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On Cyclotomic Functions. By H. W. Lrovp Tanner, M.A,,
Professor of Mathematics in the University College of South
Wales.

Secrion III.

The cyclctomics which belong to the f-nomial periods of the p® roots of
unity, when p is @ prime number.

[Read May 9¢h, 1889.]

Abstract. (Arts. 1-7.)

1. When pis an odd prime, = 2¢+1 say, the binomial periods of
the p™ roots of unity are

etz +27? .. a2,
where z is oue of the roots of
o lpar 4 e+l =0.
The periods are the roots of the well-known equation
1 +nt = (e~1) n*"—(e—2) n"°

+ fe—21n;—3) -t 4 (e—Ei)ﬁze-—‘i) W 4. =0,

the expression on the left being continued to e+1 terms. The object
of the present communication is to give the corresponding theorem
for f-nomial periods of the p™ roots of unity when p, = ¢f+1, is a
prime number. The difficulty is, that we have not for the f-nomial
periods, as we have for the binomial periods, a form which can be
written down without knowing p. For example, the leading tri-
nomial periods of the 7™, 13®, 19* roots of unity are

z+2 2t z+l+2t, z+d 4z

respectively; and there is no general expression for these indices
analogous to the expression =1 for the indices of the leading binomial

period.

2. The result obtained is that the cyclotomic may be regarded as a
product .of three “factors.” Each of these consists of an infinite
number of terms with mtegml coefficients, the first coefficient being 1.
The cyclotmmc consists of the first ¢e+1 terms of the product, and
the remaining terms of the product are zeros as far as the term con-
taining n~", if -each of the three factors is calculated to this extent.
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3. One of the factors, called the asymptotic factor, is the only one
that appears in the binomial-period equation written above. For a
given f, it is a series depending on ¢, and appropriate to every value
of p, = e¢f+1. When f is a prime, the first f coeflicients are inde-
pendent of ¢; they are in fact identical with the first f coefficients of
the expansion of (1—fy) . The f coefficients which follow are
linear functions of e, or more conveniently of ¢, = (f—1)!e. In
these linear functions the e occurs multiplied by the first f coefficients
of the asymptotic factor. The following sets of f coefficients are
quadric, cubic, &c. functions of e. For examples, see the tables for
f =3, 5, 7, appended to this paper.

When f is composite, each factor of f affects the form of the
asymptotic factor ; but the smallest factor has the most obvious in-
fluence. For instance, when f is even, the factor proceeds in pairs of
terms, like the binomial period cyclotomic. Examples will be found
in the tables for f = 4, 6, 8, 9.

The asymptotic factor presents itself as a product of other factors,
one of which is (1—fx)-'”, and the others are “central” factors. The
coefficients of these subsidiary factors are not all integral.

4. The second factor of the cyclotomic—called~the eccentric factor
—is not expressed in terms of ¢; so that it has to be calculated
separately for each value of p. Allits coefficients except the first are
multiples of p; that is, it is of the form

l—p {E‘yk+Ek'ly‘+l+.-.}, (y:n—l),'

where E,, E,,, are integers, and are positive at least as far as FE,.
This, like the asymptotic factor, naturally splits up into a product of
other factors ; but, unlike the asymptotic factor, all its factors have
integral coefficients:

From the form of the eccentric factor it follows that the asymptotic
factor is congruent to the cyclotomic, mod. p. There is a presumption
in favour of the theorem, that by taking p sufficiently large, k may be
made as large as we please: a theorem which would justify the
epithet * asymptotic.” But this is not proved. On the assumption
that certain'forms (for instance, the geometric series 1+a+...4a’"!
when f is prime) contain an infinite number of primes, the theorem
can be proved ; and, as the case of f prime requires very little space,
I bave discussed it. It did not seem worth while to extend the dis-
cussion : not only because it was based upon an unproved, though
probable, assumption ; but also because the inferior limit of k, deter-
mined in this way, seems to hold good for all values of p, and not
merely for those valiies of p implied in the assumption,

s 2
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5. To calculate the cyclotomic, it is sufficient to take the product of
the asymptotic and eccentric factors. This product, however, differs
from the cyclotomic. For instance, c=3, e=2, p=7; the coefficients
of the product of the asymptotic and eccentric factors are

1,1,20000,1,1,20,0, .....
and to make this agree with cyclotomic
1,1, 2,
a third factor, 1—y=7+ Ay~ 4 &ec.,

must be introduced. Although this factor is absolutely without in-
fluence on the calculation of the cyclotomic, yet it seers satisfactory
to explain how such a factor arises ; and this is done in the sequel.
The expression used for forming the cyclotomic for binomial
periods is the asymptotic factor only. The eccentric factor in this
case is 14py***+ ..., and the third factor is 1—py?—&c.; so that
neither of these influences the coefficients that are to be determined.

6. The arrangement of the work will now be indicated. The
expression for log P, Y being the cyclotomic, is first formed. In the
analysis of this expression, considerable use is made of a regular
polygon of f sides, at the vertices of which are placed particles of
various weights, all commensurable.  According as the centre of
gravity of these particles is or is not at the centre of the polygon, the
system is termed a central or an eccentric system. The central
factors of P come from the central systems; and the eccentric factors
from the eccentric systems. This weighted polygon promises to be
useful in discussing complex numbers formed with roots of unity;
but the application is hardly within the scope of the present com-
munication.

7. It was necessary to find the conditions that a series
—5y—5y' /2 — 534° /8 —&e.
should be the logarithm of a series
1+ Py+ Py +....
with integral coefficients. These conditions are obtained in the form
8,4+ 25, ~ 325, = 0, mod. »,

where 8, € are divisors of #, such that n/d is a product of an even
number of primes all different ; and n/e is a product of an odd num-
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ber of primes all different. For instance,
Sg—8;—8;+5, = 0, mod. 6,
83— 5y—38,+s; = 0, mod. 12.
To prove this, the transformation
1+Py+ Py’ +... = 1-Qy) (1 -y )(1—Qsy®) ...

is employed. The use of the coefficients @ turns out to be very
labour-saving in passing to a series from its logarithm; and these
coefficients appear to be of some significance in other respects. For
instance, in the expansion of

Q-fy)™,
all the @ whose subscripts are prime to f are integral, and these @
remain unchanged-in the asymptotic factor of the cyclotomic.

It will be seen that, though the object of this paper was to consider
especially the case of a determinate f, yet some results huve a bearing
on the question of the e-section of a cyclotomic, when f is not deter-
minate. But the paper had extended to such a length that it seemed
discreet to postpone the development of this side.

Formation of log P. (Arts. 8-13.)
8. Let # be a root of the equation
2?42 it 4o+l =0,
where p is & prime number. Writing, as usual,
of =p-—1,

where ¢, f are integers, there is one set of f-nomial periods of z. The
set consists of ¢ periods of which the leading period is

7=t +a+ ... +a?
where a is a root of unity (mod. p) of order f, that is to say,
o =1, mod. p,
but no lower power of @ is congruent to unity.

These e periods are the roots of an equation
'I'+Pm"'+Ps'I"'+ eoe +Pa-l'l+P¢ = O)

where the coefficients P are integers. -The expression on the left is
the cyclotomio function discussed in this section. It is convenient to
divide throughout by »°, and then write y for ', so that the cyclo-
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tomic becomes
P=1+Py+Py'+...+Py.
To determine the coefficients, P, we make use of the logarithm of

the cyclotomic, viz.,
uz 2 3
logP=— S1Y "8 S g T
The series on the right is infinite, and the s are the power sums of
the e periods.

9. Since n=zta*+z"+... +z“1_l,

. 7-1
we have = (e+a°+2a"+... +2° )°
= A,+B,z+0C,2+ ... + D,z
where 4, represents the sum of the coefficients of z”, 2%, =¥, &c. in
the expansion of 5°; B, means, the sum of the coefficients of =z, a**',
2**', &c. in the same expansion ; and the like for the other letters.

This transformation only postulates z* =1; and we may therefore
put 2 =1, which gives

A,+B,+C,+..4+D, =f-.
10. The expression for s,, the sum of the o'® powers of the ¢ periods,

is at once formed from the value of 5°, by taking accoant of the fact
that s, is a symmetrical function of z, 2%, ... z*~!. We have, namely,

5, = eA,+(B,+C,+...+D,)(m+a,’+...+a:"")1;-i—1
1

f

(since z+2'+...+2*"'=—1 and p—1 = ¢f)

=ed,—(B,+C,+...4+D,)

= (o+ -}-) A,—(A,+B,+C,+...+D.)%

=L 4, —f
7 f

11. From this we obtain

=S¥ _Psag ¥
log§ =3/ L E3a L,

the summations extending to all positive integral values of a.
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The first sum may be written

T3y le == Flog (1~fu),

so that (A—fy)¥
is a “factor " of P.

12. To determine the value of 4,, observe that it is the sum of the
coefficients of z?, 2%, ... in the expansion of »°, so that

4= 3ET aa
where NNt =,
NtMa+Nai+ ...+ A @ =0, mod. p,
and the summation includes every system of positive integers,
) VD VD VR Y
which satisfy this double condition.

13. Considering two systems

Ao Ay, o) and (g py on),

it is obvious that, if each element of one system is equal to the
corresponding element in the other, the two systems give the same
term in 4,; that is, in calculating 4,, only one of them is counted.
But, if any one of the equations Aj=p,, A;=p,, ... i8 not satisfied, the
two systems give different terms in 4,, and each system contributes
its full quota to 4,.

14. It is clear that the congruence is the only effective condition,
for the equation may be regarded as merely determining the rank of
the 4 to which a system (A7, ...) contributes. Accordingly, a con-
siderable part of the sequel relates to the theory of the solutions of
the congruence. We proceed to classify the solutions, firstly into
recurring and non-recurring systems (Arts. 15, 16), and secondly into
central and eccentric systems (Arts. 17—42).

Recurring and non-recurring systems. (Arts. 15, 16.)
15. From' any system Ao Ay «on sy
which satisfies the congruence
Ro+hla+}‘,?"+...+&_, o/~!' = 0, mod. p,
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we can by cyclic substitution derive others which also satisfy the con-
gruence. For, whatever integer k& may be,

AIn Ak+h oo A/-;, )\0, )\1, e )\,,_1

is a solution, as is seen on multiplying both sides of the congruence
into o/-*. Every derived system gives to 4, the same amount as the
original system, so that, if the derived systems are distinct from each
other, and from the original system (c¢f. Art. 13), the complete con-
tribution from 4, is
!
o.
FT o

On reference to the value of log §) it will be seen that the denominator
of the fractional multiplier cancels out.

16. It may, however, happen that the systems obtained by cyclic
substitution are not all different ; say

(Ak, Alnh e AO ...) = (Aknn Akah*l’ e Ah; ...).
This means that every member of the first system is equal to the
corresponding member of the second ; that is to say,
Aor'kh—_‘x.’h=---, A1=A}n1=>\z;”)=..., &e.
The original system may therefore be written
Aos A|) s >‘h-h on A1 e }‘h-lv A0’ """ Ah—|1
and consists of f/h (= ¢) cycles. Of the f systems only % are distinct

from each other; viz.,, these are the systems which begin with

Ap Ay Ay .o Ay respectively. The contribution of the whole set to
log P is therefore

‘E'h a! — 1’_ 0!
f (AO! ves Ah- 1 !) g g (Xo! ves kh—ll) q

Herein g is any divisor of f, iucluding 1 and f. When g =1, the
system consists of a single cycle; in other words, it is a non-recurring
system, as in Art. 15. For every other value of g the system is
recurring, and the total contribution to log P is a fractional multiple
of the multinomial coefficient.

Solutions independent of p. (Arts. 17, 18.)

17. A second classification of the systems
Ap Ay ee Areny
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which satisfy the congruence
A+Ma+Mad 4. +A, o/ =0, mod. p,

depends upon a more important property. There are some systems
which are solutions of the congruence for all values of p of the form
ef+1; while other systems are solutions for some only of these
values.

For the quantity @ which appears in this congruence, being a primi-
tive f** root of unity to modulus p, satisfies a congruence of degree

Tf,* say
Fo =0, mod. p.

If, then, ANtAa+ ... +A !
is a multiple of Fu, it is divisible by p.
Now the equation Fa=20

determines the primitive f** roots of unity, which have nothing to do
with p, so that the coefficients of F'a are also independent of p.

It follows that, if
AN+Nat+.. +A o/ = (g pa+...) Fa,
where pg, p, are any integers, then
Aoy Ay oo Ay

is a solution of the proposed congruence for all values of p of the
form ef+1.

18. A more useful form of this result consists in the explicit state-
ment of the relations between the A which are necessary and sufficient
to ensure that

AtNa+Nai 4. A0

ghould be a multiple of Fa. If we make use of & function, Ga,
defined by the equation

Fa.Ga = 1-¢,
the conditions may be written
A, GA =0,

where £=10,1,2,...,7f/—1; and every power X or N*' is to be re-
placed by A,.

* 7fis Prof. Sylvester’s symbol for the totient of f, that is to say, the number of
numbers not greater than f and prime to f.
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We have, in fact,
Mo+ra+...) [ Fa= (Av+Aa+...) Gaf 1-d).

Now, let Ga = gy+g,0+g50°+... + g0,

and MotMa+...) Ga = hy+ha+ha+....

This last expression is divisible by 1—¢/, if for all values of &
hy+hyy = 0.

But R W W W

and bpos = G Mot Graa Mgt oo+ g M

Hence the condition of divisibility is
Gt grat .+ adt gt o+ g b =0,
or, symbolically, LG (Y =0.
Since Ga=—a".Ga™,

where y, = f—rf, is such as to make both sides of the same degree
in @, the conditions may be written

AL, QN =0.

Graphic representation. (Arts. 19, 20.)

19. It is convenient to present the matter graphically. At the
vertices of a regular convex polygon of f sides, suppose particles to
be placed whose weights are Ag, A, ... A,.;. Since the A represent
integers, the weights of particles must be commensurable. If the
centroid of the particles is at the centre of the polygon, the system
will be called a central system ; if not, an eccentric system. We have,
then, the theorem that every solution of the congruence

MFMa+Aat ... +A 07 =0, mod. p,

which is independent of p, is a central system ; and ‘conversely.

20. To prove this, take the centre of the polygon as origin, and the
radius through A, for the axis of @ Also take the length of this
radius to be unity. Let the polar coordinates of the centroid be 7, ¢.
Then

re¥ A = AgHA e +A6% + ... + A",

where 0 = 2x/f.
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Now ¢ is a primitive f** root of unity, so that
F(e") = 0.

Hence it follows that, if A\,+X,a+2A;a*+... is divisible by Fa (that is
to say, if Ay, A, A; ... satisfies the congruence independently of p), then

r =0,

and the system is a central system. Conversely, if the system is a

central system, )
Aot e+ e+ =0,

and the expression on the left must be a multiple of F (¢*) ; because
F (&%) is irreducible.
Central Systems: Particular Cases. (Arts. 21-23.)
21. When f is a prime number,
G\ =1—),
so that for a central system we have
N=A=Nh=..=A_,

that is to say, all the particles must be of equal weight.

22. When f is the prodact of two different primes, say

f=a.b

Supposing a to be the smaller factor, starting at any particle, form
a clusters, each made up of a consecutive particles, the clusters
being arranged symmetrically around the f-gon. All these clusters
must have the same weight if the system is central. Starting at
another point, we get another set of clusters which must be of equal
weight, but not necessarily of the same weight as the clusters of the
first set. For instance, in a hexagon the particles at the ends of any
side must together weigh as much as the two particles at the ends of
the opposite side.

All this is the interpretation of the equation
OGN = (14+A424 2 (1 =20,
23. When f contains powers of primes, we may write

J=a,b..c.x(=f.7say),

where 7 is a product of powers of a, b, ...c (or some of them), bab
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does not contain any other prime. Now, in this case, FA, GA contain
Aonly in the powers A7, A, &. That is to say, the relations for &
central system involve

AM Ah-nr XPﬂ-z-n erey

which are particles on an f-gon. Hence it appears that, if a system on
the f-gon is a central system, the particles on each f’-gon must form
a central system. For example, if a dodecagon bears a central system,
the particles on each of the regular hexagons in the figure must also
form a central system.

This remark enables us to confine the discussion, where convenient,
to the cases in which f has no square factor, without loss of generality.

Central System : General Case. (Arts. 24-33.)

24. We proceed to prove two properties of central systems when f
is unrestricted in value. In expressing the first theorem it is con-
venient to speak of a central system on a regular polygon of & prime
number of sides as a prime central system. The theorem may then
be stated thus :—Every central system on an f-gon is identical with
the sum of prime central systems belonging to the figure, or with the
difference of two such sums.

Let the prime factors of f be @, b, ...c. Suppose the f-gon to be
loaded with particles of weights 4,, 4,, 4;, ... 4,., so that the particles
on each regular a-gon form a central system. This implies that the
particles on each a-gon are of equal weight, so that

4, = A4, if r=3s, mod. f/a.

Let B, ... O have similar meanings with respect to the b, ..., c-gons.
It is to be proved that, when

A01 A1’ see A[—l

form a central system, values of 4, B, ... 0 can be found to satisfy all
the equations

A=A4,+B,+..4+C,(r=0,1,2,...f-1),
where 4, = A4, if r=s, mod. f/a,

B, = B, if r=s, mod. f/b,

C, =0, if r=3s, mod. f/e.

Consider any linear function of Ay, A, A,, ... which, when expressed
in terms of the 4, B, ... 0, is free from 4. Then for every A, iy the
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function there must be another A, say A,, with the opposite sign, and
having s =, mod. a’ (a’ written for f/a). If, then, in this linear
function of the A we change subscripts into indices, the result will
be divisible by 1—A®, because it is made up of pairs of terms each of
which is so divisible. Similarly, any linear combination of A, A,, &c.
which is free from A4, B, ... ¢ must, when subscripts are changed to
indices, be divisible by 1—A%, 1—A%, ... 1—X°, and thus it is divisible
by the lowest common muliiple of 1—A¥, 1—X%, ... 1—A¢, which is
the function GA of Art. 18. The order of GA being vy, =f—rf, it
follows that the y equations.

A =A4,4B+..4+0 (r=01,2, ... y—1)
imply no relation between the A.

When A, B, ... C have been determined so as to satisfy these y
equations, A, is determined by the condition (necessary to ensure that
the system A,, A, ... is central)

G\ = 0.
Now A\, =A4,+B,+...+0,

satisfies this equation: for it is clear that an aggregate of central
systems A, B, ... C must be central. And, since GA is linear in A,
no other value of A, is possible. Similarly, it follows that

A=A+ B+..+0,(r=y+1, v+2,...f—1).

25. The determination of 4, B, ... 0 may be effected in the follow-
ing manner:—7To determine the 4, eliminate the B, ... C from the y
equations of the last article. The result of the elimination is written
down by forming the lowest common multiple of A¥—1, .. A“—1,
multiplying this by A% A, A% ... in turn, until the power A'~! appears.
In this expression change indices into subscripts, and equate the
result to the corresponding function of the A. The system of
equations thus formed will be satisfied if we assign arbitrary integral
values to any f/a —r (f/a) of the 4, and determine the rest suitably.
To determine the B, eliminate all the 4, B, ... C except 4, B. The 4
being known, it will be found that the equations for B are satisfied
when arbitrary values are assigned to f/b—r (f/b) —7 (f/ab) of the B
(but these may. not be arbitrarily selected). Similarly all the rest of
the weights A, B, ... C may be determined.

26. In spite of the number of arbitrary elements in the values of
A, B, ... C,it1s not generally possible to make them all positive. An
example will suffice to prove this. Take the pentagons in a 30-gon.
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One of the equations for the 4 (a = 5) is
A+ A=A =7 = 4+ 4;,— A, — 4,
(for 4;y= 4; and 4,5 = 4;). Now, if all the 4, B, C are positive, we
must have A+ A; SN+
(for Ny = A;+ B;+Cy, \y = A+ B, + Cy),
and —4,—4,20,
Hence, if all the 4, B, C are positive, we must have

At As—A—A, é Aty

and, when this inequality does not hold, some of the 4, B, C must be
negative.

It is this that makes necessary the alternative statement in the
theorcm enunciated, Art. 24.

27. The argumeunt of Art. 24, proves that, when particles of any
weights (A, A, Ay, ...) have been placed at f—rf consecutive vertices
of an f-gon, there is one, and only one, central system which includes
these particles. It should, however, be noted that this assumes that
negative weights are admissible. The theorem cannot be extended to
an arbitrarily selected set of f—rf points (for instance, we cannot
assign all the weights which actually appear in GX) ; but there are
some sets of f—rf non-consecutive points which may be arbitrarily
weighted, as we shall now show.

8. We assnme that f contains no square factor, an assumption
which does not really affect the generality of the result (Art. 23).
Upon the f-gon select uny vertex as the zeio, and number the other
vertices in order. A vertex whose number is a totitive of f (i.e., prime
to f), being called a totitive point, we have the theorem :—When
arbitrary weiglits are placed at the non-totitive points, the totitive
points can always be weighted, and that in oue way only, so that the
whole may be a central system. Negative weights will generally
occur, but it will be shown how the difficulties thus arising may be
set aside.

29. The proof of the theorem consists in writing down and verifying
an expression for the weight, A, ut any totitive point ¢, in tecms of the
weights at the non-totitive points.

Let A be any divisor of f; then, since f contains no square factor, 4
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and f/ A ave prime to each other, and there is therefore one, and only
one, positive integer, a, less than f which satisfies the congruences

a=0, mod. 4, =¢, mod. f/ 4.

Let a be determined for every divisor, 4, of f, including 1 and f,
Take the results as subscripts to A and prefix to the A the sign + or —
according as the divisor 4 contains an even or an odd number of
prime factors. It will now be proved that the aggregate of A thus
formed contains only one A, viz. A, with a totitive subscript; and that
it vanishes when the A form a central system. These two properties
being proved, the theorem is established ; for we have A, expressed in
terms of the weights at the non-totitive points.

The first property comes at once from observing that a is a multiple
of 4, and therefore cannot he a totitive of f except when 4 = 1. In
this excepted case a = #. .

The divisors of f may be arranged in two classes with respect to any
prime factor, a, of f. One class contains the divisors 4, B, C, ... which
are not multiples of a ; the other consists of Aa, Ba, Ca, .... Together
these make up all the divisors of f, which by hypothesis does not con-
tain the factor a®. To determine the subscripts a, a’ belonging to the
pair of divisors 4, Aa, we have

a =0, mod. 4, =¢, mod. Ba,
o« =0, mod. Aa, = ¢, mod. B,
where B = f/Aa.
By subtraction, a—a'=0, mod. 4, =0, mod. B,
so that a-a'=0, mod. AB,
that is to say, a—a’'=0, mod. f/a.
On the other hand, since
a=t, mod. Ba, and a'=0, mod. Aa,
it follows that a—a' =t mod. a;
so that a, o’ cannot be equal, since ¢ is not a multiple of a.
This pair a, o’ gives to the aggregate of the A a pair of terms
A—A

with opposite signs, because Aa contains one prime factor more than
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A ; and it has been shown that
a—a =0, mod. f/a.

It follows at once that the aggregate of the A, when indices are
written instead of subscripts, is divisible by 1—A7/%, Similarly, treat-
ing the other prime factors of f, it appears that the aggregate is
divisible by GA (as in Art. 24), and therefore vanishes for a central
system.

30. An attempt to form a relation between the A for non-totitive
points leads to mere identities. Suppose, for instance, #, instead of
being a totitive, were a multiple of a. Then the a, a’ determined as
above would be equal, and the A-aggregate would consist of vanishing
pairs A, —A,.

31. It is only necessary to find half of the a; for, if a correspond to
the divisor 4, then f+¢{—a corresponds to the divisor f/4. Moreover,
when one totitive A, preferably A}, has been expressed in terms of the
non-totitive A, the values of the others can be found at once by
multiplying the subscripts into the several totitives in turn. If a
non-totitive multiplier be used, a mere identity results, as it should.

32. An example will make this clear. Let f= 30. Then for A,
we have
30

A=1,| 2, 3, 5,|6, 10, 15,
0.

16, 21, 25, | 6, 10, 15,
The table is divided by vertical lines into compartments. In the first
of these, A contains 0 factor ; in the second it contains 1 factor ; in the
third, 2; and in the last, 3. Thus the A-aggregate is

A=A —Ant Xof)‘xo+)\m'—)‘o =0.
If we multiply the subscripts by any totitive of 30, 7 for example, we
get

a=1],

Av_kn“xw_ksﬁ")\n‘l"}\m‘*‘)‘m")‘o =0,

which determines A,. But if we multiply by any non-totitives, such
as 5, 6, we get the identities

A5_X!o"'Aln""ts""xo"" Aao‘l")‘la‘—)‘o =0,
A=A =g —AHAs+A +A —2, = 0.

33. 1t is an obvious corollary to the theorems of Arts. 24, 28, that
if a polygon has f—rf independent vertices (consecutive vertices, or
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non-totitive vertices, for instance), but not all its vertices, unloaded,
the system cannot be a central system,

Eccentric Systems. (Arts. 34-42.)

34. Every eccentric system is necessarily one of the non-recurring
systems considered in Art. 15. For the centroids of any eccentric
system, and those derived from it by cyclic substitutions, have f
different positions ; viz., one is in each of the sectors of the polygon.
And it is plain that two systems cannot be identical if they have
different centroids. It is not to be understood, and it is not a fact,
that eccentric systems are the only non-recurring systems. For
example: f = 6; 011102 is a central system which is non-recurring.

We proceed to consider the properties of systems which have their
centroids at the same point, and those which have centroids on the
same radius of the polygon. It is convenient to take separately the
cases in which f is, and those in which f is not, a prime.

Concentric Systems: f prime.

35. Let (po, oy --.) and (¥, »,...) be two systems on the same f-gon
which have a common centroid whose coordinates are », . Then

revIu=Zme, (0= 2n/f),
re*Sy = Sy, e,
Eliminating 7, '
S (v —n3p) e =0
Therefore particles of weight pu,Sv—»,3v form a central system, so
that

po2v—vy Sp = .. =m3v—nSu= .=y, Sv—y,,3p
=—}(2p.2v—27.zﬂ) =0,

whence Ho i Vo= ... =g iV = ...}

or, what is equivalent, (u, gy, ...) and (v, v, ...) are both multiples of
a third system (A, A, ...) which has its centroid at the same place;
and it may be taken that

Xo,‘ Ay

YOL. XX.—NO. 260. T
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have no common factor but unity. It is obvions that all multiples of
(Ap Ay, ...) will be concentric with it; and it has just been proved
that there are no other systems concentric with it.

36. It is to be noted that, if (g, py, ...) satisfy the congruence of
Art. 12, viz.,
potmet+pai+... =0, mod. p,

the same is true of (A, A;, ...), save only when all the 4 are multiples
of p, a case which will be discussed hereafter (Art. 60).

Oo-radial centroids. (Arts. 37-39.)

37. Next consider two systems whose centroids, @,, G,, are in a
common radius OG,G,; and suppose 0G,>0G,. If 0@, 0G, are
commensurable, the system.&, can be derived from the system G; by
combining a proper multiple of the set at G; with a central system.
It follows from Art. 85 a system formed in this way so as to have its
centroid at (; must be identical with the given system, or they must
both be multiples of a system cc.tred at G,. It is more useful, how-
ever, to proceed outwards from (;; by subtracting central systems
from the given system G,. This may be continued until one of the
reduced weights vanishes. The centroid of the system thus obtained
is an extreme point for that particular radius; and all the systems
co-radial with it may be derived by adding central systems to it. Tt
is noticeable that between O and the centroid @ of the extreme system
there are an infinite number of centroids, viz., a centroid at every
point @, such that O@, is commensurable with OG; but beyond G
there is not any centroid whose distance from O is commensurable
with OG. The extreme system has an advantage in that it is in-
stantly distinguished from a central system in which all the weights
must vanish when one of them vanishes.

38. Whether there can be upon one radius two centroids Gy, G,
such that OG,, OG, are incommensurable, I cannot say. But, if so, the
two sets of centroids would be as distinct as if they were in different
radii.

39. When f is composite, a centroid does not belong exclusively to
one system and its multiples. For, if (g, py, ...) and (¥, », ...) be
two central systems such that Su=3»; and (A, A, ...) be any eccentric
gystem, them (\g—py+»o, A, —p, +»y, ...) isconcentric with (A, A, ...),
and has the same total weight; but clearly it is not identical with it.
And the same sort of thing happens with co-radial systems. But, in
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reference to the latter, there is a remark of some interest relating to
extreme systems.

Eaxtreme systems with all weights positive. (Arts. 40-42.)

40. Let there be an eccentric system F, upon an f-gon, the vertices
of which are numbered 0, 1, 2, ... inorder. Let C be a central system
the particles of which at the non-totitive points are of the same weight
as the corresponding particles of E. Then the system E—(C will
have its f—rf non-totitivs vertices unloaded, and its centroid will lie
on the same radius as that of E. In general, however, at some of
the totitive points F'— C will comprise negative weights, and so be
unavailable. We shall now explain how this may be modified; and
for this purpose we re-state, graphically, the results already com-
municated in Art. 47 of the first section of this memoir. To fix
the ideas, the particular case in which f = 15 is discussed ; but the
method is quite general.

41. The totitives of 15 form a group which may be expressed, and
that in one way only, as a product of two simple groups, one belonging
to the factor 5, and the other to the factor 3, of 15. The decomposed

form is
(1.7.4.13) (1.11).

The totitives may therefore be considered as distributed on two
pentagons of the 15-gon, four points of each heing occupied. Cf.
Fig. 1, in which the continnous lines give the deficient pentagon,
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1,7, 4,13, and the dotted lines mark the multiple, 11, 2, 14, 8, Or,
they may be considered as distributed on four equilateral triangles
(two points of each being occupied). These are marked in the
second figure, the continuous line indicating the group 1, 11, while
the dotted lines show the multiples (7, 2), (4, 14), (13, 8).

Fia. 2.

42. Suppose now that the system E— (O has negative weights at

some of the totitive points; say it contains —A;, —A,, —A,, and let
Ag>Ag. If now A, be added to each vertex of the pentagon 1, 4, 7,

10, 13, and A, to each vertex of the pentagon 2, 5, 8, 11, 14 (these
additions being two central systems), an eccentric system is obtained
whose centroid is co-radial with that of E, and which is positively
weighted at the points 1, 5, 7, 8, 10, 11, 13, 14.

Or, we may place a particle of weight A, at each vertex of the tri-
angle, 2, 7, 12; A, at each vertex 4,9, 14; and A; at each vertex
3, 8,13. Wethen get an eccentric system co-radial with E, positively
weighted at the eight points 1, 3, 7, 9, 11, 12, 13, 14, and comprising
no other particles.

These systems with f—rf unloaded points, and the others posi-
tively weighted, are analogous to the extreme systems described in
Art, 37; but the relations between the different forms require further
examination.
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Qeneral method of solving the fundamental congruence. (Art. 43.)

43. The method which gives numerical solutions of the congruence
N+HMat+Na+ ...+ A 0’ = 0, mod. p,

and the means by which it is ensured that no suitable solution is
excluded, will now be explained. For the calculation of the cyclo-
tomic, we require only those solutions

Ap Ay Agy oo Ay
such that o, = N+AN+HN+ A,

does not exceed ¢; though, for a check on the work, it is desirable to
extend the limit to e+1. Hence solutions in small positive integers
are especially required. To obtain these we select the smallest value
.of a, and then express p, 2p, 3p, ... as numbers in the scale of a.
The ‘““digits” in any one of these numbers form a solution of the
congruence. Supposing the multiplication table formed so far as to
include all multiples of p which are less than a’, all the solutions
will be obtained in which the A are less than a. If a is less than e,
this condition may possibly exclude appropriate solutions; but the
solutions excluded thus may easily be formed by replacing any
consecutive A, say Ay, Ay, (including the case k¥ =f—1, k+1 = 0) by
Ai+a, Ay—1. This increases ¢ by a—1: and therefore the number
of times the operation may be repeated is fixed beforehand. Of
course, when a solution may be amplified in this way, every con-
secutive pair of A must be modified, giving f new solutions.

Abbreviated methods. (Arts. 44—46.)

44. The process described enables us to determine the solutions to
any proposed extent, and with no risk of omission. But, unless f and
a are small, the work is very great, and only a small percentage of
the solutions obtained are suitable (7., are such that ¢ < e+1).
As it generally happens, so in this case, many artifices serve to
reduce the labour to a manageable amount. Some of these will now
be noticed.

It is convenient to calculate the central systems separately. When
f is a prime, these are merely 111 ..., 222...,333 ..., &. Whenfisa
power of a prime, then the central systems are combinations of the
central systems for the prime, sandwiched together. For instance,
f=9; the central systems for f=3 being 000; 111; 222, &c.,
the central systems for f=9 are sunch as 012012012 or
021021021. When f is a product of different primes, the central
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systems may be formed by using the theorem of Art. 24. Remem-
bering that some of the 4, B, C may be negative, it is necessary to
examine the solutions formed by subtraction as well as by addition;
and probably it will be found best to make up a special rule for each
case. In the case f= 6, the only case I have worked with, it appears
that all central systems can be formed by addition merely—and a rule
is at once suggested by which the central systems can be written
down in regular succession by an almost mechanical process.

45. The central systems being found as far as necessary, the
multiplication table can at once be safely reduced to a fraction of its
original extent. For instance, when f is a prime the table need not
extend beyond &/~', since all eccentric systems can be derived by
adding central systems to eccentric systems which contain at least
one 0. When fis not a prime, the reduction is considerably more
important.

46. One other contrivance may be mentioned. Take any two
solutions whose total weights are @, o,, respectively. If these, or
any cyclic permutations of them, be added together, the result is a
new solution whose sum is ¢,40,; but if any “carrying’ has been
done in the addition, then for each ‘carrying ” the new o is reduced
by a—1. Asanexampleof this, the caseof p =71, f =7, a = 20 may
be quoted. A multiple of p is found to be 0000.1.19.1 (which means
@*+19a2+1). Adding this to 000.1.19.1.0, the solution 0002101 is
obtained. Another solution 0001.0.1.8 occurs early in the table:
and from these and the central system all the suitable solutions may
be compounded.

Of course, in any such short cut, there is considerable risk of
omitting solutions; but such omissions are detected by trying
whether the value of P,,,, a coefficient of the cyclotomic, vanishes
as it will do if the work has been complete.

Minimum of o for eccentric systems. (Arts. 47, 48.)

47. When f is a prime, it sometimes happens—for instance, when
p =381, f=>5, a = 2—that the value of p, when expressed in the
scale of @,is 111...1. If in such a number two consecutive 1’s are
replaced by 0, a+1, the resulting system is an eccentric system. Hence
there is an eccentric system for which

c=qa+f—1

Probably this is the minimum value of . But, however that may
be, it is easy to show that, in this case, the minimum value of o is
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greater than a. It is clear that a system for which ¢ is a minimum
must contain at least one zero. For a system which contains no zero
an be made by adding a central system to the extreme system
¢ .adial with it. This implies that in the addition there is no
“carrying”: for carrying alters the radius on which the centroid
lies. Suppose the system cyclically transformed so that A, is a
zero. Then

NthatA a4 .. A0
is a multiple of p. But, that this may be possible, at least one of the
A must be greater than a; for, if all of them be made equal to g,
the sum

=a+a’+..+d ' =p-1
by hypothesm, and therefore cannot be a multiple of p. Since, then,
one of the A is greater than a, it follows a fortiors that

o> a.
Since o > p,
it follows further that o> {/p.

48. There is a presumption in favour of the theorem that, when f is
prime, 1 +a+a’+...+a’! is a prime number for an infinite number
of values of a; and that for composite values of f, Fa contains an
infinite number of primes. If this were 8o, it would follow that, by
taking p sufficiently large, the minimum value of ¢ may be made as
large as we please. But the examination of a considerable number
of examples seems to indicate that the inequality, o > {/p, holds
good for all values of p, and not merely for those which have the
specml property assumed in the last article. If this guess is righf,
the inequality ought to be capable of proof without making the
assumption; but I'have not succeeded in finding such a proof.

Determination of B. (Art. 49.)

49. The value of log B having been determined, the value of P
can be found by the rules given in text-books on the theory of
equations. It is unnecessary to dwell upon this further than to
remark that the use of the Q form introduced in Art. 50 appears to
give the reduction with less trouble than the ordinary process.

Conditions that a function gwen by its logarithm should have all its
coefficients integral. (Arts. 50-53.)

50. For the purposes of the present paper it is essential to
determine the conditions that a function, given by its logarithm,
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should have all its coefficients integral, the first coefficient. being 1.
The function will be represented by

14+ Py+Pyf+ ...
Now let

1+ P y+Py’+... =(1-Qy)A—Qy)A1-Q%) ...,
where the = is meant to express that the values of P,, P, ... and of
@y, @, ... up to any assigned extent, are such that the two expressions
are identical up to that extent: so that there is no question of
convergence. In other words, the equation is an abbreviation of the
several statements,

P, = —-Q,
Py=—0

Psz—Qs+Q1Qa &, Q):

Po = _Qﬁ+Q1 Qu+ Qon—Qx QaQa,
&e.
It follows that

log (1+P,y+P,y*+...)
= Q)= —Qy— Y ¥ ¥ _ ¥ ¥
log (1—Q,y) Gy-Q > Qf3 Q|4‘ -Q s Q‘G &c.

+ log (1-@¥') -y -gYr  -g¥.
0
+ log (1— Qs v*) - Qu - Q:%—...
+ log (1—Quy") -Q'
+ log (1_ Qﬂ yb) - Qoyn
+ log (1—- Qs °) — Qo .
+ &e. — &e.

On the other hand we have
log(1+Py+P, ' +..) = —s,y~s, 22/_'_ 3,1/3_’—&&
Hence 6= Q,
= 2Q+@Q),
6 =3%+Q,
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5= 4Q,+2Q2+ @}, (s, @),
5= 5Qs+ @S,
5 = 6Q,+3Q; +2Q;+ @,

and, generally, s =nQut+...+3Q +...+Q,

where 8, &’ are integers, such that 68" = n, and the expression includes
all values of 4.

51. From the equations (P, @) it is seen that, if @, @,... @, are
integers,-then P,, P, ... P, are likewise integers. From the equations
(s, Q) it appears that, for @, ... @, to be integers, it is necessary (but
not sufficient) that s, ... s, should be integers. Suppose that @, ... Q.-
are all integral ; then, in order that @, may be integral, it is necessary
that s, when divided by » should leave a certain remainder which is
determined by the valnes of some of the @ of lower rank. This
remainder is, however, more simply expressed in terms of the s of
lower rank; and it comes out that the relations necessary and
sufficient to ensure that the @ are integers are such as

Sap—8,—8,+ 8, = 0, mod. ab,
Bay—8ap—Sa+8, = 0, mod. a’b,

where a, b are primes. The rule for forming the critical expression
for s, is this. Divide » by each of its prime factors in turn ; use the
quotients as subscripts to s; and denote the aggregate of the s thus
found by 3,. Again, divide » by the product of every pair of
different prime factors. The aggregate of the s whose subscripts are
the quotients may be called 3;. The process is to be continued as
far as possible. Then the critical expression is

8, =3+ 3 —3,+ ...,

and, if this is divisible by =z, @, is integral (presnming that the pre-
ceding Q are all integral).

The analogy of this rale to that for forming the function Fa is too
striking to escape notice.

52. The proof comes from considering the value of the critical
expression when written in terms of @. For instance,

. 8ap—8,—8+8;,
in terms of @, is

ab. Qut+a (Qo—Qu)+b (- Q) + Q- Q- Q+ Q..
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Each of the first three terms is seen to be divisible by ab. The part
containing @, may be written

(Q:)G—Q:— {Q:— Ql}’

@)-&-{Q-a},
so that it is divisible by a, and by b, and therefore by ab. If, then,
Qutr @y @y, @, are integral, s,,—s,—s,+s, must be divisible by ab ;

and, conversely, if @,, @, @, are integral and s,,—s,—s, +8, divisible
by ab, @, is integral.

Again, consider the example
Sa% — Sab~—8z2+ 84
which is = *b Qo+ a* (Qu— Q=) + ab (@ — Qur)
+a (Qd'—Qa— Q@+ Qu)
+@"—Qr— Q7+ Q.
The parts involving Qus Qus Qu, Q. are seen to be divisible by

a’d, as in the first example. The part containing @), is divisible by b,
for it may be written

@y-eo'-{(@r-ai,
and it is also divisible by a?, for
* = @° mod. @, and Q™ = Q® mod. a’,

by reason of the generalized Fermat’s theorem.

53. These examples suggest, what is obvious when the suggestion
has been made, that, when a is prime, the part involving @), in the
expression for ahk is (omitting the external multipliers) of the same
form as the part involving @, in the k% function, and by repeating the
reduction it is of the same form as the part involving @), in the critical
expression for k. Hence it is only needful to consider the part
of the critical expression which involves @,; and this part is written
down by merely changing the subscripts of the critical expression
into indices. When this is done the divisibility by » is seen at once
by using the generalization of Fermat’s theorem. For let n = a°4,
where a is prime and 4 is prime to a. Suppose one of the divisors
of n formed by our rule to be a*B, so that 4/B contains no square
factor. Then a*~'B is another divisor of », also furnished by the
rule, and in the critical expression we have a pair of terms,

+ (@~

a*-1%

)
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This is divisible by a*. As the whole expression can be expressed in
pairs of this nature, it also is divisible by every prime-power in n;
and therefore by =.

Application to series comprised in logB. (Arts. 54-57.)

54. I proceed to show that, if A, u, ... » (written for the A, A, ...
previously used) be any positive integers whose greatest common
measure is unity and whose sum is ¢, then

(no—=1)!n
! np! ... 0wy’

no! 1
s, = —_, =
-4

"Tallapl Lol

satisfies the conditions obtained in Art. 51.

55. It is easy to see that s, is integral. For it may be written

(no—1)! n _ N
Al np! . (ov=1)1 "y~ '’

where N is some integer. Similarly, it is = L/A, M/p, ... where
L, M, ... are integers. But the gret.2st common measure of A, g, ... ¥
is 1, so that the denominator of these equal fractions when in lowest
terms must also be 1; that is to say, s, is an integer.

56. We shall now prove that
8404 (L +ha*) = 8,01 4 (1 +Ka®),
where a is prime, 4 prime to a, and &, k are integers.
This at once gives s, 4 = 8,14, mod. a*;

and hence, as in Art. 53, it follows that the critical expression is
divisible by =.

It is convenient to write B for a*~'4 in some places, and the theorem
to be proved may then be written

88 (1 +ha) = s5 (1 +ka*).

Consider the expression (aBp)! It contains multiples of a, the
product of which is

a.2a.3a ... Bpa = a®. (Bp)!
The remaining factors may be arranged in Ap products of which

the first is ,
1.2,... (a=1)(a+1) ... (a*—1),
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the second is formed by adding a* to each factor of the first; the
third by adding 2a°, and so on. Now, by Gauss’ generalization of
Wilson’s theorem, the first product

= —1+ma*,

where m is an integer. Clearly the other products are of the same
form. Hence the product of all the factors of (aBp)! which are

prime to a
= (~1)*+mas,

and (aBp)! = a®. (Bp)! { —1)*+ma*},
where m is some integer.

Hence, if p be replaced by o, A, u, ... v, in turn, we shall have

=t (eB! 1 (Bl _ (CDVdka
B @B . @Byl ¢ (BN!... (B! (D)% +ha"

for it is at once seen that powers of a cancel. But this is
85+ (L +ha*) = sg. (1+ka*),

where &, k are positive or negative integers.

This result proves that the congruence
8,5 = 83, mod. a*,

remains true when the sides are divided by any common factor,
whether prime to a or not.

To sum up, we may enunciate the results in the theorem:
If A\, p,...v be any positive integers whose greatest common
measure is 1, and whose sum is o, and

s = 1 an!
" ¢ "M!l...wn!’

then exp. (—=3s,y"/n) = 1+ Py+Pyy*+...,
where P,, P,, ... are integers ; and if s, s, ... 8,, ... have any common
factor, say m, then

exp. (=28 y"/n) = (1+Py+Py'+...)"

where P,, P,, ... are still integers.
57. When the greatest common measure of A\, u,...» is p, the

theorem of Art. 54 is not trune; but in this case ps, is proved to be
integral as in that article. The following articles are not affected by
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the change: so that we have the theorem that, when the greatest
© common measure of A, u, ... v is p, then

exp. (—2ps,y"[n) = 14+Py+Py'+...,
where P,, P,, ... are integers not divisible by ».

The eccentric factor of B. (Arts. 58, 59.)

58. Let Ay fy o ¥

be any eccentric system, sach that A, g, ... » have 1 for their greatest
common measure. This system, with its multiples (nA, np, ... nv),
contributes to log B the terms

b sl __n! )
£.22. .

all...ov! n

If we combine with this the systems formed from it by cyclic substi-
tutions, the effectis to multiply this by f, and the total contribution is

_p.zl._ml @)

o nAl..wv! n

This may be regarded as belonging to the point @, which is the
common centroid of (A, p, ... ») and its multiples.
In B there will therefore be a ¢ factor,”
(1—E,y*—Eyy*—&e.)’,

where the B, F,, &c. are integers; and this factor may be considered
to belong to the particular point @ mentioned above.

59. Every point @, in one sector of the polygon, which is the
centroid of a solution of the oft-quoted congruence, contributes a factor
of the same kind. For our present purpose it is unnecessary to keep
these distinct; and we shall write the “ eccentric factor” of P in

the form
C = QA-Ey—EBeny*'~...),

where E, is the first F that does not vanish ; so that % is, in fact, the
minithum value of ¢ for an eccentric system.

This may also be written

1-p (Ehy!+Eh+lytH+ w)s
where F, are still integral ; and; in the beginning, positive integers.
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The *“ third factor " of B. (Arts. 60, 61.)

60. Next consider the case in which A, #, ... v are all multiples of
p, and therefore satisfy the congruence

Apat ... +ve/'=0, mod. p.
But it is supposed that no system of integers
NS, u/d, ... v[d

satisfies this congruence. Then the greatest common measure of
A, @, ... v must be p.

The contribution to log P made by such a system, and the systems
symmetrical with it, and their multiples, is

_p.zl. —--——-na! '.gﬂ‘.

¢ "nAl.. !

But in reducing from the logarithmic form we find that, as remarked
in Art. 57, the factor contributed to P is of the form

1-3.B,y°,
where the E. are integers not divisible by p.
As in the case of the eccentric factor, we express the product of all

the individual factors in one; which is the  third factor ” of B.

61. From the way in which the third factor originates, it is clear
that all the ¢ are multiples of p. If the system

QTS V) = (Xp, P’Pi e V’p)’
and o= d’p,
it will be seen that the f numbers
xl, "I’ vee yl

may be any partition of any integer o', except those which satisfy the
fundamental congruence.

The third factor is of the form
1—y"—&e.,

and the coefficients of the cyclotomic are not affected by the omission
of this factor.

The *“ central factor ” of P. (Arts. 62-66.)
62. The general form of the contribution to logP by a central
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system, and its multiples, together with the cyclic transformations, is

-p 51 (gom) ()

g “go (ml. ) n

where ¢ =A+pu+...4+»; 8o that go corresponds to the o of the
preceding articles, since the sum of the denominator elements is
A+p+..+v)g.

qan!

63. Now the expression Ol L omly?

is divisible by (g!)*, where % is the number of quantities X, u, ... ».

For we have
(A +1) (A 4+2) ... (BA+A=1) (E+1)A
1 2 . A—-1 ’ A

= an integer X (k+1).

Putting herein k=0, 1, 2, ... (§=—1), and taking the product Jof
‘the results, we find that

(_;%" is divisible by g!
Multiplying by the integer (og)!/(¢—\) g! it follows that

. . (eg—Ag)! o e e 1
Similarly, Ga—rg—rg)] (D) is divisible by ¢!

Continuing the process, and multiplying the results, we have

(T!Tfr% is divisible by (g1)"

where o = A+u+...+v, and k is the number of quantities A, g, ... ».
This result is evidently not affected when for o, A, p, ... v we write

na, nA, ... nv, respectively, and the theorem is proved.

64. Hence it follows that

1 __(gon)!
go " (Al ... val)?’
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which is integral, is divisible by

1 .

— @) (g-1)!

if this is an iuteger, or, generally, by the numerator of this fraction
when expressed in lowest terms.
Represent this divisor by d. Then in the contribution to log %,
namely, .
_psl _ (! @
g go' (! . wl) a’

the coefficients of " /n are integers or fractions, according as d is
or is not o multiple of g. And, accordingly, in P therve will be a
corresponding factor awhich is an integral or fractional power of a
geries,

1+ G+ 0y +...

where the coefficients C,, C,, ... are integers. In fact, the denomi-
nator of the fractional exponent will be the denominator of the
fraction d/g when reduced to its lowest terms.

65. Wo can now indicate some of the characters of the product of
the contral factors of ¥ : and firstly in the case when f is prime.
The central systems avo all multiples of (111 ... 1), so thut

g=f k=1, =1,
and therefore d=(f—1)!

Thus the central part of log ¥ is
.- % (f=1)! Sshyvin,

where the 3 covers tue logarithm of a serics, say
140, ¥+ Cy¥+...,

with integral coefficients. The central part of ¥ is this series raised
to the power

—E. (-1t =—e =D - (=2

whereof the last term only is a fraction.

It appears at once that the central factors of B are functions of e
only in the form e. (f—1)! In the tables which follow will be found
verifications of this.
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It also appears thet B, which has all its coefficients integral, con.

tains two factors, (and no more),
(I=fy)" and (1+0,¥+ Oy¥+...)"",
whoge coefficients are not all integers. The product of these must,
therefore, have integral coeficients. Therefore
A=f9) W Q40,5+ 0¥+ .)™ = (L+y+ By +...),
where for B, is written its obvious value, 1. It will be found that, if
we replace
1+0y'+Cy¥ + ...
=1y~ A+y+DBuy*+...)7
the asymptotic factor of
B=>A-f) A+y+By'+..)5*

and other forms may be obtained in which both the O and the B

series appear. In the tables only one combination is shown, viz., the
product of all the central factors into the factor (1 —fy) -,

by its equivalent

66. Tho sig'niﬁcanco of the result of /' -t. 64 is scen in dealing with
the cases in which f is or containg a power. (higher than first) of a
prime. It will suffice to give a particular cxample. Take f=9.
Then ¢ =9,3, k. =1,3. (The value g =1 is excluded because in
b central system on a nonagon the weights cannot all be different;
pvery triangle must have equal weights at its corners). The corre-
sponding values of ¢ are 1 and an indeterminate number respectively.
Yor when g = 9 the system must be a multiple of (1)°, but when
g =3 the system is a multiple of (a, b, ¢)’, where a, b, ¢ are any
positive integers. The values-of d/y in the two cases are 8! = 9 and
313121+ 8¢ =24/a. The first is an integer, and the sccond would
also be integral but for the o: and § would contain one factor only,
viz,, (1 —9y)—1 raised to a fractional power.

% From this a well-known theorem relative to cyclotomics is easily doduced. The
proof for unrestricted values of £ may bo given, as it is very short. We have

P = (1—fy)- W1 . T,
where H and T are functions such as 1+ H, y+ H, 47 + ... with integral coefficients,
and 7), 7;... are multiples of p. Honce, soparating the fractional-power factors,
(1=fy)-W. BY = K,.
another function of the same kind as H.

Eliminating H, P = (1-fy)°. Kr, I
Hence P = (1-fy)% mod. p,
or v+l + P34, .= (n=S)% mod.p, (n= l[y)

VYOL. XX.—No. 361, U
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Ezample of Oalculation of the Asymptotic Factor.

67. An abstract of the calculation of the asymptotic factor of P for
the case f = 3 follows. This will serve to point out the interesting
character of the coefficients @ (Arts. 7, 50). It will also indicate the
origin of the form of the successive coefficients in the asymptotio
factor described in Art. 3. The proof that this form is general, comes
at once from the observation that s, is linear in p (or ¢) when = is not
prime to f; and does not contain p (or ¢) when = is prime to f. The
equation (s, @) and (P, Q) of Art. 50 then give P, the coefficients
in'the asymptotic factor, in the form described (Art. 8).

The results of the calculation are entered, as they are obtained, in
a table such as the following :—

k Sk _Qt.- P,

1|-1 -1 1

21-3 '—_2 2 .

8(—9+2, =—7+66 | —2+2 4—20

4 | —27 | -9 1126

5| —81 ~16 29—4e

6 | —243+80p ~85+196—2¢ | 73—23a+2¢*

= —213+90s 3 ,

71 —729 -104 207—37e+2e‘

8|—o187 ~318 | 574—88e+ 4o
| 9 | —6561+560p, }(—1992+536e |} (4626—1178e

= — 6001 +1680¢ +246'—84%) + 114" —4e%)

To show the mode of forming this table, take the last line. s, con-
sists of two parts, viz., —3%, = — 6561, and a part arising from the
central system (3, 8, 3) of weight 9. The latter is

9t _ =
% ‘373131 = 560p = 560 +1680e.

Thus sy = — 6561+ 560p = — 6001 + 1680e.

Q, is given by the equa,tid'n
8 =9Q+3G,+ @I,
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therefore
9Q, = s, = —6001+1680¢
—3Q) + 24— 720+728—24
-Q + 1
= — 5976 +1608e + 726’ — 24",
or Q, = } (—1992 4 536e + 24¢*— 8c*)
Finally, P,=—Q, =3 (1992— 536e—~ 24¢'+8s")
+Q,0 + 318
+QQ + 208
+Q,Q + 70— 108+ 42e'—de’
+QQ  + 144
—-Q,Q,Q, + 70— 38+ 4
—,Q:Qs + 32— 32

- QQQ + 36— 30e
= § (4626 — 11786+ 1146’ —4¢°)

Tables.

Appended are some tables for f=3,4, 5,6, 7, 8, 9 illustrative of
the preceding paper. They are similar in arrangement,

Under I. are given the formule for the coefficients of 3% 4!, 4 in
the asymptotic cyclotomic. The coeflicients are ranged in order down
the scveral columns. They are expressed in terms of e = (p—1)/f.

Under II,, the same coeflicients are expressed in terms of €, a suit-
able multiple of e. '

Under IIL are given the numerical values of the coefficients for
values of p less than 100. The end of thc cyclotomic is marked by
o | : and the first coefficient that is affected by bhe eccentric factor is
underlined.

Under IV. are given the eccentric factors correspondingto the same
values of ».  The product of III. into IV. gives the cyclotomic (as
far as y*').

In the last column of IIL references are given, such as R. p. 7, to

U2



III.

13
19
31
37
43
61
67
73
79
97

IV.
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the page in Reuschle's Tafeln, on which the corresponding cyclotomioc.

is given,

f=3.

I 1, —(2—4), 26—23e+73,
1, —(2e—11), 26 —876+207, —1 (4e'—156¢'+22076—13305),
2, —(4e—29), 46'—88e+574, —1 (86— 354e’ + 5869e—37707).

-4

e = 2e.

IL 1, —( e—4), 3( —23e+146),
1, —( e=11), 3 ( €—37e+414), —3} ('~ 78642297 —26610),
2, —(2e—29), 1 (2¢*--88e+1148),

(4e*—1146"+1178:—4626),

—3( €= 57 +1178e—9252),

—1 (268 =177+ 5869 — 75414),

,1,2 | 0, 7, 21, 35 141, 414, 898, 3101, 9107, R.p.7
1,1,2,— 4, 3|13 13, 91, 286, 494, 2119, 6461, R.p.13
1,1,2,— 8—1, 5 7|57, 190, 266, 1425 4503, R.p.24
1,1,2, —16,— 9, -11, 43, 37, 94, 82, 645 | 2139, R.p.4l
1,1,2, —20,—13,—19, 85, 51, 94, — 2, 431, 1477, R.p.50
1,1,2 —24, —17,—27, 143, 81, 126, — 166, 249, 991, R.p.65
1,1, 2, —36, —29, —51, 413, 267, 414, —1778, — 745, — 691, R.p.88
1, 1,2, —40, —33, —59, 535, 361, 574, —2002, —1439, —1753,

1,1, 2, —44, —37, —67, 673, 471, 766, —4426, —2421, —3279,

1,1,2 —48, —41, =75, 827, 597, 990, —G414, —8775, — 5457,

1,1, 2, —60, —53, —99, 1385, 1071, 1854,

—15802, —10509, — 16983,

p=2311]1-31("+36y"+42y"+0.9"+...)
87 | 137 (124 305" 497 +...)
43 | 1—43 (3 + 45" + 132y + 1430y +...)

61 | 1—61 (555™+...)

67 | 1—67 (55" +286y™ +...)
73 | 1—173 (4 665"+ ...)
79 | 1—79 (225 +...)

97 | 1—97 (265" +...)
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L 1, (26—7)(e—3), ¥ (4e*—124¢*+15116°— 8693e + 20262),

1,  28—936477, } (46— 1646 + 27236 — 22189 + 76896).
—(26—-2), —3 (4e’—66¢*+880e—771),
—(2e—7), —1 (48—96¢'+851e—2889),

e = 2e.
IL 1,  (e—6)(e—7), % (= 626>+ 151 1¢'— 17386 +81048),
1, 3 (€—23e+154), % (¢4 — 826"+ 2723 — 44378 + 307584)..

~(e—2), % (#—33¢+380e—1542),
—(e=7), % (—48e+851e—5778),

1I.

p= 5|1, 1, ] 0, 5 10, 56, 151, 710, 2160, 9545, R.p.2
13{1,1,— 4, 1| 0, 2, 39, R.p. 15
17(1,1, -6, — 1, 1]17, R. p. 19
2911,1, —12, — 7, 28, 14, — 9, 88| R.p. 35
871, 1, =16, —11, 66, 32, — 73, 30, 44, 741| R.p. 5l
41(1,1,—18, —13, 91, 47, —143, — 7, 72, 551, R.p. 58
53|1, 1, —24, —19, 190, 116, —601, —246, 738, 427, R.p.79
611, 1, —28, —23, 276, 182, —1193, —592, 2307, 956, R.p.89 .
7311, 1, —84, —29, 435, 311, —20659, —1539, 7838, 3867,
891, 1, —42, —87, 707, 543, —6079, —3987, 28512, 16237,
971, 1, —46, —41, 861, 687, —8543, — 5845, 43069, 28796,

IV. p=29|1-29(3y+..)
37 ['1—-87 (¢ +36y°+...)
41| 1—41 (14" +y°+...)
53 | 153 (44" +1655" +39605°+...)
61 [ 1—61 (42y"+...)
73 | 1-73 (15" +...
89 | 1—89 (99y™+...
97 | 1-97 (55" +...

N N N
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2886 —15660¢ + 331282,

2886 — 304446+ 1544418,
864¢'—118788¢+ 7211960,
31686* — 506484 + 33850952,
12672¢* —2238720¢ 4 159612948.

e=4le

1 (&' —1305¢ +662564),

1 (&—2537¢+3088836),

1 (3¢'—9899¢ +14423920),

1 (11— 42207¢ + 67701904),

1 (446*—186560¢ + 319225896).

132, 748, 3388, 15378, 70378, 301114,

~—12, 604, 2956, 13794 | 41 x 1562,
—108, 508, 2668, 12738, 59818, 184834,

1220562, 5910920,

f=
L 1, —(24e—180),
1, —(24e—796),
8, —(72—3532),
11, —(264e—15906),
44, —(1056e—72490),
I 1, —(e—180),
1, —(e—796),
3, —(3e—3532),
11, —(11e—15906),
44, — (44e—72490),
111
p=11(1,1,3]11, 44,
3111,1,8, 11,44, 36, 652 | 3100,
41(1,1, 3, 11, 44,
61)1,1,3, 11, 44,
71(1,1,3,

11, 44, —156, 460, 2524, 12210, 57706, 168490,

1174650, 5718272, 27381104, 130754580.

IV, »=31|1-381(20y°+80y"+...),
41 [ 1—41 (y°+105°+ 634"+ 2313 +988y° +...),
61 | 1—61 (y*+30y"+ 148y°+ 848y° + 882y + 109805 " + 57917y +...), .
71 [1—71 (10y°+ 155"+ 1055° + 616°+ 792, + 13660y"
+ 50790y + 242328y" + 1149635y +...).

1
—(38—3)3

(e—3)(9e—44),

3 (8361 —297¢+670),
—1 (96'—2026* +1467¢— 3472),

1 (27¢*—1254¢° 4 20469¢* —146818¢ +

—(7e—14), —} (456'—961¢ + 7160e—18454).

)

R.p. 10
R.p. 42
R.p. 59
R.p.90

R.p.111

897952),
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p= 7|11 | 0, 7, 35 203, 1099, 6105, 83797, R.p.4
18(1,1,— 3 | 0, 26, 104, 637, 3809, 22074, R.p.16
91,1,— 6,—7 | 0, 88 323, 2209, 18756, R.p.26
31|1,1,-12,—21, ‘1, 5 | 81, 527, 4464 R.p. 44
37|1,1, ~15 —28, 15, 38, =1 | 185, 2257, R.p.52
43(1,1,—18, —35, 88, 104, -7, —6, | 989, R.p.66
61]1, 1, —27, —56, 161, 500, 1, - —1023, — 916,  R.p.92
671, 1, —80, —63, 220, 698, —101, —1960, —1758,  R.p. 102
73|1, 1, —33, —70, 288, 929, —298, —3421, —2921,  R.p. 122
7901, 1, —36, —77, 365, 1193, —617, —5541, —4414, R. p. 135
971, 1, —45, —98, 650, 2183, —2576 —17205, —9748,
IV. p=43]|1-43 (/+225°+...),
61 | 1—61 (144°+2105°+1062y" +...),
67 | 1—67 (45°+93y°+1260y" +...),
73[1=73 (3°+...),
79 | 1-79 (12y°+...),
97{1—97 (155" +...).
f="1
I, 1L 1, —720e+23412 = —e+23412,
1, —720e+ 146865 = — e+ 146845,
4, —2880¢+ 930385 = —de+...,
20, —14400¢+ 5955040 = —20e+...,
110, —79200e+38439040  =—110e+...,
638, —459300e+249861680 = —638e+...,
3828, —2756160e+ 1633746320 = — 3828e+...
. (e=6!¢).
IIL p=29|1, 1, 4, 20, 110 | R.p. 36
431, 1, 4, 20, 110, 638, 3828 | R. p. 67
711, 1, 4, 20, 110, 638, 3828, 16212, 139645,
901585, 5811040 | R.p. 112
IV, p =29 |1—29 (3y*+195°+...),
43| 1—43 (v°+ 124"+ 265°+ 23047 +...),
71|1-71 (3y +4y° +85y° +135y + 1245y + 7916y°
+4,8363J'°+ )
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— (4e—4),
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8¢'—58e+ 152,
8e'—142¢+ 1034,

~} (826°—600¢" 4 4888e—20943).

[May 9,

— (46—25),

II.

—(6_4):

e = 4e,

1, % (6 —29¢ +304),

1, % (¢—71¢+2068),

—51_, (8 — 75+ 244de — 41886),

- (5_25%

I p =17
41
73
89
‘97

1L 1,

IIL. p=

, — 4
, —16,
, =32,
, —40,
, —44,

| 17,

5,
11,
—19,
—23,

62,
278,
482,
608,

524 | 2501,
404, 741,
440, — 939,
482, —2203,

1
1
1
1
1

b e ek

1

1—41 (4" +12°+ 65y°+...),
1—-73 (65°+10y°+...).

9.
— (6e—31),
— (6e—221),
— (30e—1637),

18¢* — 591e+12510,
18¢*—1731e+ 98618,
90e'—11847¢+ 789617,

€ = Be.
—(e—31), 3 (e2—197¢+25020),
—(e—221), 2 (8—577¢4+197236),
—(5¢—1637), 1
1, 1,
1, 1,
1,

| 19,
7
’ —17’

5
5 197 |
5 173, 1397,

(56 —3949¢ —1578334).

R.p. 20
R. p. 60
R. p. 123
R. p. 149
R. p. 162

R. p. 27
R. p. 53
R. p. 124
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