8 points; which curve is therefore & nodal curve on
the compound surface ; and it is only as points on this nodal curve,
- and not in & proper sense, that the 8 given points are nodes of the
quartic surface. The greatest value of % is thus £ = 7.

19..Of course, if k=0, we have the general quartic surface U =0,
containing 34 constants. Thecases ¥ =1, k=2, k=38 (viz, a single
given node, 2 given nodes, 8 given nodes), may be at once disposed of ;

“taking for instance the 1st node to be the point (1,0, 0, 0), the 2nd
node the point (0, 1,0, 0), the 3rd node the point (0,0, 1, 0), we find at
once an equation U=0, with 30, 26, or 22 constants, having the given
node or nodes.

Four given Nodes.

20. The case of 4 given nodes is just as easy; but in roference to
what follows, it is proper to consider it more in detail. The equation
should contain 18 constants; we have through the 4 given points 6
quadrio surfaces, P=0, Q=0, R=0, 8=0, T=0, U=0, and we can
by means of them form a quartic equation (a,... [P, Q, R, §, T, U)*=
having the 4 given points as nodes; this contains, however, (21—1 =)
20 constants ; the reduction to the right number 18 occurs by reason
that the fanctions (P, Q, R, S, T, U), although hnea.rly mdependent
are connected by two quadnc equations

(¢ TP, QB,S,T,T)=0, (+IP,QR,S5T,T)=
hence writing the equation of the quartic surface in the form
(a’) tee In)""x ( * Iu)g'—l‘ ( « Iu)2 =0,
the coefficients A, u# may be so determined as to reduce to zero the
coefficients of any two terms of the equation, and the number of constants
really is 20—2 = 18, as it should be.

21. In proof, observe that, taking the 4 given nodes to be the points

1,9,0,0), (0,1,0,0),(0,0,1,0), (1,0,0,0), the quadric surfaces may
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be taken to be yz2=0, =0, ay=0, 2w=0, yw=0, 2w=0;
the equation of the quartic surface will thus be
(a, ... Yyz, 22, zy, ew, yw, zw)* =0;
but we have between the functions 2y, &c., the two identical relations
zy.aw—gz.yw =0, zy.z2w—aw.yz =0;
and the number of constants is thus = 18,

Five given Nades.

22, In the case of 5 given nodes, the number of constants should
be = 14. We have through the 5 given points, 5 quadric surfaces
P=0,Q=0,R=0,8S =0, T =0, and we form herewith the quartic
equation (a,...JP,Q,R,S, T)*=0, containing the right number 14
of arbitrary constants. The functions P, Q, &c. are in this case not
connected by any quadric relation, and the equation just written down
is in fact the general equation of the quartic surface with the 5 given
nodes.

23. In verification, take the first 4 nodes to be as above, and the 5th
node to be the point (1,1,1,1); we may write

(P, Q,R,8,T) ={a(y—2), z(y—w), y(@—2), y(@e—w), zy—ew};
and if from the 5 equations P = & (y—32), &ec., we eliminate (z, y, z, w),
we obtain one, and only one, relation between the functions P,Q,R, S, T;
this is found to be

PS (Q+R-T)—QR (P+S -T)=0,
or, what is the same thing,
‘ R (P-Q) (S—T)—P (R—8) (Q—T) = 0;
viz., it i8 a cubic relation, and there is consequently no quadric relatlon
between the 5 functions.

Siz given Nodes.

24. In the case of 6 given nodes, the quartic surface should contain
10 constants. . We have through the 6 given points 4 quadric surfaces
P=0,Q=0, R=0, S=0; but if we form herewith the quartic
surface (a,... P, Q, R, 8)*= 0, thiscontains only 9 constants. It is
to be shown that the Jacobian surface J(P,Q,R,8) =0 of the 4
quadrio surfaces (or say of the 6 points) is a quartic surface having
the 6 given points as nodes, and not included in the foregoing form
(a, ...3P,Q, R, 8)"=0; this being 80, we have the quartic surface

) (e, ..JP,Q,R, S)’+6J (P,Q, R, 8) =0,

having the 6 given points as nodes, and containing the complete
number of constants, viz. 10.*

25. The 6 given nodes being any points whatever, their coordinates
may be taken to be (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1),
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(1,1,1,1), and (a,B,7,8). Iproceed to find the Jacobian of these 6
points. For this purpose, let (a, b, ¢, f, g, ) be the 6 coordinates of the
line through the points (1,1, 1, 1) and (a, S, v, &), viz.,
a=p-y, = a—3J, .
b=y—a, g=p-3,
c=a—f, h=y-3,
and consequently, . h—g+a =0,
—h .-f-f+b =0,
g—f +e¢=0,
 =—a=b-¢ .=0,
af+bg+ch = 0, &o.;
we have through the 6 points the plane pairs
zg( . hz—getaw) =0,
y(=hs . +fz4+bw) =0,
s( g2—fy .+ow) =0,
w(—ax—by—cz .) =0,
where, adding the four equations, we have identically 0 == 0. For this
reason, we cannot take these to be the equations of the 4 quadric
surfaces, but we may take the first 8 of them for the surfaces P =0,
Q =0, R=0; and for the 4th surface S = 0, I take the quadric cone
having its vertex at the point (0, 0,0, 1) ; viz., the equation is
aayz+bfzx+cyzy = 0;
- that is, I write
(P, Q R, §) = {a(hy—gz+aw), y(—lao+fs+bw), 2(gz—fy+ow),
(aayz+bPze+cyzy) ).
26. The Jacobian is then easily found to be :

(8Bzz+cyay) (—agh, bhf, ofy, abe, —af?, —gB, kO, aA, by, —cth '} 2, ¥, 2, )
+ (cyzy +aayz) (agh, — bk, cfy, abe, fA, —bg*, "'h_c, - ’f’ bB, c'h I”a Yy % w)?
+ (aayz+bBzz) (agh, bhf, —cfg, abe, —fA, gB, — ck?, a¥f, —b%, ¢C ¥ 2,9, 2, w)’

where for the moment A, B, O denote bg—ck, ch—af, af—bg respec-
tively. Collecting and Teducing, the-whole divides by 2abs; and if
finally we replace g, b, ¢, f, g, b by their values, the result is .
(B—7) y2 (aw’—&?) + (a =) 2w (B'—vy)y -
J= {+(y—a)4 zz (Buw—3y*) + (B8=73) yw (v2*— az’)} =0.
+(a—B) zy (yw'—?) + (v—9) eaw (ay’—f<’)

27. It may be shown & posteriori that J is not a quadric fanction of
P,Q,R,S. For, attempting to express it in this form,J does ot contain the
terms a™w’, y*w*, 2™w’, and it thence at once appears that the coefficicnts
of P, @, R? each of them vanish. Hence, introducing for convenience

0;
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the factor 2, I assume (0,0,0,D,F, G,H,L, M,NJP,Q, R, §)? = 2J.
Comparing the terms in w* (yz, 2z, zy), we obtain

beF = aa, caG = b, abH =cy;
and comparing the coefficients of w (9%, 2, oy, yo*y za:’ zy®), we obtain

—Ff+aaM =3 - Ff+aaN =
—Gg+bpN = % Gy +b3L = _%f_’,
—Hhtoli =L, HitoM= ..l'g:;

substituting for F, G, H their va.lnes, we obtain from the first 8
equations L, M, N = —f ——ﬂ ab , and from the second 3 equations,

L,M,N = -bic’ -69; a3 that is, the equations are incomsistent, and

the fanction J is not expressible in the form in question.

Jacobian Surface of Siz given Points.

28. The equation J=0 is the locus of the vertices of the quadric cones
which pass through the given 6 points; calling these 1, 2, 8, 4, 5, 6,
we see at once that the surface passes through the 15 lines 12, 13, ...

.56, and also through the ten lines 123.456 (viz., line of intersection
of the planes through 1, 2, 3, and through 4, 5, 6), &. In fact, taking
the vertex at any point O in the line 1, 2, the lines drawn to the six
points are O1 = 02, 08, 04, 05, 06 ; viz., there are only five lines, so
that these lie in a quadric cone. And takmg the vertex at any point in
the line 123 .456, the lines to the 6 pomts lie in these planes 123 and
456 respectively, and the quadric cone is in fact this plane-pair. More-
over, the surface containing the lines 12, 18, 14, 15, 16, must have the
point 1 for a node; and similarly, the points 2,8,4, 5,6 are each of
them & node on the surface. It is to be added that the surface con-
tains the skew cubic thromgh the 6 points, or say the skew cubic
128456, See, as to this, post No. 108.

29. The surface in question (the Jacobian of the 6 points) is a par-
ticular case of the Jacobian of any 4 quadric surfaces. This more
general surface will be considered in the sequel; I only remark here
that it contains 10 lines, corresponding to the 10 lines 128. 456, &o.,
but it has not any other lines, or any nodes.

Jacobian Curve of Seven given Points, or of an Octad of Points.

80. In connexion with what precedes, we may here consider a curve
which presents itself in the sequel ; viz., the curve which is the locus of
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the vertices of the quadric cones which pass through seven given points.
The general case is when no one of the points is the vertex of a quadric
cone through the other 6 points. We have through the 7 points the
three quadric surfaces P = 0, Q = 0, R = 0; hence, forming the equa-~
tion aP+8Q+yR = 0 of the general quadric surface through the 7
points, and making this a cone, we find as the locus of the vertex
J (P,Q,R) = 0; the analytical form shows that this is a sextic curve.
It appears, moreover, that the curve is symmetrically related to all the
8 points P =0, Q =0, R = 0; and instead of calling it the Jacobian
of the 7 points, we may call it the Jacobian of the octad. But in
further explanation, take the points to be 1, 2, 8, 4, 5, 6, 7 ; the vertex
will lie on each of the Jacobian surfaces 123456 and 123457 ; and it is
at present assumed that 7 is not a point on the first surface, nor 6 a
‘point on the second surface. The two surfaces have in common the
lines 12,13, ... 45, and they consequently besides intersect in a curve
of the 6th order, or sextic curve, which is the locus in question. At
the point 1 there is on the first surface a tangent cone through the lines
12, 13, 14, 15, 16, and on the second surface a tangent cone through
the lines 12,13, 14, 15, 17; these two cones have for their complete
intersection the lines 12, 13, 14, 15, which lines belong to the complcte
intersection of the two surfaces, but not to the sextic curve. It thus
appears, & posteriori, that the sextic curve does not pass through the
point 1; and similarly, that it does not pass through any of the points
2,3,4, or 5. As to the points 6 and 7, each of these is on only onc of
the quartic surfaces, and therefore the curve of intersection does not
pass through either of these points.

81. Suppose, however, thut one of the seven points is the vertex of a
cone through the other six; it is of course the same thing whether we
take this to be one of the points 1, 2, 3, 4, 5, or one of the points 6 and 7,
but the result comes out more easily in the latter case; viz., in the
former case, taking 1 to be the point in question, the two tangent cones
-at 1 are one and the same cone, and all that appears is that there is
nothing to hinder a branch or branches of the sextic curve from passing
through the point 1. But in the latter case, taking 7 for the point in
question, then 7 lies on the surface 123456, being a simple point on
this surface, but a node on the surface 123457 ; and it thus appears
that there are through 7 two branches of the sextic curve; so that any
one of the seven points, being the vertex of a cone through the other
six, is an actual double point on the sextic curve.

32. In the case where two of the points are each of them the vertex
of a cone through the other six points, then the seven points lie on a
skew cubic; and the sextic curve of the general case becomes this skew
cubic twice repeated.
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Seven given Nodes.

83. In the case of 7 given nodes, the number of constants should be
=6; the 7 given points determine 3 quadric surfaces P=0, Q =0,
R=0; and we have hence the quartic surface (@, ... {P,Q,R)* =0,
containing 5 constants only. That this is not the general quartic surface
with the 7 given nodes, is also clear from the consideration that the
surface in question has 8 nodes; viz., the 8 points of intersection of the
three quadric surfaces. Suppose that a particular quartic surface,
having the 7 given nodes, but not of the last mentioned form, is A=0;
then a quartic surface having the 7 given nodes is

(a, "'IP: Q,R)*+64 =0;
and this, as containing 6 constants, will be the general quartic surface
with the 7 given nodes.

34. It follows that, if A’==0 be another quartic surface having the 7
given nodes, we must have identically A'—pA = (¥ P, Q, R)?, where
p i8 a determinate constant and ( # Y P, Q, R)* a determinate quadric
function of (P, Q, R). The formula extends to the case where A'=0
has the 8 nodes (P =0, Q =0, R = 0), but we have then p =0, and
the meaning is simply that the general quartic surface having the 8
nodes is ( # YP,Q, R)>=0.

35. A particular quartic surface having (in an improper sense) the
7 given nodes, but not having the 8th node, is MQ=0, where M=0 in
the plane through any 8 of the 7 points and 2 = 0 is the cubic surface
through these same 3 points, and having the remaining 4 points as nodes.
‘The equation of the cubic surface, if the 4 points are taken to be
(,9,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), is obviously of the form

g + 5 + % + ;d, = 0, (thatis, ayzw + bzaow + czyw + dayz = 0),

and by making the sarface pass through the 3 points we determine
linearly the coefficients (a, b, ¢, d), that is, their ratios. The equation of
the quartic surface thus is

(a, ... P, Q, R)*+6MQ = 0,

‘the 7 given points being here proper nodes; and the formula being
precisely equivalent to the preceding one containing A.

86. We can with the 7 given points form 35 such combinations
MQ = 0 of a plane and a cubic surface, and so present the equation of -
the quartic surface under 35 different forms; these are of course equi-
valent in virtue of the before mentioned formula for A'—pA; viz., we

.must have identically MQ—pM'Q = ( » JP,Q,R)*: a thcorem of
some interest, which i} might be difficult to verify a posterioit.

VOL. 1. No. 23. D
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Investigation of the cases of 8 Nodes.

37. It has been already shown that a quartic surface cannot in a proper
sense have 8 given nodes. In regard to the quartic surfaces with 8
nodes, we start from the surface with 7 given nodes; viz.,

4P, Q,R)+6V =0,

or what is the same thmg

(a,..3P,Q, R)’+8MQ 03
and we mqmre in what cases this surface has an 8th node. Obviously
if 6 = 0, that is, if the surface is (a, ... P, Q, R)? = 0, the surface will
have an 8th node, the remaining intersection of the quadric surfaces
P =0, Q=0, R =0 (observe that this is a point in no wise depending
on the particular quadric surfaces, but uniquely determined by means
of the 7 given points); and we have thus one kind, say the ¢ octadic”
surface, of the quartic surfaces with 8 nodes; viz., the nodes are the
8 points of intersection of any 3 quadric surfaces, or they are an octad
of points. By what precedes, 7 of the nodes may be given points,
and the remaining node is then a umquely determinate point, the 8th
point of the octad.

38. But if 6 be not = 0, there may still be an 8th node; viz., this
must then be & point on the Jacobian surface J (P, Q, R, V) = 0, which
is of the order 6. It is clear & prioi7 that this must be a surface de-
pending only on the 7 points, but independent of the particular surfaces
P=0, Q=0, R=0, V=0; to verify this, observe that, substituting
for V the function V,=pV+(* JP,Q,R)’, we in fact leave the
Jacobian unaltered ; I call it the dianodal surface of the 7 points.

39. I say that the 8th node may be any point whatever on the dia-
nodal surface; in fact, regarding for a moment the coordinates of the
node as given, and expressing that the point is & node on the quartic
surface, we have 4 equations containing

aPo+ Qo+ gRe, hPo+0Qo+ /Ry, gPo'l‘.fQo'i‘GRo, .
(Ps, Qo R, the values of P, Q, R at the node,) but which; if only the
point be on the dianodal surface, reduce themselves to three equations;
viz., we have between the coefficients (a, b, ¢, f, g, k) and 8 three equations
which being satisficd, the point in question will be a node. Andit thus -
appears that, taking the 8th node to be a given point on the dianodal
surface, the equation (a,...JP,Q, R)*+6V =0 of the quartic surface
“will contain 3 constants. Observe that we may through the 8 nodes
draw 2 quadric surfaces P =0, Q = 0; and this being so if A =10 be
a particular quartic surfuce with the 8 nodes, then the general quartio
surface will he (a,b,cTP,Q)*+0A =0,
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containing the right number 3 of constants. But there is not here any
simple form of the surface A = 0, such as the form MQ =0 for the
surface through 7 given points.

40. It is clear & priori that the relation between the 8 modes is a
symmetrical one; so that the 8th point being situate anywhere on
the dianodal surface of the 7 points, each of the points will be
gituate on the dianodal surface of the remaining 7 points. This is
& remarkable property of the dianodal surface, which will have to be
again considered.

41. In what precedes, we have the second kind of quartic surfaces
with 8 nodes, say the ‘‘ dianome”; viz., each node is & point on the
dianodel surface of the remaining 7 mnodes; any 7 of the nodes
may be taken to be given points, and the remaining node to be any.
point whatever on the dianodal surface of the 7 points.

The Dianodal Surface.

42, Consider the seven points 1,2, 3,4, 5, 6, 7. As already men.
tioned, through three of these, say 1, 2, 8, we may draw a plane M=0;
and through the same three points, with the remaining points 4, 5, 6, 7
as nodes (3+4.4 =19 conditions), a cubic surface 2=0; this surface
passing through the six lincs 45, 46, ... 67. Hence we have A, =MQ,
=0, a quartic surface with the seven points as nodes. And using this
form of A, it may be shown that the dianodal J (P, Q, R, A) = 0 passes
through the 21 lines 12,13, ... 67, and through 35 plane cubics sach as
M=0, 2=0; viz., this is a cubic in the plane 123 passing through the
points 1, 2, 3, and through the intersections of the plane with each of
the six lines 45, 46, ... 67 (nine points determining the cubic); the
complete intersection by the plane 123 being therefore composed of this
cubic and of the thrce lines 12, 13, 23. For the passage through the
cubic, we have only to observe that

_ J(P,QRM=JF,QR,OM+IJ(P,Q R MQ=0
is satisfied by M=0, 2=0; and for the passage through the lincs,
taking =0, y=0, 2=0, w=0 for the equations of the planes 567, 674,
745, and 456 respectively, each of the functions P, Q, R is of the form
ayz+bze+ cay +frw+ gyw+ hzw, and tho function Q is of the form
Ayzw+Bawz+ Cway + Dzy2.  Hence, writing in the derived funcions
for instance z=0, w=0, the first and second lines of the determinant
J(P,Q, R, Q) will be of the form
ey, ¢y, <y, 0
cz, ¢z, ¢z, 0]
or the determinant vanishes for 2=0, w=0; that is, for any point of
the line 45 we have 2=0 and also J (P, Q, R, Q) =0; consequently
D2



36 Prof. Cayley on Quartic Surfaces. [Feb. 10,

J(P,Q, R, MQ) =0, and the like for the other lines. The theorem is
thus proved.

43. 1 say that the dianodal surface passes through each of the 7
skew cubics, such as 123456. To prove this, it is only necessary to
show that the skew cubic 123456 lies on the dianodal surface. For
this purpose it will be enough to show that the skew cubic meets the
plane 712 in a point of the surface; for then it will, in like manner,
meet each of the 15 planes 712, 713, ... 756 in a point of the surface ;
that is, we shall have 15 intersections of the curve and surface, and
there are, besides, the intersections 1, 2, 8, 4, 5, 6, in all 21 intersections;
that is, the skew cubic must lie on the surface.

44. The plane 712 meets the surface in three lines and in a plane
cubic determined by the points 7, 1,2 and the six intersections of tho
plane with the lincs 34, 85, ... 56. We have therefore to show that
this plane cubic meets the skew cubic 123456. Consider for & moment
the points 1, 2, 8, 4, 5, 6 and another point 7. As seen above, we have
in general, through the points 1, 2, 7' and with the points 3, 4, 5, 6 as
nodes, & determinate cubic surface, which surface passes through the
lines 34, 35, ... 56.- But the cubic surface becomes indeterminate if the
points 1, 2, 7, 8, 4, 5, 6 are on the same skew cubic; that is, if 7' is any
point whatever on the skew cubic 123456 (the proof presently). Taking,
then, 7’ ag the intersection of the skew cubic by the plane 712, we have
in this plane the points 7/, 1, 2, and the intersections of the plane by the
lines 34, 35, ... 56, nine points through which there pass an infinity of
plane cubics; that is, the plane cubic determined by the points 7,1,2
and the six intersections will pass through the point 7; viz., it meets
the skew cubic 123456.

45. For the subsidiary theorem, taking X, Y, Z, W as current coordi-
nates, viz.,, X=0, Y=0, Z=0, W=0 as the equations of the planes
456, 568, 634, 345 respectively, (z, 41, 21, ;) and (2, Y2 22 wy) AS
the coordinates of the points 1 and 2 respectively, and (=, ¥, 2z, w) for
those of 7’; the equation of the cubic surface passing through 7,1, 2,
and having the nodes 3, 4, 5, 6, is

[
s

111 =0;
X Y z’w| 7
1 1 171
. ¥y 7w
1 1 1 1
o oy e
11 1 1
4’3, ~.'h’ “x, Wy
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and this ceases to be a determinate function if only

11 11 =0
x’ .;1/7 z’ W 3
1111
zl, .'/i’ 7w,
1 11 1

;z’ Ei 'z—z’ 1;2
viz., considering (21, %1, 21, ¥1), (% Y2, %2, w;) 88 given, this is a two-
fold relation between the coordinates (z, y, #, w) of the point 7. The
relation may be rcpresented by the four equations (yzw)=0, (swz)=0,
(wzy)=0, (vyz)=0, if for shortness
(yaw) =\ yz, 2w, wy
ha, 2w, NN
YaRzy Zalgy WY
and the like as to the other symbols. The four equations represent
quadric surfaces, each two intersecting in a line [e.y., (yzw) =0,
- (2wz) = 0 in the line #=0, w=0], and the four surfaces besides inter-
secting in a skew cubic, which is the required locus of the point 7', and
which, as is seen at once, passes through the points 1,2, 3,4, 5, 6.

46. By what precedes, we have on the dianodal surface through the
point 1 the lines 12, 18, 14, 15, 16, 17, and the skew cubics 123456,
&c. The six lines are not on the same quadric cone, and it thus ap-
pears that the point 1 must be a cubic-node (point where, instead of the
tangent plane, we have a cubic cone) on the surface. It is to be re-
marked that the lines 12,13, 14, 15,16, and the tangent at 1 to tho
skew cubic 123456, lie in a quadric cone; viz., this tangent is given as
the sixth intersection of the cubic cone with the quadric cone through
the lines 12,13, 14, 15, 16.

47. T revert to the equation of the dianodal surface as given in the form
J=17J (P, Q,R,MQ) = 0, where M = 0 is the plane through the points
1, 2, 3, and 2 = 0 the cubic surface through these points, and having

. the points 4, 5, 6, 7, as nodes. We can find the orders of the several
functions P, Q, R, M, Q in the coordinates (z, 1), 2, W), &c., of the
scveral points; viz., writing for shortness 7 to denote the order 2 in
regard to (@, ¥, %1, w1), and so in other cases, we havo

P =Q =R = o (, 7 v1)* (41, T, T, 2)°
M = 2 (74, 25, %).
Q = a::l (fU5, Loy “—'7)a (:cl) :'(12, T3, x‘)g H

[where, of course, the 2% x, &° show in like manner the orders in
regard to the current co-ordinates (z, ¥, 2, w) ; the proof in regard to
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Q) is easily supplied.] The order of J is equal that of PQRMQ, less 4
as regards the current coordinates, by reason of the differentiations ;
that is, we have J = a° (2, 2 2,)" (2, 2 24 2,)" ; and we thus see that the
equation of the dianodal surface as above obtained is encumbered with
a constant factor of the form (7, z; 2)* (#, 2524 2;)°. In fact, the rela-
tion between the 7 points and the current point (z,v,2,w), or say the
point 8, as expressing that the 8 points are the nodes of a dianome,
should be a symmetrical one in regard to the coordinates of the several
points ; and being of the order 6 in regard to the coordinates (=, y, 2, ),
it should be of the same order in regard to the other coordinates; that
is, the true form would be J = (z )2, 2y 2,2, 25 2;)* = 0.

48. It is possible that taking the 4 points, say 1, 2, 3,4, to be .
4,0,0,0),(,1,0,0), (0,0, 1,0),(0, 0,0, 1), and the 3 points,say 5, 6, 7, to
be(1,1,1,1),(a, B, , 8),(a’, 3, ¥, &), the extraneous factor might exhibit
itself, and that the equation divested of this factor might be of a tole-
rably simple form. I have not, however, worked this out, but I have,
by an independent process, obtained in regard to the dianodal surface
of the 7 points a result which may be interesting. .

49. The dianodal surface, qud surface having the first-mentioned
4 points for cubic nodes, has its equation of the form

yaw (y, 2, w)’+zaw (2, », w)*+ayw (2,9, w)*+2yz (2,9, z')’
+xy2w (2,9, 2,w)* = 0;

wlere in the cubic functions the terms 27 ¢, 2%, w® none of them appear.
If for instance w=0, the equation becomes (z, y, z)*=0, which, by what
precedes, is a known cubic curve, viz. the curve through the points
1,2, 3 and the intersections of the plane 123 by the lines 45, 46,47,
56, 57, 67; and we can by this consideration find the cubie function
{(#,, 2)*, and thence by symmetry the other cubic functions. I take

(ayb’c’fygsh)g 3(11 1, l’l)v (“:ﬂvY!a)

for coordinates of

("'I) v, ¢, f 9, K) line through a,,1,1), (“” B, v, %)

(a,b,0,f,g,h) (0,B,7,8), («,8,7,9)
respectively ; viz.,, I write
a=f—7, fma—d|d=F~y, fma —¥
b=y—a, g=3—8|b=y—0u, ¢=H—7
o=a—pf, h=y—38|c=d =, '=y—¢

a=L0y~fy, f=ad—a'd
b=rya'—ya, g=pF—f?
c=af —df3, h=y8—yd
and I write moreover A= . h—g+a,

p=-h .+f+Dh,

v= g—f .+c¢

w=—a—b—c




1870.] Prof. Cayley on Quartic Surfaces. 89
- 50. This being so, the cubic curve through the last mentioned six

points has its equation of the form
A B C D
=0;
aa;+by+cz+a'z+b'y+c'»+ a.a:+hy+gz\+ Az+py+rz ?
and to make this pass through the points 1, 2, 8, we write therein
successively (y=0, 2=0), (=0, 2=0), (z=0, y=0); viz.,, we have
for the ratios A : B: C : D the three equations

In eliminating, for instance, B for the first and second equations, the
resulting equation divides by ab’—a’d, = a+b+c, and we thus obtain,
between A, C, D, the three equations (equivalent to two)

A, O« Df_

@ ca | A
A, CyY , DK
ab + ;\.—% + Ap =
from which the ratios A : C : D may be obtained by actual calculation.
After all reductions, we have
A= abo {(a¥+8Y)af+(B5+vd)bg+ (¥ +dB)ch},
B = —a'b'¢ {(ad+Ly) af+ (864 ya) bg+ (yé+afB) ch},
C= abo {aadA+p0u+yyrv+ddwl,
D= —Mv {ada+pLFb+yy'e};
viz.,, A, B, C, D are proportional to these values respectively. Multi-
plying by the product of the denominators, I find without much diffi-
culty that the resulting cubic function is divisible by a+b+c; hence,
introducing the factor zyz, and an indeterminate multiplier J, I write

eyz (2, 9,2)* =
a—_*-_—:;(—’myz (az+by+cz) (a'2+by+¢z) (az+by+c2) Az +py+rz)
A B . C ' D
X {aa:+by+cz tE Vy+cz + az+by+cz + )\a:+/.ty+vz}’
where A, B, C, D have the values above written down.

0,

51. Considering the orders in regard to (a,8, v, 8), (', 8, ¥, &), and
observing that a, b, ¢ and @', ¥, ¢ are linear functions of the two sets
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respectivély, but that a,b...h, A...w, are linear in the two sets con-

jointly, or say a,. =a, d,..=a;8,..=ad;
we have Ag'al = a’d”. ¢’d”® = d’d”’,

so that after the division by a+b+c, = aa’, the order will be a’a”.
Hence ! will be a mere numerical factor, and the last-mentioned
equation gives, without any extraneous factor, the terms zyz (2, y,2,)°

in the equation of the dianodal surface of the seven points.

Octadic Surfaces with 9 or 10 Nodes.

52. In regard to the surfaces with 9 and 10 nodes, I consider first
the octadic surfaces. ‘' Starting as before with the given points
1,2,3,4,5,6,7, we have a determinate point 8 completing the octad,
and the surface with the 8 nodes is '

(¢ ...3P,Q, Ry =0,

(5 constants). Suppose that there is another node 9; this must be a
point on the Jacobian curve J (P, Q, R) = 0, ‘which (as was scen) is a
sextic curve not passing through any of the 8 points; the node 9 may
be any point on this curve, viz, taking its coordinates as given, the
condition of its being a node gives 4 equations, which, for the very
reason that the point is on the Jacobian curve, reduce themselves to
2 equations, which can be satisfied by means of the constants (a, ...),
the resulting equation should therefore contain 3 constants.

53. In order to find it, taking as above 9 a given point on the
Jacobian curve, this will be the vertex of a quadric cone, say P=0,
through the 8 points; we may draw through the 9 points another
quadric surface Q=0, and through the 8 points a quadric surface R=0;
this being so, we have the quartic surface (a,b,0,0,¢, 23 P, Q,R)* = 0,
having the 9 nodes, and containing, as it should do, 3 constants; this
may be written (@P+21Q+29R) P+bQ* = 0;
viz., if bR’ = aP+21Q+2gR, that is, if R’=0 be the general quadric
surface through the 8 points, then the equation is Q*—PR’'= 0, where
observe that R’ is considered as containing implicitly 3 constants.

54. If there is a 10th node, say 10, this is also a point on the
Jacobian curve' J (P, Q,R) = 0, and it may be any point whatever on
the curve; taking it as a given point on the curve, the resultihg cqua-
tion should contain 1 constant. We may take P=0 to be the quadric
cone, vertex 9, through the 8 points, R=0 the quadric cone, vertex
10, through the 8 points, Q=0 the quadric surface through tho 8
points and the points 9 and 10 (viz., the surface through 9, 10 and any
7 of the 8 points will pass through the remaining 8th point). The
equation of the quartic surface then is

(©, b, 0,0, 9 OIP: Q R)’ =0;
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that is, 5Q*+2gPR = 0, containing 1 constant ; we may reduce this to
Q*—PR = 0, the constant being considered as contained implicitly in
one of the functions. It is clear that the constant cannot be so deter-
mined as to give rise to an 11th node, nor indeed to any other sin-
gularity in the surface.

55. In the case of the surface with 9 nodes, it is clear that this is
octadic in one way only ; the node 9 cannot form an octad with any 7
of the remaining nodes. But in the case of the sarface with 10 nodes,
the question arises whether the nodes 9 and 10 may not be such as to
form an octad with some six, say with the nodes 1,2,3,4, 5,6 of the
remaining 8 nodes; that is, whether we can have 1,2,3,4,5,6,7,8
forming an octad, and also 1,2, 8,4, 5,6, 9,10 forming an octad. I will
show that this is impossible if only the points 1,2,8,4,5,6 are given
points, that is, points assumed at pleasure and not specially related to
each other. For this purpose, assuming that the points form 2
octads as abpve, take through 1,2,8,4,5,6,7,9 the quadric surfaces
P=0, Q=0, then each of these passes through 8, 10; take R=0
any other quadric surface through 1,2,3,4,5,6,7,8, and S=0 any
other quadric surface through 1,2,3,4,5,6,9,10. Then P=0, Q=0,
R=0 intersect in the 1st octad, and P=0, Q=0, S=0 intersect in the
2ud octad; the quartic surface (if it exists) must be simultaneously
of the forms (« YP,Q,R)*=0, (# YP,Q,8)’=0; and this im-
plies an identical equation ( # P, Q,R,S)*=0. The quadric
surfaces are surfaces through the points 1,2,8,4,5,6, and taking
through these six points any other quadric surfaces A=0, C=0,
E=0, H=0, we have P,Q, R, S each of themn a linear function of
A,C,E,H; and the relation between P, Q, R, S gives a like relation
(* JA,C,BE,H)*=0 between A,C,E,H. Iassume A = 123.456,
E = 134.2£6, H = 145.236, C = 152. 346; viz., A=0 is the plane-
poir formed of the planes through 1, 2, 3 and 4, 5, 6 respectively ; and
go for the others: we have to show that there is not any such 1de11t1cn.l
relation ( » YA, C, E, HY =0.

56. We may through 3 draw the
lines LM, QT to meet 14,26 and 12,
46 respectively; and through 5 the
lines RS, NP to mcet 14, 26 and 12, 46
respectively. Obrserve that the points
O in the figure are apparent intersec-
tions only ; viz., NP does not meet QT,
nor LM meet RS. 1In fact, if NP met
QT it would be a line in the series of
lines mcetmg 14, QT,26; or 5 would
be situate in a hyperbolmd determined by means of the pomts

2 A N [
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1, 2,4, 6, 8; viz,, 5 would not be an arbitrary point : and so LM does not
meet RS. Now the quadrics E, H meet in the lines 14, 26, LM, NP,
and the quadrics A, C in the lines 12,46, QT, RS. Suppose that we
had identically ( # JA,C,E, H)* = 0; putting therein E=0, H=0,
we should bhave ( #» §A,C)'=0, viz, (A+AC) (A+puC)=0; or
there would exist quadrics of the forms A+AC = 0 containing the lines
14,26, LM,NP. Now there is no quadric surface A+AC =0 con-
taining the line NP ; for A4+AC =0 is a quadric containing the sides
of the quadrilateral QRST; the generating lines of the one kind meet
each of the lines RS, QT ; those of the other kind neither. Hence
NP, which meets RS but not QT, cannot be a generating line of either
kind; and we have no identical relation (A, C, E, H)*=0.

57. In the octadic surface with 9 nodes; starting with any 7 nodes
of the octad, 9 is not the 8th point of the octad, and hence (by the
theory of the dianome) it must lie in the dianodal surface of the 7
points ; that is, the dianodal surface of the 7 points must pass through
9, viz., through any point whatever of the Jacobian curve of the 7
points, that is, of the octad; or (what is the same thing) the dianodal
surface of the 7 points passes through the Jacobian curve of the octad.
This is an obvious property of the dianodal surface, the surface
J(P,Q,R,V) = 0 contains the Jacobian curve J (P, Q,R) = 0. But
it further appears_that, starting with any 6 points of the octad and
with the point 9 (that is, any point whatever of the Jacobian curve),
the dianodal surface of these 7 points must contain the remaining 2
points of the octad. And in the octadic surface with 10 nodes, starting
with any 5 points of the octad and with the points 9 and 10 (that is,
any two points on the Jacobian curve) the dianodal surface of these 7
points must contain the remaining three points of the octad. I have
not attempted to verify these last properties of the dianodal surface.

Dianomes with 9 or 10 Nodes.

58. I now consider the dianomes with 9 and 10 nodes. Starting

from the general form
(a,5,cJP,Q)"+0A =0,

where A ==0 is a particular quartic surface having the 8 nodes, it at
once appears that if there is a 9th node, say 9, this must be a point on
the Jacobian curve J (P,Q,A) = 0, or say on the dianodal curve of
the 8 points, viz. (e =b=1,¢=38, in the formula No. 5), this is a
curve of the order 18; the node may be any point whatever on this
curve, and taking it to be a given point on the curve, the number of
constants in the resulting equation should be 1. Hence if P =0 be
the quadric surface through the 9 points, and A =0 a particular
quartic surface having the 9 points as nodes, the general equation is
aP’+64 =0,
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59. But we may consider the question somewbat differently. Starting
-with the 7 given points 1,2, 8, 4, 5, 6, 7 and with 8 a given point on the
dianodal surface of the 7 points; it is clear that 9 must be on the
dianodal surface 1234567, and also on the dianodal surface 1234568 ;
the complete intersection is of the order 36, and we have to consider
how this breaks up so as to contain as part of itself the dianodal curve
of the order 18.

Dianodal Curve of 8 Points.

60. Consider first any 8 points whatever 1,2,8,4,5,6,7,8; where
8 is not on the dianodal surface 1234567, nor 7 on the dianodal surface
1284568. The two surfaces have in common the 15 lines 12,18, ... 56
and the skew cubic 123456, they therefore besides intersect in a curve
- of the order 18. At the point 1 the tangent cubic cones of the two
surfaces intersect in the lines 12, 13, 14, 15, 16 and the tangent to the
skew cubic 123456, 6 lines lying in a quadric cone; they therefore
. besides intersect in 8 lines lying in & plane; that is, the point 1 is on
the curve of the order 18 an actual triple point, the 3 tangents lying
in plano; and the like of course in regard to each of the points
2,8,4,5,6. Baut as 7,8 lie each of them on only one of the two sur-
- faces, the carve of the order 18 does not pass through 7 or 8.

61. If, however, 8 lies on the dianodal surface 1234567, then each of
the 8 points will lie on the dianodal surface of the other 7; and in par-
- ticular 7 will lie on the dianodal surface 1234568. The surfaces in-
tersect as before in a residual curve of the order 18; the only difference
is that 7 and 8 are now points on each surface; viz.,each of them is on
one of the surfaces an ordinary point, and on the other a cubic node;
the points 7 and 8 are thus each of them an actunal triple point on the
canrve ; and at each of them the 3 tangents are in plano. We thus see
that the dianodal curve 12345678 is a curve of the order 18, guch that
each of the 8 points is & triple point on the curve, the tangents at each
of them being in plano,

Ten Nodes.

62. Suppose there is a 10th node, say 10; starting from the equation
aP’40A =0 (P=0 the quadric surface through the 9 points, A=0 a
particular quartic surface having the 9 points as nodes), it at once
appears that the node must be one of the points J (P,A) = 0; hence,
taking it to be one of these points, we have 4 equations, which, in virtue

- of the node being one of the points in question, reduce themselves to a
single equation determining the ratio @ : 6; we have thus a completely
determinate surface, say O =0 havmg the 10 points as nodes. The

© number of points J (P,A), writing in the formula No. 5, e=1, b=3,
is obtained as 1+8+9+27 = 40, but it is to be observed. that the
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surface P=0 passes throngh each of the 9 nodes of the surface A=0;
these count twice among the points J (P,A) =0, and the number of
residual points (or say the dianodal centres of the 9 points) is 40—18
= 22; viz,, this is the number of positions of the node 10.

Dianodal Centres of 9 Points.

63. In further explanation, observe that 9 is any point on the
dianodal curve 12345678 ; the node 10 must lie on this same
curve, and also on the dianodal surface 1234569, Take P=0 the
quadric through all the 9 pointsy, Q =0 a quadric through
all but the point 9, R =0 through all but the point 8, S=10
through all but the point 7. The dianodal curve 12345678 is
J (P, Q, V) =0, and the dianodal surface 1234569 is J(P, R, S, V) =0;
the total number of intersections is 6 X 18 = 108; these include the
4% 18 =72 points of intersection of the dianodal curve J (P,Q,A) =0
with the Jacobian surface J (P,Q,R,S) =0, except the 4 points
J (P, Q) =0, which are the vertices of the 4 quadric cones through
1,2,8,4,5,6,7,8 (which 4 points are not situate on the curve
J (P, R, 8) = 0), and there are besides 40 points [108 = (72—4)+40]
which are the before mentioned points J (P, ) == 0; viz., these are the
9 points each twice, and the residual 22 points which are the dianodal
centres of the 9 points.

Qeneral result as to the Dmnomes

64. We have thus established the theory of the dianome quartic
surfaces ; viz., we have
The octodlanome, 8 nodes, 7 of them arbitrary, and the 8th an
arbitrary point on the dianodal surface (order G) of the 7
points,
The enneadianome, 9 nodes, the 9th an arbltrary point on the
dianodal curve (order 18) of the 8 points.
The decadianome, 10 nodes, the 10th any one of the 22 dianodal
centres of the 9 points.
And as already mentioned, so long as the first 7 nodes are arbitrary,
there cannot be more than 10 nodes in all.

THE SYMMETROID. _
The Lineolinear Correspondence of Quartic Surfaces.

65. I consider four equations S=0, T=0, U=0, V=0, lineolinear
in regard to the two sets of coordinates (2, y, 7, w) and (a, 8,7, ) ;-
viz., each of these equations is of the form

( * Q29 % WZ{a, B, v, &) =0.
This implies that the point (2, y, #, w) lics on a certain quartic surface
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0=0, and the point'(a, B, v, 0) on a certain guartic surface A=0, and
that the two surfaces correspond point to point to each other. In fact,
‘writing the four equations in the form

La +M8 + Ny + P8 =0,
La + MB + Ny + P8 =0,
L'a+ MB+N'y+ P23 =0,
Llfla+ Mlllﬁ+ ”IY+ Pll'a o O’
where L, &c., are linear functions of (=, y, #, w), then eliminating
(«, B, 7, 8), we obtain the equation
6=|{L M N, P = 0;
I, M, N, P
'LII’ M”, NII,‘ P”
LIII’ M//I, Nlll, Pll
and similarly, writing the four equations in the form
Az +By +Cz + Dw =0,
A2z + By +Cz + Dw =0,
“s 4+ By + C% + D'w =0,
A”’$ + Blfly + lllz + fflw —_ O’
where A, &c., are linear functions of (a, f, v, ), then eliminating
(=, y, 2, w), we obtain the equation
A=[|A B C D = 0.
A, B, C, D
AII’ Bll, CII; Dl/
A’Il’ B’II’ CIII, DIII
Moreover, © being =0, the four linear equations in (a,f3, v, ) are
equivalent to three equations, and give for instance (a,f, v, d) pro-
portional to the determinants formed with the matrix
Y, M, N, P
LII’ MI" NII’ PII
LIII, Mlll’ N’/I, PIII
and similarly, A being = 0, the four linear equations in (=, ¥, 2, w) are
equivalent to three equations, and give for instance («,y,z2 w) pro-
portional to the determinants formed with the matrix
A B, O D
A.”, B”, C”, Dﬂ
AIII, BIII, CI/I, DII'
which establishes the point-to-point correspondence of the two surfaces.

.
?

66. It would at first sight appear that any quartic surface
(% Ya,pB,v,38)"=0 whatever might have its equation' expressed in
the foregoing determinant form A = 0. This equation seems, in fact,
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to contain homogeneously as many as 64 constants. But if we multiply
the determinant line into line by a constant determinant
a, b ¢ d
al’ bl’ c’, d/
a, Vv, o &
alll, b”,’ cIII’ d’ll
and then colamn into column by another constant determinant, the
_coefficients, all but one of them, of these constant determinants may.be
used to specialize the form of the resulting equation; which equation
will really contain 64—(2.16—1) = 33 constants; and in order that
the quartic surface (* Y a,B,7v,8)’=0 may have its equation ex-
pressible in the form A=0, a single relation must hold good among the
coefficients : but this in passing.*
67. Returning to the quartic surface
A=|A, B, C D |=0,
AI’ BI’ CI’ D'
A, B, ¢, D
AIII’ BIII’ CI/I’ D’II
we may connect this not only with the foregoing surface 6=0, but in
a similar manner with another quartic surface ®=0; viz,, taking the
current coordinates (¢, n, {, @), we may form the lineolinear equations
AL+ A+ A"+ A" =0,
B¢ + By + B"{+ B"w =0,
CE+Cn+Cl+Cw=0,
Di+Dn+D¢{+ D" =0,
which, by the elimination of (¢, n, {, w), give A=0, and by the elimi-
nation of (a, S, v, 6) & determinant quartic equnation ®=0 between the
coordinates (&, n,{,w); and of course the two surfaces A=0, ®=0
have a point-to-point correspondence such as exists between the sur-
faces 6=0, A=0. The relation of the point (a, 8, ¥, §) on the surface
A =0 to the point (z,y,2 w) on the surface 6 =0, and to the point
(¢,7,{,w) on the surface ®=0, may be conveniently indicated by
means of the diagram o
F— AN
& Y g w
4, B C D
A, B, ¢, D
A”, B, ¢, D"
A’”’ B'”, CIII’ Dlll
* Applying the same reasoning to a cubic determinant A =0, the number of con-
stants i8 36— (2.9~1) == 19; so that a cubic surface is expressible in the form in
question. And so for the quadric determinant A =0, the number of constants is

16—(2.4—1) = 9; so that a quadric surface is expressible in the form in question,
as is otherwige obvious.

§
mLo,
{
w
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68. It is to be observed that, writing for A, B, ... their values as
linear functions of (a, @, 7, &), we have in all 64 constant coefficients,
which we may conceive arranged in the form of a cube, thus:

and taking these in fours height-wise, (a, a1, a,, as), &c., we compose
with them the linear functions au+a,8+a,;y+a8, &c., which enter
into the equation A=0; taking them in fours length-wise, (a, b, ¢, d),
&c., we compose the linear functions az+ by +cz+dw, &c., which enter
into the equation © =0; and taking them in fours breadth-wise
(a8, d,a", a”), &c., we compose the linear functions at+a'n+a’{+a"w,
&c., which enter into the equation ®=0.

69. The process may be indefinitely repeated ; we obtain always the
same three surfaces over and over again, but on them an indefinite
series of corresponding points ; viz., we may write

..6, 4,0 06,40 6,A ¢ ..

oo Ph Qh Rh P: Q) R, P" QI) RI"‘
viz,, & point Q on A corresponds to a point P on © and to a point
Ron @; R corresponds to Q on A and to a new point P’on 6 ; P’ to R
on ¢ and to a new point Q on 4, and so on. And in the opposite
direction P corresponds to Qon 4, and to & new point Ryon ®; R, to P
on © and to a new point Q, on A; and so on. And of course the cor-
respondence of any two points of the series, whether belonging to the
same surface or to different surfaces, is a one-to-one correspondence.

The Symmetrical Case; Symmetroid and Jacobian.

70. T have established the foregoing general theory; but it is only a
particular case of it which connects itself with the theory of nodal
quartics ; viz., the cube of coefficients is a symmetrically arranged cube

a b g1

th b f m

: g f ¢ u
tman.d

) ]11‘-.

b, b
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or say its upper face is the symmetrical square matrix

a, b, g, 1

kb f, m

s hHhon

l, m, n, d
and the other horizontal planes, the like squares with the several terms
affected by suffizes.

The surface V=0 is here a surface of the form

V=|AH G L|=0
H,B, F,M
G, FC N
L, MN,P
[A, B, &c. linear functions of (a,8,7,8)] viz., ¥ is a symmetrical
determinant ; I call this & symmetroid ; the surfaces =0, ® =0 are
one and the same surface, the Jacobian of 4 quadric surfaces; moreover
the points P and R are one and the same point, and the correspondence
R to P is a reciprocal one ; so that, instead of the indefinite series of
points, we have only 2 points Q, Q on the surface V, and 2 points P, P
on the surface © (=®) ; viz., the diagram is
.4, 0,0, 4,0 06 A ..
ene Q" P’ P, Qv P, P, Ql-"
mioreover the symmetroid surface V=0 is a surface with 10 nodes,
which is clearly not octadic, and which is therefore the decadianome.

71. Consider the quadric surfaces

S=(adedf,gklmnlzyz2w)}=0

T= (a,l, ces I ” )2 = 0’
U= (az, oo I ” )2 = 0:
V= (a,, ... T » )P=0

and a point (a, 8, v, 8) in the same or in a different space, such that the
surface aS+LT+yU+6V = 0 is a cone, or say for shortness,

aS+pAT+yU+8V = cone;

(a,B8, v,9) is said to be the determining point, or determinator of the
cone. And if we establish the equations

3. (aS+AT+yU+4dV) =0,

5". ( ” ) = O’

S, ( ” ) =0,

810 ( ”» ) = 0)

which express that the surface is a cone, then the point (z, ¥, 2, w) is
the vertex of the cone. We have thus 4 equations lincolinear in
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(2, 9,7, w) and also in (a, B, 7,8), so that the rclation between the 2
points is of the nature of that above considered. Tho relation between
(i, y, 2, w) is given by the equation

J(S,T,U,V)=0;
viz., the locus is the Jacobian of the 4 quadric surfaces. The relation
between (a, 3, v, &) is given by the equation

V=|a+af+ay+ad, ha+.., gat.., lat+..[=0,

ha+... , bat.., fa+.., ma+...
ga+... y Ja+.., ca+.., na+..
la+... , mat.., nu+t ., da+t...

so that the locus is (by the foregoing definition) the symmetroid. And
the determinator point on the symmetroid thus corresponds to the cone-
vertex on the Jacobian.

72. But the Jacobian may be obtained in a different manner ; viz., if
we establish the equations

(80,476, + 2, +wd,)S =0,

( ” )T =0,
( ”» JU =09,
( ”» )v=0’

then the elimination of (&, », {, ») leads to the equation J (S,T,U,V)=0
of the Jacobian surface. And since each of the equations is symmo-
trical in regard to (@, ¥,2, w) and (&, »,{, »), it appears that the point
(& n, 4, @) is also a point on the Jacobian surface. We have on the sym-
metroid a point related to (¢, n, £, @) in the same way that (a, 8, 7, 8) on
the symmetroid is rclated to the point (», 7,2, w); and this completes
the system of the 4 points, Q on the symmetroid, P and P’ on the
Jacobian, @ on the symmetroid ; but in what follows I make no use
of this last point Q.

73. The points (z, y, 2z, w), (¢, », £, ) on the Jacobian correspond in
such wise that, taking the polar planes of either of them in regard to
the quadrics S=0, T =0, U= 0, V=0, these interscct in a singlo
point, viz., in the other of the two corresponding points. Or, what is
tho same thing, the line joining the two points cuts each of the four
quadrics harmonically, whence also it cuts harmonically any quadric
surfaco whatever of the scries uS+ BT +yU+EV=0, (a, £, y, & being
here arbitrary multipliers) ; viz, this property isan immediate interpro-
tation of the equation

(. + l](?,,-}-,'ﬁ,-l-wt‘,ﬂ ((JS+/;T+')/U+BV) =0,
or, as this is more convoniently written,
(@ ... Q& m L wlw, y,2,0) =0,
VOL. 1. NO. 2.k I
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if for & moment (a, ...) denote the coeflicients of the quadric function
aS+pT+yU+48V.

74. Consider any 6 pairs of points (2, 1, 21, w), (&, y &, @), &e.,
related as above; the quadric surfaces S=0,T=0, U=0,V=0
are surfaces cutting harmonically the lines joining the two pairs of
points respectively ; or say they are quadrics cutting harmonically 6
given segments; and the general quadric surface which cuts harmo-
nically the 6 given segments is aS+GT+yU+6V=0. We thus see
that the Jacobian surface J (S, T, U, V) =0 is in fact the locus of the
vertices of the quadric cones which cut harmonically 6 given seg-
ments. The surface so defined by M. Chasles (Comptes Rendus, tom.
lii.,, 1861, pp. 1157-62), and shown by him to be a quartic surface, is
thus identified with the Jacobian of any 4 quartic suifaces; and in-
cluded herein we have the particular case, also considered by him, of
the locus of the vertices of the quadric cones which pass through 6
given points, or Jacobian of the 6 given points.

75. It is to be shown that there are 10 systems of values (a, 8,7, 9),
or, what is the same thing, 10 points on the symmetroid, for each of
which the quadric surface aS+8T+yU+48V =0 is a plane-pair. For
any such system of values the plane-pair may be regarded as a cone,
having its vertex at any point whatever on the line which is the axis of
the plane-pair; thatis, each point of this line is the vertex of a cone of the
system of surfaces aS+BT+yU+3V = 0; or, what is the same thing,
the axis of the plane-pair lies on the Jacobian surface; viz., there will
be on the Jacobian surface 10 lines. Moreover, to the point (q, f3, v, 8)
on the symmetroid there corresponds indifferently any point whatever
on the axis of the plane-pair. The analytical expressions for (z,y, 2, w)
in terms of (a, f3, v, ) must therefore, for the values in question of
(«, B, ¥, 9), become indeterminate ; and this can only happen if for the
values in question the first minors of the determinant V all of them
vanish. But a point (a, 8, ¥, ), for which the minors of V all of them
vanish, is obviously a node on the symmetroid ; and it thus appecars that
therec are on the symmetroid 10 nodes, each corresponding to a linc on
the Jacobian, and that the condition for determining these is

aS+ 0T +yU+ 68V = plane-pair;

viz., tlic values of (a, f3, v, &), which satisfy this condition, belong to a
node of the symmetroid, and the line on the Jacobian is the axis of tho
plane-pair.

76. Reverting to the equation V = 0 of the symmetroid, where V is
a symmetrical detcrminant the terms of which are linear functions of
the coordinates («, 3, ¥, 9), it has already been shown, ante No. 7, that
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this is a surface with 10 nodes; but this may be also proved as follows.
Writing as before

aS+p0T++U+6V=(A,B,C,D,F,G,H, LM, NYzy,2 w)’=0,
the condition that this shall be a plane-pair implies a three-fold relation
between the coefficients A, B, &c., and the required number of nodes is
equal to the order of this three-fold relation. Establishing between the
coefficients A, B, &c., any 0 linear relations whatever, we should have
a nine-fold relation to determine the ratios of the 10 quantities; and
the number of solutions would be equal to the order of the three-fold
relations. But taking the 6 linear relations to be of the form
(A,...J 2, 1y 21, w,)* = 0, the question is in fact to find the number of
the plane-pairs which pass through 6 given points ; and this is clearly
= 10.

77. Applying the conclusion to the system of quadric surfaces
aS+BT+yU+8V = 0, we see that there are in the system 10 plane-
pairs; and that the lines of intersection, or axes of the plane-pairs, are
lines upon the Jacobian surface.

78. The equation V = 0 of the symmetroid scems to contain homo-
geneously 40 constants. But starting with any given symmetrical
determinant, we may multiply it line into line by a constant determinant,
and then column into column by the same constant determinant, in
such wise that the resulting product is still a symmetrical determinant ;
and the coefficients of the constant detcrminant may then be used to
specialise the form of the equation. The equation V=0 of the sym-
metroid thus really contains 40—16 = 24 constants; this is asg it
should be, for the symmetroid, gud quartic surface with 10 nodes, con-
tains 34—10 = 24 constants.

Symmetroid with given Nodes.

79. A symmetroid can be formed with 7 given points as nodes; but
there is no proper symmetroid with 8 given points as nodes. If we
endcavour to form such a symmetroid, we obtain a system of 2 quadric
cones, each of them passing through the 8 points; viz., these are any
2 out of the 4 quadric cones which pass through the 8 points. This
will be shown in & moment; for the complete a posteriori identification
with the decadianome, it would be necessary to show that a symmetroid
could be found having for nodes 7 given points, an 8th point anywhere
on the dianodal surface, and a 9th point anywhere on the dianodal curve;
but this I have not succeeded in cffecting.

80. We have for any node (=, 3, v, 8) of the symmetroid,
aS+pAT + yU+8V = plane-pair.
E 2

-
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If, then, 4 of the given nodes are (1,0, 0, 0), (0,1,0,0), (0,0, 1,0),
(0,0,0,1), we must have S,T, U,V each of them a plane-pair. We
may without loss of generality assume S = 2*+3* T = 2’+w*; this,
however, does not determine the signification of the coordinates
(2,9, 2,w), for S will remain unaltered if we write therein
xcos 0+y8in 6, zsin 60—y cos b for 2,y ;
and gimilarly T will remain unaltered if we write therein
2z cos 0, 4w sin 6, z sin 6,—~w cos 6, for #, w.
Hence, if we go on to assume
U=k (@@+my+az+pw) (2+my+nz4+pw),
V = &y (z+my +nz+pw) (@+my +niz+piw),
wo may imagine the 8, 6, so determined that, for instance,
: m+m’'=0, p+pi=0;
we have thus
S =24y
T= D+uw
U=k (z+my + nz+ pw) (z— my + v’z +p'w)
V= ki (z+my+nz+pw) (@+my+ns—pw);
formule which contain the 12 constants
(%, m, ny py 1y P’y Koy 10y oy 1y Y, 1),
This is right, for the symmetroid containing 24 constants, the sym-
metroid with 4 given nodes should contain (24—4.3 =) 12 constants.
And each additional given node will determine 3 constants: hence for
4 new given nodes the expressions become determinate (not of necessity
uniquely s0).

8l. But for any 4 new nodes, the cquations may be satisfied by
writing therein n=r', p= —p', m= —mj, m=mn;; viz., they then assume
the form S= 24+ y®

T= 2 +

U= (ax + ¢z2)*+ (by +dw)?

V= (az+¢%)*+ (b'y +dw)?,
containing 8 constants, which may be determined so that the nodes shall
bo the 4 given points. If now with the last mentioned values we form
tho value of aS+ BT + yU + 3V, this will consist of two terms ( # =,2)*
and ( & Qy,w)? the first of which will be a square if

(a+ya*+8a?) (B+yct+8c?)— (yac+du’c)* = 0, say thisis A =0,
and the second will be a square if
© (a+yb*+8b%) (B+yd 4 8d%) — (ybd +EU'd)* = 0, say thisis A'=0;
so that the condition

aS+AT+yU+ 0V = cone
will be satisfied if A=0, or if A’=0; that is, the equation of the sym-



1870.] Prof. Cayley on Quartic Surfaces. 53

- metroid will be AA’=0, or the symmetroid breaks up into the 2 quadric
surfaces A=0, A’=0, each of which is a cone.

- 82, It is to be further observed that, considering the first mentioned
4 points (1,0,0,0), &c., and any other 4 given points whatever, the
equation of any one of the 4 quadric cones through these 8 points will

be of the form . ( ® By, ya, aB, ad, B3, v8) = 0;

viz., any equation of this form, being a cone, will admit of being ex-
pressed, and that in one way only, in the form A=0. Consider then any
one of the 4 cones through the 8 points, and let its equdtion be thus
expressed ; we have the values of the coefficients g, ¢, ', ¢, which enter
into the expressions of S, T, U, V; and similarly, considering any other
of the 4 cones, and expressing its equation in the like form, we have
the values of the coefficients b,d, b',d’ which entet into the expressions
of §,T,T,YV.

83. If instead of taking 2 different cones through the 8 points, we
take in each case the same cone, the expressions for S,T,U,V would be

S= o + 9
T= 2 + w?
U= (az +cz)*+ (ay +cw)?
V= (aa+¢2)*+(ay+cw)?;
and we have identically
(ac'—d’c) (ad’S—ec'T)—~a'¢U+acV = 0.
This solution may be disregarded.

84. Instead of the assumption S = &*+3*, T = 2'+w’, we may take
2=0, y=0, =0, w=0 to be planes of the plane-pairs S,T,U,V re-
spectively; it is then easy to fix the remaining constants so that the
5th and 6th nodes of the symmetroid shall be given points. Suppose
that the coordinates of the 5th node are (1,1,1,1); to obtain the result
in the most simple manner, I take for the moment 3 an arbitrary quadric
function (=, y,#, w)? and I write.

S ==z(,0 + hy — g2+ aw),

T=y0—he + fz + bw),

U=132 (,Q+gz—fy +cw),

V=w(.Q—as—by—cz ),
where the coefficients are arbitrary. We have identically S+T+U+V
=2Q; wherefore the given point' (1,1,1,1) will be a node of tho sym-
metroid, if only Q=0 be a plane-pair; and it is easy to see that we may
without loss of generality take one factor to be z+y+2+4-w, and writo

Q= (z+y+z+w) (lo+my+nz+pw);

viz., @ having this value, the symmetroid, aS+ 3T+ yU 43V = cone,
will have tho 5 given nodes; the oquation contains, as it should do,
9 constants.
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85. Inn order that the symmetroid may have a 6th given node
(a1, By, 7, 6;), 1 observe that the constants can be determined so that -
a;S+ BT+, U+ 8,V shall be equal to an arbitrary quadric function, say

“IS+BIT+ 71U+ alv = (B" bv c, dr f) g hr l) m, nzzwr Y, %, 20)’;

— (& Db o dy,
(lxm)nrp) = (ﬂl’ ﬁl’-'yl’ 31) )

and then, completing the comparison,
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this in fact gives

s=={[% o [l (2+2)] 4
[Tz—g?_a_x% %I“L_;i,)] 2+ [af-la,_a,ial (%"' g,)] w}’

%h
T=y {[m"

(
A (
(
(

2f 7 b} b d
(=55 G+ [a2s ﬁl—lal (73] "’}’

- N b
ool [ (5 )]+ [ ﬁ. Ly (Zp)]se
—‘(:'-; -—- i + [Yx—al Nn— (%-*-%):l w},

a, d b
Voo [t () e [ (G2 +
ey ()l [ ]+};

viz., these values give
S+T+U+V = (z+y+2z+w) (——.r+ ) Y+ — z+%‘w)

o S+/T+yU+8V = (o, b,c,d,f, g, b, , mnY 9,2 w);

hence, taking the function (a, ... Y=, 3, 2, w)* to be a planc-pair equal
to (x+iy+jz+Akw) (2 +4y+j2+%&w) suppose, or considering the co-
efficients (a,...) as given functions of (i, j, &, %, J, £1), we have the
symmetroid having the 6 given nodes and containing the last men-
tioned 6 constants. ‘
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The Jacobian with given Lines.

86 The Jacobian contains 24 constants; obviously it is umquely deter-
mined if 4 of the plane-pairs thereof are given ; and 1t is also determined,
but not uniquely, if 6 of the lines thereof are given. We may inquire
how many given nodes of the symmetroid may be considered as corres-
ponding to given plane-pairs, or lines of the Jacobian. Take as given
any 4 nodes of the symmetroid ; the corresponding 4 plane-pairs may
be taken to be given plane-pairs; and we may besides take as given a
5th node of the symmetroid. For let the first 4 nodes of the sym-
metroid be (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1); the given
plane-pairs PiQ; =0, P,Q; =0, P,Q; =0, P4Q4 = 0 by by b)) any
system of values such that we have

LPQi+LP.Q. + LPyQs + IP,Q, = plane-pair;
and (1,1,1,1) the 5th node of the symmetroid; we have only to

assume
(Sv T) U) V) = (llPIQh lngQg, ZSPstv ldP¢Q4)'

_ 87. Suppose, however, that on the Jacobian we ‘have given, not the
4 plane-pairs, but only the 4 axes of the plane-pairs; the plane-pairs
may be taken to be

@, by, TPy, Q)? =0,......(1, b, e J P, Q)* =0,

where the 8 constants (b,, b, b, by, ¢, €5 €5y ¢,) are in the first instance
undetermined. If we attempt to find I, L, I, I, so that

L (b, adP, Q). +4 (1, 0, ¢ JP, Q)= p]a.ne-pznr of given axis,
we have between the coefficients (b, ¢) 4 equations ; and similarly, if we
attempt to find m;, m,, mg, m such that

my (1, by, e L Py, Qu)2... +m (1, by, ¢ Y Py, Qi)* = plane pair of another
given axis,

we have 4 more equations between the coefficients (b, c); viz., these
will be dctermined by the 8 equations (this is in fact the before men-
tioned property that 6 lines of the Jacobian may be taken to be given
lines). But considering only the first system of equations; in order
that to the given axis may correspond & given node on the symmetroid,
say the node (1, 1, 1, 1), we have only to write
S=1 (1,b,aJP, Q) : ... V=1L (1, by, ¢ TP, Q)

that is, we may take as given 5 nodes of the symmetroid, and the cor-
responding 5 lines of the Jacobian; the formule will contain 4 con-
stants; we may by means of them make the Jacobian have a 6th given

line, thus determining the constants; or we may make the symmetroid
bave & 6th given node, leaving in this case one constant arbitrary.
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Correspondence on the Jacobian : Lines and Skew Cubics.

88. 1 consider the correspondence of two points on the Jacobian ; it
is to be shown that when one of the points is on a line of the Jacobian,
the correspanding point will be on a skew cubic; that is, that corres-
ponding to each line of the Jacobian we have (on the Jacobian) a skew
cubic. Call the plane-pairs of the system of quadric surfaces 1,2,8...10;
selecting any 4 of these, say 1,2, 8,4, the polar planes of any point
of the Jacobian in regard to these 4 plane-pairs will meet in & point
which will be the required corresponding point. And observe that, in
regard to any one of the plane-pairs, say 1, the polar plane of a point P
is the plane through the axis harmonic to the plane through the axis
" and the point P. Hence, for a point ‘on the axis of 1, the polar plane
in regard to 1 is indeterminate ; the polar planes in regard to the
plane-pairs 2, 8, 4 respectively meet in a point which is the required
correspondmg point. 'We may for any point whatever take the polar
planes in regard to the plane-pairs 2, 3, 4 respectively, and call the in-
tersection of these planes the corresponding point ; this being so, if the
first mentioned point moves along & line, the corresponding point
moves along a curve, which is easily shown to be a skew cubic cutting
the axis of each plane-pair twice ; -that is, in regard to the plane-pairs
2, 8, 4, the locus corresponding to any line whatever is a skew cubio
cutting the axis of each pla,ne-pair twice. In particular, the corres-
ponding curve of the axis of 1, is a skew cubic cutting the axis of the
plane-pairs 2, 3, 4 each twice; but the axis of 1 does not stand in any
specml relation to the plane-pairs 2,8, 4, as distinguished from the
remaining plane-pairs 5,6...10; we have therefore the more complete
theorem, that the skew cubic cuts the axes of the plane-pairs 2, 8...10
each twice ; or, instead of the plane-pairs, speaking of theline 1, 2, 3...10,
‘we may say that corresponding to any one of the lines we have a skew
cubic meeting the other 9 lines each of them twice.

89. I stop for a moment to prove the subsidiary theorem assumed in
the foregoing demonstration. Let the 3 plane-pairs be PQ=0, RS=0,
TU=0, and let the line be that joining the points (x, o, 2, w,) and
(@, 11, 21,w,) ; the coordinates of any point in the line may be taken to
be AZo+px, Ao+ gy, AZg+ p2y, Awy+pw,; and hence for the polar
plane in regard to the plane-pair PQ=0 we have

{(Azp+ py)3, .. + Awo+pw))d,} PQ =0;
viz., this equation may be written
A (PQu+PQ)+p (PQ+P.Q) =0;
forming the like equations in regard to the other 2 plane-pairs respec-
tively, and eliminating A, u, we obtain for the required locus
u PQ,+PQ, RS+R,S, TU,+T,U | =0,
POIPO, RS4RS, TU4TU |
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s skew cubic; and on writing herein P=0, Q=0, the equations

become

RS,+R,S, TU,+T,U

RS, +R,;S, TU,+T,U
viz., the line (P=0, Q=0) meets the skew cubic in the points where the
lme meets the quadric surface determmed by this last equation, that is,
in 2 points.

90. We have thus on the Jacobian the 10 lines 1,2, ... 9,10, and
corresponding thereto respectively the 10 skew cubics 1, 2,...9, 10,
where each line meets twice each of the skew cunbics except that de-
noted by the same number; a relation similar to that which exists
between the lines 1,2,8,4,5,6 and 1,2, 8,4/, 5, 6, which compose a
double-sixer on a cubic Surfa.ce
_ Suppose that there are given on the Jacobian the lines 1,2, 8,4, 5,6 ;
meeting each of these twice, we have the skew cubics 7/, 8, 9,10’; and
then

v ' g, 9,10

.8 . . 9,10, 7

the lines 9 meet twice each of the cubics 0 7 8§
10 7, 8 ¢

8o that the determination of the remaining 4 lines depends upon that
of the skew cubics 7', 8, 9, 10, which meet each of the given lines twice.

91. To determine a skew cubic cutting twice each of 6 given lines, I
proceed as- follows. ~Let the lines be 1,2,8,4,5,6; take U=0 the
general quadric surface through the lines 1 and 2, V=0 the general
quadric surface through the lines 1,3 (the equations contain each of
them homogeneously 4 constants). The 2 surfaces intersect in the line
1, and in a skew cubic cutting twice each of the lines 1,2,8; we have
therefore to determine the constants so that the 2 surfa.ces may meeb
the line 4 in the same 2 points, the line 5 in the same 2 points, the line
6 in the same 2 points. Imagine for & moment the equations of any
one of the lines 4, 5, 6 to be 2=0, w=0 ; the equations of the 2 surfaces,
substituting therein these values, would assume the forms

(@b, clmy) =0, (¢,¥,¢'Ya,y)' =0;

and the conditions for the intersection in the same 2 points would be
% = bk = c_o” =p suppose. This is in fact the form of the conditions,
understanding a, b, ¢ to be linear functions of the coefficients of U, and
a, V', ¢’ to be linear functions of the coeflicients of V. 'We have in this
manner 3 sets of equations involving respectively the indeterminate
quantities p, g,7; viz., these may be represented by
a=pa, b=p¥, c=pc’; d=gqd, e=q€, f=qf; g=rg, h=rk, i=r';
where the unaccented letters a,b...¢ are linear functions of the co-
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efficients of U, and the accented letters o, ¥'... ¢ ‘linear functions of the
coefficients of V. Eliminating the coeflicients of U, V, we have between
2, ¢, 7 a twofold relation, which may be represented as follows:

111111111 =0,
111111111
111111111
111111111
pppgggrerr
pPpPgggrTTY
pppgggrrr
pPPgggrITTY

it being understood that the 1's represent constants, and the p’s, ¢'s,
and #'s linear functions of these variables respectively. The several
equations of the system, regarding therein p, g, as coordinates, represent
each of them a quartic curve; any 2 of these intersect in 16 points;
but the number of points common to all the curves is = 10. But each
of the curves passes through the 8 points (1,0,0), (0,1,0), (0,0,1);
these are consequently included among the 10 points, but they do not
give a proper solution of the question; and the number of solutions is
thus reduced to 10—8 =7. There is yet another solution to be re-
jected; viz., U=0 being a quadric surface through the lines 1, 2, and
V=0 the quadric surface through the lines 1,3, it is possible to de-
termine the coefficients of U,V so that each of these surfaces shall be
the quadric surface through the lines 1, 2, 3; and if we then have iden-
tically U=0V, it is clear that corresponding values of p,g,» are
p=q=r (=0). We have thus the point p=¢=r common to all the
curves of the system ; this solution counts, I believe, once only, and the
number of relevant solutions is 7—1 =6.

99. Tt may be observed, in regard to thé foregoing solution, that if
wo take 123 =0 as the equation of the quadric surface through the
lines 1, 2, 3, and so in other cases, then the equation of the surfaces
U=0 and V=0 may be taken to be

A 128 4. 124+ .1254p 126 =0,
N.1324 4. 134 ++'. 135+ 0. 136 = 0,

respectively, the coefficients of the two surfaces being here put in evi-
dence. And it is clear that for pu=v=p=0, p'=+'=p'=0, the sur-
faces become each of them the surface through the lines 1, 2, 8.

93. The conclusion is, that touching twice each of the six lines
1, 2, 8, 4, 5, 6, we have six skew cubics; it would appear that any four
of these may be taken for the skew cumbics 7/, 8',9’, 10" (so that there
are 15 such tetrads of cubics). I am not, however, able to verify that
we then have the rcmaining 4 lines each cutting twice 3 of the
4 skew cubics; assuming that for each system of 4 skew cubics there
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is one, and only one, such*system of lines, then of course to the given
system of lines 1, 2, 8, 4, 5, 6, there will belong 15 systems of lines
7, 8,9, 10, and therefore also 15 Jacobian surfaces.

Further Investigations as to the Jacobian, &ec.
94. Taking (£, n, ¢, w) as plane-coordinates, two quadric surfaces
(a" b,‘cj d’f’ 9 h, l’ m, 'R‘I E: ¢, “')2 =0
and (4,B,C,D,F, G,H, L, M)le) Yz, w)*=0
are said to be interverts (or interverse) one of the other, when we have
between the coefficients the relation
(a,b,0,d,f,9,h, 1, m,2n YA, BCD,F,GHLMN) =0,
that is, aA+...+2fF+... =0.
The condition that the two surfaces may be interverts of each other
is linear in regard to the coefficients of each surface separately ; hence,
using & before explained locution, we may say—interverse to a given
quadric surface we have 9 quadrics; interverse to two given quadrics
8 quadrics; or generally, that interverse to % given quadrics we have
10—k quadrics. And, moreover, if the quadrics. of the two systems
be L=0, M=0, &c., and 8=0, T=0, U=0, &c., then every quadric
AL+uM+ .,.=0 is interverse to each of the quadrics aS+8T+
'yU+... = 0.

If the quadric (a,... 3£ n, ¢, w)*= 0 be an .intervert of the plane-

pair (lz+my+nz+pw{le+m'y+n2+pw) =0, the condition ig
(a,... 4L m,npYl,m, n, p’) = 0;

viz., this expresses that the two planes are harmonics in regard to the

pair of planes dvawn through the axis of the plane-pair to touch the

quadric surface ; or say, that the plane-pair is harmonic in regard to

the quadric,

95. To apply this to the Jacobian surface, I recall that, starting
with the given guadric surfaces 8S=0, T=0, U=0, V=0, and taking -
(a, B, , &) to be such that

- aS+fAT+yU+8V = plane-pair,
there are 10 such plane-pairs, and that the axes of these are the lines
of the Jacobian. If instead of the given quadric surfaces, we consider
the 6 interverse surfaces (a,, .. 3¢, m §, w)? =0, ...(ag,... 75 n, ¢, w)? =0,
then the condition is that the plane-pair shall be harmonic in regard
to cach of these surfaccs. Let the quadric surfaces be called 1, 2, 3,
4, 5, 6 ; then, attending to any three of these, say 1, 2, 8, the plane-pair
is harmonic in regard to these three surfaces. Throngh the axis of the
plane-pair. draw tangent planes to 1, 2, and 3 respcctively ; each of
these pairs of planes is harmonic in regard to the planes of the plane-
pair; that is, the threc pairs of tangent plancs are in involation ; or, as
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we may also express it, the axis is (quoad its planes) in involution in
regard to the three quadric surfaces. Conversely, when the axis is thus
in involution in regard to the surfaces 1, 2, and 8, we may by means of
the surfaces 1 and 2 determine the two planes of the plane-pair, and
then these will be harmonics in regard to the surface 3. It thus
appears that the axis is given as a line which is (quoad its planes) in
involution in regard to the surfaces 1, 2, 3, to the surfaces 1, 2, 4,
the surfaces 1, 2, 5, and the surfaces 1, 2, 6, respectively ; or, as we
may express it, as & line which is (quoad its planes) in involution in
regard to the surfaces 1, 2, 3, 4, 5, 6.

96. It is substantially the same thing, but it is rather easier, to
consider the whole question under the reciprocal form ; viz., instead of
& plane-pair and a quadric surface represented by an equation in plane-
coordinates, to take a point-pair and a quadric surface represented by
an equation in point-coordinates; we have thus a line which is (quoad
its points) in involution in regard to three given quadric surfaces, or
as we may more simply express i, which cuts in involution the three
given surfaces ; and we thus arrive at the problem of finding & line
which cuts in involution six given quadric surfaces ; viz., this is equi-
valent to the above problem where the line has-to satisfy (quoad its
planes) the like condition ; and in each problem the number of solutions
should be = 10.

97. Consider a line which cuts in involution the three given surfaces
(ay, . I”) ¥z, w) =0, (a, ...Iib, ¥5w) =0, (a,.. ‘Izv Y, 3, w)* =0.
I will presently show that this implies a cubic relation ( # {a, b, ¢,
f, g, h)® between the six coordinates of the line. But assuming it for
the moment, suppose that the line cuts.in involution the three surfaces
and a fourth quadric surface (ay, ... § ¢, v, 2z, w)’ = 0. Considering the
line as cutting in involution the surfaces 1, 2, 4, we have between the
six coordinates a second cubic relation ; there is, however, a reduction,
and the order of the resulting two-fold relation between the coordinates
i8 8.83—4 =25, To explain this, observe that every line which cuats in
the same two points the surfaces 1 and 2 respectively (that is, which
cuts the curve of intersection twice) will in an improper sense cut in
involution the surfaces 1,2, 3, and also the surfaces 1, 2, 4. There is
thus a reduction equal to the order in the six coordinates of the two-
fold relation which expresses that the line cuts twice the curve of
interscction of the surfaces 1 and 2. Join hercto the relations that the
line meets each of two given lines; the coordinates of the line are
determined by the twofold relution (say its order is = A) two linear
equations, and the universal equation af+bg+ch = 0; the number of
solutions is = 2\, But the number of solutions is equal to that of the
‘lines which meet the quadriquadric curve of intersection twice, and
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meet also each of two given lines; or what is the same thing, it is
equal to the order of the scroll generated by the lines which meet the
curve twice, and also a given line. We have for the curve of inter-
section (m the order, h the number of apparent double points) m == 4,
L = 2; whence order of the scroll is 244 4,3 = 8; that is, 2\ = §,
or A = 4, which is the required reduction.

98. If the line cut in involution 5 given quadric surfaces [say the
5th surface is (as, ... 2,9, 2 w)* = 0] ; then we have between the 6
coordinates a three-fold relation, the order of which is 3'5—reduction.
This should be =10, and consequently the reduction =5; for admit-
ting the value to be 10, the order (in the ordinary sense) of the scroll
generated by the lines which cut in involution the 5 given quadrics
should be =20; and conversely. But the value 20 may be verified
without difficulty. For the questlon may be transformed as follows :—
If & point-pair be harmonic in regard to each of 5 given quadrics, how
ma.ny of the axes (or lines through the 2 points of a point-pair) cut a
given line. Take (z,y, 2, w), (¢, y,#,w") as the coordinates of the 2
points of a point-pair; the harmonic condition in regard to a quadric
surface U=0is 29, U+y5,U++6,U+w'6,U = 0 [where U is regarded
as a function of the («, y, #, w) belonging to a point of the point-pair] ;
the condition for the intersection with a given line is a lineolinear
equation in the coordinates (2,%,z, w) and (&, 7, w’), or say it is
Lo’ + My’ + N2 +Pw’ = 0, where L, M, N, P are linear functions of the
goordinates; we have thence for (z,y,z, w) the three-fold relation

L, 4.0, ¢é.U, BU,, 3.0, .U || =0,
M 35U,
N, 5 0,
P, é,U,
which denotes a system of } 6.5 .4 =20 points.

" It would scem that if the line cuts in involution 6 given quadrics,
there should be between the 6 coordinates a four-fold relation of the
order $10=>5; this would imply a reduction 25, viz. we should have
5= 3 10—25. I do not understand this, and I drop the question.

99. T return to the question to find the relation between the coordi-
nates (a, b, ¢, f, g, h) of a line which cuts in involution the 3 quadric
surfaces
(ah bh C1y dhfh 9 hl, ll; my, nlva yv'”’ 10)’ = Or (a?: ver Izs Y % w)‘l = 01

(a...§=,9,2,w)*=0.
Writing down any two of the equations of the line, for instance
hy —gz+aw =0,
—hbhz +fz:+bw=0,
if we substitute the values of (, y) in the equation of the first surface,
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it becomes (ay, .. Y fz+bw, gz—aw, hz, hw)* =0
or if we.write for shortness
=(f, gho),
.. = (b, —8, 0, h),
then the equation, is
@y ... GO 22 42(ay, ... QALY . 2w+ (ay, w I w =0,
and forming the like equations for the other two surfaces, the condition
of involution is at once found to be
(@ o JIP, (e YR, (o, ) | =
(@ XD (@ - LA, (a, .. JI)?
(aa; ---In)’s (aSr "'IHIHI)’ (aay -‘-Inl)’

100. 1t is convenient, in working this out, to consider II, IT' as stand-
ing, in the first instance, for (z,y,2,w), (¢,y, 7, w’), these symbols
being ultimately replaced by the above-mentioned values. Writing
also, for shortness, (abc) to denote the determinant a, (b,e5—bye,) + &c.,
and so in other cases, it-is at once seen that the fanction on the right-
hand side is a sum of such determinants each into & proper factor, con-
taining the coordinates (a, b, c, f, g, h), originally in the order 6, but
where each term contains the factor h’; which may be omitted; or
finally the result is of the order 3.in the coordinates. Thus we have 9

. term (abe) | &, z¥, &
' v 99, ¥°

2, zz’, 23

where the second factor is
‘s (i — y2) + 57 (e — )+ 22y (ay' — 2y), =222y (xy’ —xJ),
= h*(—ab) (—af—bg), = —abek’,
or, omitting the factor —h?® the term is (abc) abe.

101. There are in all 120 terms, but 16 of these are found to vanish
(viz., these are the terms in agh, blf, cfg; akl, bfm, cgn; agl, bhm, cfn;
dmn, dnl, dlm ; fgn, ghl, hfm). The final rcsult contains therefore 104
terms; viz., as a further abbreviation writing abc &c., instead of (alc)
&ec., to denote the above-mentioned dctex'minants, the equation is

abe . abc—bed . agh—cad . bhf—abd . cfg
+bef .a® +cag.b® +abh.c® +adl .f* +bdm. g’+cdn hs
+abn . c (bg—af) + adf.f (ch—bg)
+bcl .a(ch—bg) + bdy.g (af —ch)
+cam.b (af —ch) + cdh.h (bg—af)
—beg .a'b —beh . a%c +bem . a’g —len . a’h
—cak .b’e —caf . b% +can .bh —cal . b
—abf .c'a —abg .c’b +abl . —alm. c’g
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—adg .bf* +adk . cf* +adm.f’g +adn .f*h
—Udh .cg’ +bdf .ag*+bdn .g*h+0bdl .g*f
—cdf .ab®4edy .bhP4cdl .hf +edm  hig

afy .Ye —afh .be? +afl .bef —afin . Ph—afn . blg
+23 +bgh .cfa —bgf .ca’ +bym.cag—byl .a¥ —byl .c*h }
+ckf .a'b —chg .ab® +chn .abh—chm . b*g —chm .a*f

agm . bef —agn . bf —ahm.f +aln . bef
+ 2{+bhn .cag —Ufl .c*g —bfn .o’g +b71 . cag}

+¢fl .abh—clkm .a’h —cyl .b°h +cgm . abh

—amn.af? —anl .bf* —aln .cf? +dfy .ch?
+24—bnl .bg®—Ullm .cg® —bmn.ag® +dgh .af* }
—clm .ch® —cmn .ah® —cnl . bh* +dLf .bg
—dft .fgh—dfin .g’h —dfu .gh®
+2 {—dgm fgh—dgn .B’f —dgl . hf‘}
—dhn . fgh—dkl . f'g —dkm . fg?
—4fgh . abe
¢ fokb .bch—fym .ach—fmn .agh—ful .bgh—fln .cgh
+4 { +glom . caf —ghn .baf —gnl .bhf —gln .chf —gnm.a.hf} =0
+Lfn .abg—1fl .cbg—Lim .cfg —hmn.afg —hul .big

And observe, by what precedes, this triple system of lines contains
each of the following double systems: viz., the lines which meet the
quadriquadric curve (2, 3) twice, those which meet the curve (3, 1)
twice, those which meet the curve (1, 2) twice.

Persymanctrical Oase : the Hesstan of a Culbic.
102. Reverting to the general equation

aS+ 1+ yU+8V = cone, )
which connects the symmetroid and Jacobian, it is evident that if
S, T, U,V are the derivatives, in regard to the coordinates, of a singlo
cubic function U, = (* [, 3,2 w)° then the symmetroid and the
Jucobian become one and the same surface; viz., this is the Hessian
surfaco H=0 derived from the given cubic surface. The two corre-
sponding points on the symmetroid and tho Jacobian respectively, and
the two corvesponding points on the Jacobian, become one and the
same pair of corresponding points on the Hessian § viz., either of these
points is such that its first polar surface in regard to, the cubic is a
quadric cone having for its vertex the other correspondiug point,  And
the Hessian swrface unites the propertics of the Jacobian and the sym-
nictroid, viz. it has 10 nodes and 10 lines. It is, in fuct, known that
there ave five plancs such that the intersection of every two of them is
a line on the Hessian surface, and the intersection of every three of
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them a node on the surface; viz., if the equations of the five planes
are 2=0, y=0, =0, w=0, u=0, then the equation of the Hessian

surface is ayzwu (g +-If+9+5l +f) =0,
2y z w wu

a form which puts in evidence the properties just referred to.

Quaxrtics with 11 or more Nodes.

103. I mention two results which, although they relate to quadric
surfaces with more than 10 nodes, present themselves in such .im-
mediato connexion with the present Memoir, that it is natural to speak
of them. If, in the equation

A H, G,

H, B F

G, F C

L, M, N’
of the symmetroid (A, B, ... linear functions of the coordinates), we
have identically A=0, then the surface has evidently a node H=0,
G=0, L=0; viz., this is a node in addition to tho usunal 10 nodes, or
the surfaco has in all 11 nodes. And so also if (identically in every
case) B is =0, there are 12 nodes; if C is =0, there are 13 nodes; and
if D is =0, there are 14 nodes. These are, in fact, quartic surfaces
with 11, 12, 13, and 14 nodes respectively, mentioned in Kummer's
Memoir.

104. We may consider the symmetroid derived from the quadric
surfaces which pass through 6 given points; viz., taking as before (see
No. 25) the coordinates of the 6 points to be (1,0, 0,0), (0,1,0,0),
,0,1,0), (9,0,0,1), (1,1,1,1), (a,f,v,0), and (a,d,c,f,g,) as the
coordinates of the line joining the last-mentioned two points; and, to
avoid confusion, taking for the present purpose (X, Y, Z, W) instead of
(a, B, v, &) for the coordinates of a point on the symmetroid, the equa-
tion is obtained by arranging in the form of a determinant the cocffi-
cients of the quadric form

Xz ( hy — gz+aw)
+Yy (—hx + fa +bw)
+Zz: ( gx— fy +cw)
+W (aayz+bBzz+eyay);

viz., the equation in question is

y R X—Y+eyW, gZ-X+08W, oX |=0;

=0

-
-

-
-

L
M
N
D

hX-Y+eyVW, . , [Y—Z+aaW, VY
gZ-X+VBW, fY—Z+aaW, . , ¢Z
aX , bY , cZ .
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or, as it may be more simply written,

VX {f(Y=Z)+aaW| + VY {9 (Z=X) +bAW]
+ VZ{h(X=Y)+cyW} =0.

This is, in fact, a surface with 16 nodes. It would appear additional
nodes correspond to the six common intersections of the quadric sur-
faces, or nodes of the Jacobian ; and it would seem that for four quadric
surfaces having in common 1, 2, 3, 4, 5, or 6 points, the corresponding
symmetroid.would have 11, 12, 13, 14, 15, or 16 nodes. But I reserve
this for future consideration.

I take the opportunity of mentioning some results which have a
connexion, although not an immediate one, with the subject of the
present Memoir.

Quadric Surfuce through three given Lines.

-105. To find the equation to the quadric surface through the threo
lines (ah by, Cyy f;y g ]‘l)v ("’2, by, ¢, fb T2 I“l), (a-‘h by, ¢, f;» 3y ]‘3)' Take
on one of the lines the points (a, B3, y, 8) and (', 3, ¥/, &) ; then the
equation of a quadric surface through this line will be of the form

2y 2w oy 28 ay 2 yw 2w =0

@ B Y & By ya aj3 ad B vé
2ad’ 233 2yy 260" By + By yo'+¥'a af + a3 a& +a’d o'+ y&+y5 |
«? B 2 BY yd af a’d 3 ¥'¢

and if we form thus a determinant with three of its lines relating to the
line 1, three of them to the line 2, and three to the line 3, we have the
equation of the quadric surface through the three lines. But con-
sidering in the doterminant the three lines which refer to the line 1, it
is clear that the determinant is a function of the order 3 of the coordi-
nates (ay, by, ¢, fi, 91, In) of the line in question ; and the like as regards
the other two lines respectively. Now observe that if two of the lines
intersect, the problem becomes indeterminate (in fact, the plane of tho
intersecting lines, .and any plane whatever through the third line,
constitute a solution); the condition for the interscction of the lines 1
and 2 is afy+ ayfi + 0192+ bagi + ek + ¢y = 0; hence, if this condition
be satisfied, the determinant must vanish; it thereforo divides by the
factor a,f;+ &e. ; but, similarly, it divides by the factors a,f,+ &ec. aud
ayfy+&c.; and throwing out the three factors, tho result should be of
the order 1, that is linear, in regard to the three scts of coordinates
respectively. I have obtained this reduced result in my * Memoir on
the Six Coordinates of a Line” (Camd. Phi. Trans., t. xi., 1869,
VOL. 11l No. 25. ¥ '
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p- 811); viz., writing («be) to denoto the determinant a, (b,e;—bye,) + &c.,
and so for the other like determinants, the result is

- (agh) &+ (V) 9+ (ofy) #+ (abo) !
+ [(abg) = (eal)] 2w + [ (W) + (clf)] g
+ [(bek) — (abf)] yw + [(cgh) + (afy)]
+ [(etf)—(beg)] mo + [(alf) +(byh)] oy = O.

Condition that five given lines may lic in a Cubic Surface.

106. Ta,king the lincs to be (a'l) bl, C)y ﬁ, [T kl)’ wene (a,,, bg, Csy ﬂ, sy 705),
and (a, B, v, 9), (o', B, ¥, &) the coordinates of any two points on one
of the lines, the equation of & cubic surface through this line would be

2 ... Zy xyz veeeee | =03
o a3 aly '
3a’a 2aa’} +a* dfy +affy +afly
3au? 2aa’f}' + a8 aff v +aBy +af¥y
a”® a?y df+
and hence it at once appears that, forming a determinant of 20 lines,
wherein four lines relate to the line 1, four to the line 2, ......, four to

the line 5, and equating this to zcro, we have the required condition.
But the condition so obtained is of the order (34.8 =) 6 in regard to
the coordinates of cach line ; and, as for tho quadric, it is satisfied identi-
cally if we have any such equation as a,f,+&c. = 0; it consequently
contains the several factors a,f,+ &c., which can bo formed with the
coordinates of any two of the five lines; and throwing out these factors,
the condition should be of the order 2 in regard to the coordinatos of
cach line. Wo in fact know that the required relation between the five
lines is that they shall all of them be cut by a sixth line ; and moreover

o fit ayfy+ b, g+ by + ey + ek = 12, &e.,  then that

the condition for this is

that, writing

., 12, 13,
2l, ., 23, 24, 25
31, 32, ., 34, 35
41, 42,.43, ., 45
51, 52, 53, 54, .

14, 15 [ = 0,

heing, as it should be, of tho order  in regard to the coordinates of
cach line. i
Condition thuat 7 given lines shall lie on a Quartic Susfuce.

107. Tuking the lines to Le (ay, by, e, 1y g1y 1) ... (ag, sy €1, oy G2y 12,y
then in precisely the sumo way we form a determinant of the order
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+5.4=)10 in regard to the coordinates of each line; this determi-

nant however divides out by the several factors a,f;+ &c., which can
be formed with the seven lines; or throwing these out and equating
the quotient to zero, we have an eguation of the order 4 in regard to
the coordinates of each line. It would not bo practicable to obtain the
reduced equation in this manner, and I do not know how to obtain it
otherwise, but the material conclusion is that the order is = 4.

" The Jacobian of 6 points.

108. Any 6 points' whatever may he regarded as points on a skew
cubic ; and the coordinates (z, g, z,w) may be taken so that the equa-
Ty Y, %
Yy 2y W
ordinates of the 6 given points may be taken to be (1,%,4%¢°) ...
(1, &, t% ) ; and the equation of the Jacobian surface of the G points
can then be expressed in a very simple form, putting in evidence tho
passage of the surface through the skew cubic; viz. writing
D=2, p; = By, py = Tty po=Bhibly, ps= Shbllls, ps = bbbl
moreover,

tions of the skew cubic shall be = 0. This being so, the co-

O = § (6zyzw — 42z’ — dy'w + 3y’'—2*w?),
and therefore 0.0 = —zu?—2 +3yzw
3,0 = 3ys—06y'w+ 3zaw
5,00 = 8y*z—6x2" + 3y
0,0 = —2’w—2* +3ayz;
then the equation of the Jacobian surface is

3 (ap, + zp—2w) é.0
+ ( Qap,~wpy) 6,0
+  ( =ps—2yp, ) &0
+8 Qape— yps —wp,) &,0 =0,

There is not much difficulty in the direct investigation; but a simple
verification may be obtained by showing that the surface contains upon
it the 15 lines 12,18, ... 56.  Write in the equation

@, y,2,w)-= (A4p, As+ pt, As*+ul, AP+ ul?),
tho values é,0 &c. are found to contain the factor Au (s—t)% and
omitting this common factor the values are as

3O =), — (W =), (s—pud), — Ap)
the equation thus hecomes
IN(—28 4+ &m+ ) + (=20 + Epit p)! (A=l
— A (= ;2 )+ p (= Op 20, ) (A —pf?)
+{AN(=2p0+ ps ) tr(=2pi+ ps ) (s —pt)
— (A (= pi— s +2p0) +u (= OP°— tps +2p)} (A —p )=0,
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viz., collecting the terms, the coefficient of Au vanishes, and the
whole is

—an (1: Py P2y Psy Py Pss PGIS; - l)ﬂ

+24* (1, py, o, Pon P P pelty —1)° =0;
viz., this equation is satisfied if s denote any onme of the quantities
(t, ty b, 4, 15, 1), and ¢ any one of the same 6 quantities; that is, the
equation of the surface is satisfied when (z, y, 2, w) ave the coordinates
of a point on the line joining any 2 of the 6 points.

Locus of the vertex of a Quadric Cone which touches each of Six

given Lines.

109. Representing as before each line by means of its six coordinates,
let (z,y,2,w) be the coordinates of the vertex, and (X, Y, Z, W) current
coordinates. Sappose that (a,Dd,c,f,g,) are the coordinates of any
one of the lines, the equation of the plane through this line and the
vertex is a(eW —wX) +b (yW—wY) +c (+W —wZ)

+f(yd — 2Y ) +g (¢ X —2Z ) +h(2Y -yX) = 0;

or what is the samo thing, writing for shortness

P= . hy—gztaw

Q= —hz .+frt+dw

R= ga—fy .+ow

S = —ax—by—cz
the equation is PX+QY+RZ+SW =0.
The plane in question is a tangent plane to tho cone touched by the
G lines. Now when G planes touch a quadric cone, their traces on any
planc whatever touch a conic the interscetion of the cone by that plane.
Hence taking tho plane W =0, the equation of the trace is

PX+QY+RZ =0,
and forming in like manner the equations belonging to each of the
given lines, the condition that the G traces may touch a conic is

(P, Q4 R, QR, RP, PQ) =0,
whero the left hand side represents a determinnnt of 6 lincs, the several
lines being respectively i, Qi, R;, QR, RP, P,Q;; P;, &c.... Or
more simply we may denote the equation by
: [(P,Q,R)]=0.
To ascertain.the form of this, write for a moment y=0, #=0; the
equation i8 [(arw,— ks +bw, ga+cw)?] =0,
or attending only to the highest and lowest powers of w, this is
w"[(a,b,¢)*] ... +w'2®[(a,—1,9)*] = 0; .

and it is thence easy to infer that the whole equation divides by w!;
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go that, omitting this factor, the form of the equation is’

. ((@y b, 0,1, 9, 2)* Y0, 8,2,w)* =03
viz., the equation is of the order 8in the coordinates (z,Y,2,w), and of
the degree 2 in the coordinates (a, b, c,f, g, k) of each of the lines. It
would not be very difficult to actnally develope the equation ; in fact,
starting from the term w®[(a,b,c)’] the other terms are obtained

therefrom b.y.r changing a, b, ¢ into a + %}—.(hy—gz), b+ % (—hz+f2),
¢+ —:-l— (gz—fy) respectively ; the equation may therefore be written in
the symbohc form

. exp. = { (hy —g2)au + (— T+ )+ (ga—fpR} . [(a,B,0)] =0,
or what is the same thing

. oxp. L {90~ 1) + YW~ ) +3(ls—gA)} - (@, )] =0,

where exp. 6 (read exponential) denotes ¢', and [(r, b, c)?] represents a
determinant as above explained. The equation contains, it is clear, the
four terms. :
2[(a,—h 9)* 1+ 5" [ (—1, 8, —f)]+2L(—3./, "] + [ (a, b, ©)*).
I am not sure whether this surface of the eighth order bas been any”
where considered.

Mr. J. J. Walker next communicated a Noto on his paper read at the
January Mecting of the Socicty.

On Conditions for, and Equations of, Corresponding Points in
certain Involutions. DBy J. J. WALKER.

The principal points discussed in the following short paper are :

1. The condition to be satisfied in order that a given binary quadric
should determine two corresponding points in one of the three invo-
lutions determined by a quartic; from which condition is deduced the
cubic giving the three points corresponding to an assigned one in each
of those involutions respectively, the scxtic determining their double
points, and the cubic of centres:

2. The corresponding questions when the three involutions are deter-
mined by two quadrics instead of one quartic—any previdusly published
discussion of which case, as far as I am aware, having been confined to
the particular instance in which the roots of each quadric correspond,
Ieaving unconsidered those in which a root of one corresponds toa root
of the other:





