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ON THE GEOMETRICAL INTERPRETATION OF APOLAR
BINARY FORMS

By C. F. RUSSELL.

[Received April 24th, 1906.— Read April 26th, 1906.]

1. Binary algebraic forms are usually represented geometrically by
sets of points; of the three methods explained in Grace and Young's
Algebra of Invariants, according to which the symbolical expression a£
is represented by n points (i) in a straight line, (ii) on a conic, (iii) in
the Argand diagram, the first two only are employed in this paper. It
will be assumed that the coefficients in the binary forms considered are
real, so that imaginary roots of the equation an

f = 0 will occur, if at all,
in conjugate pairs. The second method of interpretation is thus always
possible; the first is possible only when there are no imaginary roots.

It is well known that, if two harmonic (i.e., apolar) quadratics are thus
represented, the construction for obtaining the fourth point when three
are given is linear. In this paper, I prove a similar property for any two
apolar forms of the same order.

2. If the form an
r be represented by the points Av A^, ..., An, and

(xy) be the point P, then the first polar form a"~1ay will be represented
by n— 1 points which I shall call the polar (n—1)-points of P for
Av A2, ..., A,,; since the number of the points is more important than
the order of the polar form (the first). Similarly, a^~2a2 will be repre-
sented by the polar (n—2)-points of P; and so on. This nomenclature
serves also to avoid confusion with the polar lines, conies, &c, of a point
with respect to curves, which will sometimes occur in the work.

The principle on which the method of this paper depends is most
easily expressed symbolically : if a™ and hn

x cx are apolar n-ic8, then
{ac)an

x~
l and hl~x are apolar (n—l)-ics. This exhibits the connection

between polar and apolar forms.

3. Let a range of n points, representing a form a" according to the
first method, be regarded as the intersections of the line with a plane
n-ic curve. Then, if P, another point on the line, be defined by {xy)f
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the line will meet the first, second, ..., polar curves of P in the (n— 1)-
points, (n—2)-points, ..., of P for the range.

This furnishes a method of constructing Plf the polar 1-point of a
point P for a given triad Alf Ait As. For, if we draw through Alt A2, A3,
the special cubic curve consisting of three straight lines which form a
triangle LMN, the polar line of P with respect to this triangle will pass
through Pv

The problem of finding the polar 2-points, Qv Q2, of P for the triad
is really the converse of this. For P is the polar 1-point for the triad
of each of the points Qu Q2. If therefore we draw two or more lines
through P and find the poles Bv B2, ..., of each of these lines with
respect to the triangle LMN, all these points B must lie on the polar
conic of P for the triangle, and hence the required points Qlf Q2 are the
intersections of the line AlA2As with a conic circumscribing LMN, of
which any number of points can be obtained.

Now let P, Q, B be a triad of points which is apolar to the triad
Ax, A2, A3, and let P, Q be given while B is to be constructed. We
know that Q and B will be harmonically conjugate with respect to Qlf Q2;
i.e., the polar line of Q for the conic-locus of the points B will pass
through B. And this polar line of Q can be linearly constructed, although
the points Qx, Q2 cannot themselves be obtained except by a construction
of the second degree.

4. Throughout the rest of this paper I use the second method of inter-
pretation ; and by the polar line of a point, or the pole of a straight line,
I shall always mean the polar or pole with regard to the fundamental
conic; whenever I have occasion to refer to the polar line of a point with
respect to a triangle this will be specially stated.

Any quadratic form a?, interpreted by two points on the conic,
determines a straight line, i.e., the line joining these points; and hence
determines also a point in the plane of the conic, i.e., the pole of this line.
This single point can be linearly constructed, and upon it depends the
construction in the harmonic case of two quadratics.

In considering the cubic, I shall first suppose that the roots of the
equation a\ = 0 are xjx2 = 0, 1, and oo, so that

3 2 2
CLx — X\ X2~~

Let the points representing the form be Pv P2, P3, and let the point Q
represent any linear form (xy), for which the ratio xjx2 = X.

Then we may easily obtain the following results : for Q', the polar
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1-point of Q for the triad, given by axay = 0, the ratio

*i _ X(2-X) m

x2 ~~ 2X-1 '

for Q, the harmonic conjugate of Q with respect to the Hessian points
(for brevity, the H-points) of a\, the ratio

£ L = X—2 .
x2 ~ 2 X - 1 '

for g2, the harmonic conjugate of Q with respect to Pv P3, the ratio

%ll%2 = X.

Hence we have

and, since any three points can be projected into any other three points,
this result must hold for the general cubic.

Applying this result to the present case, we are concerned first with
the H-points.

Let all the roots of the cubic be real, and let az
x = axfixyx, where ax

is represented by Pv fix by P2, and yx by P3.
Then the H-points are imaginary, and the pole I of the line joining

them is within the conic.
To construct the point I [see Algebra of Invariants, Ex. (i.), p- 240],

join Px to the pole of the line P2P3, P2 to the pole of P3Pi, and P3 to the
pole of P iP 2 : the joining lines will be concurrent in I.

Next join QI, and produce to meet the conic, obtaining the point Q,
and join Q to the pole of PiP3, the line meeting the conic again in q2.

Then the result (1) furnishes the following construction:—Let Qq2

meet PXPS in M; then P2M will meet the conic again in Q', the required
polar 1-point of Q.

There is thus obtained an easy line construction for the point Q' (see
Fig. 1).

The point arrived at must be the same whether we take, in our con-
struction, the points Pv P3, or either of the two other pairs of the triad,
Plt P2 and P3, P3. We have thus the geometrical theorem that the line
MP2 and the two other lines LPX, NPa, obtained similarly, are concurrent
in a point on the conic.

In the figure the point Q' is obtained in the three possible ways, the
same position being found each time. It is therefore to be noticed that
the actual process of finding Q' is very much simpler than appears from
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the complicated figure. It will be seen that for practical convenience it is
desirable to select for the construction that pair of the points Pv P2, P3

which are both on the same side of the line QIQ.

FIG. 1.

5. This geometrical theorem can be extended indefinitely. For the
point qx is given by fiyyx-\-ftxyy, and therefore the triad qlt q2, q3 is
given by a cubic which is

= 9aiaybxb'y—axby-

The polar 1-point of Q with respect to this triad is given by axa?y, and is
therefore the point Q'.

Hence in the figure we should arrive at the same point Q' if, instead
of the triad Pv P2, P3, we took the triad qlt q2, q3; and therefore also if
we took the triad obtained from qv q2, q3 in the same way as the triad
qv q2, qa is obtained from Pv P2, P 3 ; and so on.
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6. If Qv Q2 are the polar 2-points of Q for the triad Plt P2» Ps> we
know that Qv Q2 are harmonically conjugate to Q, Q'; and they are so
also with respect to the H-points.

Therefore the line TI, where T is the pole of QQ', will meet the conic
in Q1 and Q2; and these points can therefore be constructed.

The pole K of the line QiQ^ is the intersection of the line QQ' with
the Hessian line; and, if any line whatever be drawn through K, meeting
the conic in B and S, then the triad Q, B, S is apolar to the triad

If the points Q, B are given, and S is to be found, we therefore find
K as above, and join KB: it will meet the conic in S. Another way of
proceeding, which is really equivalent to the last, is this: Join QB, and
produce to meet the Hessian line in K'. The polar of K' will meet the
conic in the polar 2-points of S. It will be seen in § 7 that from this we
are able to find S.

The solution of the problem is therefore complete.
This method of constructing Q', and then Qx and Q2, is, however,

somewhat artificial. I proceed to give two alternative methods of finding
the points Qv Q2, both of which are direct and do not depend on Q' being
first obtained. The one is of interest chiefly on account of the simplicity
of the result; the other because it can be extended to the general problem
of two ?i-ics.

7. The first of these admits of very easy proof; it will therefore
suffice to state the result, which is as follows:

The line joining Qv Q2, the polar %-points of Q, is the polar line of Q
with respect to the triangle PlP2P3.

By means of this result we can find the point whose polar 2-points
are given (see § 6).

[We have 3een that the line QiQ% always passes through I for all
positions of Q; that is, for all points on the fundamental conic the
polar line with respect to the triangle P1P2Ps passes through I. Hence
the fundamental conic is the polar conic of I with respect to the triangle.]

When the points Qlf Q2 have been constructed in this way, Q', the
polar 1-point of Q, may be obtained by a much simpler process than
that explained above, by finding the harmonic conjugate of Q with
respect to Qlt Q2.

The problem of two apolar triads is then completed as before; and
the result obtained may be thus stated :

If the triads Plt P2, P 3 and Q, B, S are apolar, then the polar triangle
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of QRS with respect to the conic is inscribed in the polar triangle of
QRS with respect to the triangle P1P2PZ.

8. To obtain the third construction for Qu Q2 referred to above, we
notice that a%.ay can be written in the form

a,, ftx y...+
and therefore dl

%a{l is apolar to the pair of points which is apolar both
to /3a;, yx and to ax, fiyy,.-\-fixyr That is, if qx is the harmonic conjugate
of Q with respect to P2, P3 and Pxqi meets P2P3 in L', then the line QXQ2

passes through L'.
Hence, if we construct similarly the points M' and N', these points

L', M', N' must be collinear, the line of collinearity being the line QXQ2

and so passing thr6ugh I.

9. We have seen that if the points Q, R, S form a triad apolar to
Pv P2> -Pa> then R and S may be taken as the intersections of the conic
with any line drawn through the pole of QXQ2. If, therefore, the line
chosen does not (geometrically) meet the conic at all, so that the points
R and S are imaginary, the triad Q, R, S is still apolar to P1} P2, P3.

Also, if Q, R, given points (while S is to be found), are imaginary
points lying on a line which does not meet the conic, we can still con-
struct S by the second method given in § 6.

But, if in the original triad Pv P2, P3 two points, say P2 and P3, are
imaginary, the constructions which have been given above are no longer
immediately possible.

If K be the point of intersection of PXA and P2P3 in Fig. 1,
the range Pl5 I, K, A is harmonic. From this we can, in the present
case, construct I and afterwards the H-points, which are now real. Also
qY and L', but not q2, g3, AT, N', can be obtained ; and then the line L'l
will meet the conic in Qx and Q2, which may be either real or imaginary.

Or it is still possible to use the method of § 4; for L can be obtained,
but not M and N, and then the line PXL gives the point Q'.

10. If P], P2, P3 and Q, R, S be two apolar triads, and RI, SI meet
the conic again in R and S respectively, it is known that the line RS
meets RS on the polar of I; therefore Q, R, S is also an apolar triad
to Pv P2, P3.

There are thus three triads associated with Q, R, S, each of which is
apolar to Pl5 P2, P 3 ; they are Q, R, S ; Q, R, S ; and Q, R, S.

And the members of the doubly-infinite system of triads apolar to
Pv P2, P3 are associated in sets of four, those in one such set being
derivable from any one of the four.
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11. Before passing on to consider the geometry of the quartic, I add
a short note on the covariant points of two different cubics a\, b\ given
by (abfaxbx. When the cubics coincide these points become, of course,
the H-points; and when the cubics are apolar it will be seen that they
are the double points of a certain involution.

Let Flt F2 be the points to be interpreted ; then, since

{{abfaxbx, a'?) = J((aa')aaX. $ ,

we have that the point which with Flt F2 makes a triad apolar to a3
x is

also the point which with the H-points of a\ makes a triad apolar
to 6J.

Hence the following construction:—Find the point which with the
H-points of a\ makes an apolar triad to h\. Construct its polar 2-points
for a\ and find Av the pole of the line joining them. Similarly find Bv

Then A1B1 meets the conic in the required points Fv F2.
Let us now take any point on the conic and find its polar 2-points

with respect to the cubic a\; then find the point which with these two
points makes an apolar triad to b*.. This last point will be given by
(abfaybx.

Taking the triads in the reverse order, we get the point (ab)2axby.
We have thus defined a (1, 1) correspondence of points on the conic of
which the united points are Flf F2.

B u t (abfaybx- (abfa,;by = - (ab)\xy),

and therefore when the triads are apolar the correspondence becomes an
involution with Flt F2 as its double points.*

Another property of Fx and F2 is that the two lines joining the polar
2-points of either of them with respect to the two triads are conjugate.

The problem of finding a triad apolar to two given triads occurs
above, and the method is obvious. That of finding the unique triad
apolar to three given triads arises naturally in considering the case of
the quartic. Its discussion is postponed to § 13. t

* Apolar forms of different orders are connected by a property somewhat similar to this.
Let there be any two «-ics of points. Then a (1, 1) correspondence is denned by adding to each
a single point in order to get two apolar (»+ l)-ics. If the «-ics are themselves apolar, this
correspondence becomes an involution. When n is 3 this involution is the same as that above,
having Fl} F« for double points ; but the correspondence (when the cubics are not apolar) is not
the same as the above correspondence.

t Another method of interpreting binary cubics geometrically is by means of points on a
rational twisted cubic curve (see Algebra of Invariants, § 194). If the curve is given by { = «̂ ,
ij = b*, ( = c\, TO- = di, then every binary cubic form defines three points of the curve, and there-
fore corresponds uniquely to a plane. If two cubic forms are apolar, the point of intersection of
the osculating planes of the three points lying in one of the corresponding apolar planes is itself
in the other.
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12. The Quartic.—Let Pv P2, P3, P4 represent the form

and let Q be any other point (xy).
Then the polar .1-point of Q for the four points may be thus obtained :
Find qv the harmonic conjugate of Q for any two of the points, say

Px and P 2 ; and find q2, the harmonic conjugate of Q for the other two,
P3 and P4.

Then find Qr, the harmonic conjugate of Q for qx and q2; it will be
the point required, and is therefore the same in whatever way we divide
the quartic into pairs of points.

To construct the polar 2-points of Q, choose any three of the four
points, say P2, P3, P 4 ; and let q' be the polar 1-point and q'v q'.z the
polar 2-points of Q for this triad.

Let 4x4-1 a n d <?'Pi meet in Q'x.
By selecting other sets of three points, we obtain similarly the iDoints

Qi> tys> TJ4*

Then these points Q'v Q'2, Q'3> Q'4 are collinear, and their line of
collinearity meets the conic in the required points Qlt Q2.

For Qi and Q2 are given by a\a^, which can be written

+ Uy (J3y JX Sx + fix Jy Sx + fix yx Sy) ,

and in this expression the coefficient of ax is the form giving q', and the
coefficient of ay is the form giving q'\ a n ^ ^2-

Therefore Qx and Q2 are apolar to the pair of points which is apolar
both to q', Px and to q'v 4%- Hence the line QiQ2 passes through Q[;
similarly, it passes through Q'2, Q's, and Q\.

The polar 2-points of Q having been obtained in this way, the polar
1-point, Q', may be constructed by finding the harmonic conjugate of
Q with respect to Qx and Q2.

The polar 3-points of Q are given by

(a?/ fa+a., (3y)yx$x+axfix {yv 6X+yx Sy),

and therefore the triad which they form is apolar to any triad which is
itself apolar both to P3, P4, qx and to Pv P2, q2. Such a triad can easily
be constructed.

By dividing the quartic into pairs of points in different ways, we can
obtain five other triads apolar to the triad required. Any three of these
six triads are sufficient to define the polar 3-points of Q ; and the problem
is therefore reduced to that of finding the unique triad apolar to three
given triads, referred to at the end of § 11.
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13. I have been unable to obtain a solution by means of a linear
construction ; the following is the simplest solution which I have been
able to find.

If the points X, Y, Z form the triad apolar to three given ones, then
Y, Z are harmonically conjugate with the polar 2-points of X for each of
die three triads.

Therefore the three lines joining these three pairs of polar
2-points of X must be concurrent, and the poles of these lines must be
collinear.

Now, as a point P on the conic moves, the pole of the line joining its
polar 2-points for the first triad moves along the Hessian line of that
triad. And thus the three poles referred to above move along three
straight lines, viz., the Hessian lines of the three triads.

The position of any one of these three poles determines P and the
•other two poles uniquely.

We have thus a (1, 1, 1) correspondence of points on three straight
lines, and we require the three sets of corresponding points which are
collinear.

Let the three Hessian lines be called A, B, C.
Then the lines joining corresponding points on A and B envelop a

conic which touches A and B. And the lines joining corresponding
points on B and C envelop a conic which touches B and C.

These two conies have four common tangents, real or imaginary.
One of these is the real line B; the other three are the straight lines
required.

Now, by taking different positions of P on the conic, we may linearly
construct as many sets of corresponding points on A, B, and C as we
desire.

Thus we can construct as many tangents to the above two conies as
we please.

Hence the lines required are the three unknown common tangents to
two conies, each of which touches a given straight line and is defined by
its tangents.

If we obtain a conic similarly from the correspondence on A and C,
it will also be touched by the three straight lines just found. Its fourth
common tangent with the first of the above conies will be A ; that with
the second will be B.

These three straight lines are actually the lines joining two
at a time the points X, Y, Z. They therefore meet in pairs on the
fundamental conic, and form the triangle defined by the required apolar
triad.
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14. Hence we can obtain (though not by a line construction) the polar
3-points of a point Q with respect to a quartic Pv P2, P3, P4-

The solution of the problem : Given a quartic and a triad of points,
to construct the single point which ivith the triad forms an apolar
quartic, can now be stated thus :

Find the polar 3-points of one of the given triad of points for the
quartic.

Find the polar 2-points of another point of the triad for these three
points.

Find the polar 1-point of the third point of the triad for these two
points. This will be the point required, whatever be the order in which
the points of the given triad are taken.

In order to give a complete linear solution, I go on to shew that the
second of the above three steps can be linearly performed without actually
constructing the polar 3-points at all.

Let Q be the point (xy) and B the point {xz).
The polar 3-points of Q are given by

(ay /3 , :+ax (3y) y x Sx+(yy 8x + y.v <?v) ax fix,

and therefore, as has been seen already, the polar 3-points of Q form a
triad apolar to every triad which is itself apolar both to P3, P4, qx and to
Plf P2, gv The two points which with B form such a triad are those on
the line joining the poles of the polar lines of B with respect to the two
triangles PaPAqlt PiP2g2-

Thus, by the six methods of dividing the quartic into pairs of points
[and also from the four similar cases obtained by writing the polar
3-points of Q in the form

a y ft* yx $x + a* (A/ 7* ̂ * + & 7 u &*+P* "/* <V ] >
we get six [and four] pairs of points which with B form apolar triads to
the polar 3-points of Q.

The lines joining these different pairs of points must all be concurrent
in the pole of the line which joins the polar 2-points of B for the triad
consisting of the polar 3-points of Q.

These polar 2-points are given by

ax/3r(y?A+y^y) +five similar terms,

or a\a]taz\ and thus these points (which I shall call the mixed polar
2-points of y and z) can be linearly constructed (since the pole of the line
joining them can be found) without first constructing the polar 3-points
of Q.
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This completes the linear solution of the problem for the case of the
quartic.

Although we cannot construct linearly the polar 3-points of Q, we can
at least construct the H-points of the triad which they form. For taking
two positions, B1 and B2, of the point B, the lines obtained from them as
above will intersect in the pole of the required Hessian line.

15. General n-ic form.—Let the form considered be
The polar 1-point and 2-points of any point y with respect to aj"1 are

given by axa^~2 and ajaj"8.
Then it is easy to prove that the intersection <1 the line joining the

point axa'y~2 to the point ax with the line joining the points a-xa*~* lies
on the line joining the polar 2-points of the point y for the w-ic.

If therefore we are able to construct linearly the polar 1-point and
2-points of y for an (n— l)-ic, we can obtain n different points all lying on
the line joining the polar 2-points of y for any n-ic.

The polar 1-point of y for the n-ic is then obtained by constructing
the harmonic conjugate of y with respect to the polar 2-points already
found.

And it is then possible to proceed to the (?? + l)-ic.
Hence starting from the cubic and quartic, we can construct the polar

1-point and 2-points of a point y for any binary form by this means.

16. There remains to be considered the problem : Given n points on
the conic, and n—1 other points, to find the point required to make two
apolar n-ics.

Here, as in the last paragraph, the method is that of proceeding from
the case of a form of lower degree to that of one of degree higher by
unity.

The solutions for the cubic and the quartic have been given: it will
therefore be a sufficient explanation of the method for the general form if
the case of the quintic is considered.

Let the quintic be axfixyxSxex, and let the four other given points be
Q, B, S, and T, Q being the point y.

The polar 4-points of Q for the quintic are given by

{ay fix+«* A/) yx Sx ex -f- ax fix {yy Sx ex-\-yx Sy zx+y% 4 *y) • (2)

This form is here written as the sum of two parts, and each part
separately gives a quartic of points which can be easily constructed.

Now, by the known case of n = 4, we can construct linearly the lines
joining the mixed polar 2-points of B and S for ea ;h of these quartics.
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But it is obvious that the line joining the mixed polar 2-points of
Q, B, and S for the quintic passes through the point of intersection
of these lines.

And, by dividing the expression (2) in different ways, we can construct
many other points, all lying on the line joining the mixed polar 2-points
of Q, B, and S.

The line itself can therefore be constructed, and the mixed polar
2-points of Q, B, and S obtained. Then the harmonic conjugate of T
with respect to these two points is the point required.

The most convenient way of dividing the expression (2), which gives
the polar (n— l)-points of Q, is into 3 terms and n—3 terms. The
first part then gives an (n—l)-ic of points which can be constructed.
The second part gives an (n—l)-ic of points which cannot themselves be
constructed if n is > 6, but the mixed polar 2-points of B, S, ... for
them can be obtained by means of a process similar to that just used,
viz., this second part must be sub-divided into 3 terms and n—6
terms, in two or more different ways, and the same applies to the sub-
part of n—6 terms, and so on. Also at each point the results obtained
for the previously considered case of the (n—l)-ic form are assumed.

The process is thus exceedingly complicated, and is, as might have
been expected, of little practical use for forms of degree higher than
the sixth or seventh. It is, nevertheless, theoretically complete.

It is scarcely necessary to point out that, since the forms (2), &c,
may be divided into parts and sub-parts in different ways, this theory
leads to an immense number of geometrical propositions concerning the
coHinearity of points and the concurrence of lines.
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