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ON THE ZEROES OF CERTAIN CLASSES OF INTEGRAL

TAYLOR SERIES. PART II. —ON THE INTEGRAL

FUNCTION

n=o(n+a)8n\

AND OTHER SIMILAR FUNCTIONS

By G. H. HARDY.

[Received August 20th, 1904—Revised* October-November, 1904--Read November 10th, 1904.]

1. This paper is a continuation of one recently published in these
Proceedings.} The general object of the two papers is the same, but the
methods used and the results obtained are of entirely different types, and
I have therefore judged it best to keep the two distinct.

Introductory Remarks.

2. The principal end which I have had in view is to determine
asymptotically the zeroes of the function

(1) Fa.M = 2, ,a* ,
' o (n+a)sn\

[where (n+a)s = e
8l08^n+a\ the imaginary part of the logarithm being be-

tween — iri and TTJ] for all values of a and s, real or complex, except, of
course, negative integral or zero values of a. In endeavouring to obtain the
complete solution of this problem I have naturally been led to consider
other varieties of functions of similar types, some of which include the
particular function (1) as a special case. I have not hesitated to include
proofs of these results in this paper, when such developments do not
diverge far from the natural course of the analysis required for the
discussion of the function (1); but, when this course would have led to a
considerable increase in the length and complexity of the paper, I have
confined myself to a general indication of the results and of the methods
by which they can be proved.

• This part has been entirely rewritten, and some of the results considerably extended,
t Supra, p. 332.
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In what follows I consider only the half of the plane of the complex
variable
(2) x = g+ir, = reie

for which >/ ^ 0. The corresponding results for the lower half of the
plane may be deduced immediately. By drawing a semicircle whose
centre is the origin and whose radius is a sufficiently large fixed quantity
BQ, and the radii vectores 6 = ^TT + 8, where 8 is also fixed, but arbitrarily
small, we divide the distant part of the plane into three regions

(D) r^R0, O<0<^7r-5,

(D') r > B 0 , i7r+(5<a<7r,

(E) r>JB0, £*—d<0<iH-<5,
within which the behaviour of the functions which I shall consider is
entirely different. It will perhaps be convenient if I state at once the
principal results which I obtain concerning the function (1).

I. Throughout D

(3) FatS(x) = ^

where e.c is a function of x which tends uniformly to zero with 1/r.*

II. Throughout D'

(4) Fa>s(x) =

In these equations xs, (— x)~a, |log(—a;)}""1 are so chosen as to be real
when x, a, s are real.

III. Throughout E

(5) Fa<s(x) = £ 0|
In these results a and s may have any values, real or complex, save

zero or negative integral values. From III. the nature of the zeroes may
be very precisely determined. Thus

IV. If a and s are real, the zeroes of Fa)S(x) are given asymptotically t
by the equations

= (s-a) log (2b) + («-l) log l

where A; is a large positive integer.

* I use tx generally in this sense, sometimes omitting the suffix. Of course ex is not the
same in different equations.

t For a precise definition of what iB meant by this see Part I . , supra, p. 333.
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If a and s are complex, these formulae require a slight modification.

So far, zero or negative integral values of a and s have been excluded
altogether. If a is zero or a negative integer, Fa>s(x) is no longer denned.
On the other hand, if s is zero or a negative integer,

V. The function FaiS(x) reduces to the product of ex by a polynomial,
and has but a finite number of zeroes. It will be seen in the sequel that
greater precision can be given to some of these results, notably to I.

The paper is divided into four sections. In Section I. (§§ 3-13)
I consider the region D, in which the functions under consideration have
no zeroes ; and in Section II. (§§ 14-22) the region D', of which the same
is true. I have in Section I. considered the function Ftt> s (x) as a particular
case of a certain class of functions, and I have endeavoured to make my
method as direct and elementary as possible, avoiding the use of contour
integrals and other contrivances, which, although very powerful aids to the
obtaining of particular results, are apt to obscure the basis on which they
rest. In Section III. (§§ 23-31) I consider the region E. The analysis in
this Section (as, in a less degree, in Section II.) is more difficult and in-
direct, the problem being inherently less simple, and I have not attempted
to deal with more than a few special functions besides the function
Fa, s{x). Finally, Section IV. (§§ 32-37) is taken up with a brief discussion
of several matters naturally arising out of the previous work.

It will be found in the case of the asymptotic expansions discussed in
Sections I. and II. that to each of the regions D and D' corresponds a
special function whose asymptotic expansion is of a particularly simple
character, reducing, in fact, to one term. For D the function is

and for (DO it is i + — £ _ + _ ^ _ + . . . .

The results, so far as they concern these functions, are particular cases of
results which have already been arrived at from a different point of view
—that of the theory of linear differential equations—by Horn, Jacobsthal,
and others. Horn has also considered the question as to the nature of
the places in which the integrals of the equations assume assigned values,
and, in particular, of their zeroes,* but his approximations are much less

Crelle, Bd. cxx., p. 1.

2 D 2
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precise than mine. The general types of functions considered here are,
of course, not solutions of linear differential equations at all.

I. THE REGION D (r>.R0, O < 0 < £ T T — S ) .

The Function 2 _ , T,®, „ x\

3. It will be found that there are certain functions whose behaviour
in D (or D') can be specified in a particularly simple manner. In the
case of D the function

(1\ f (r) — 2 W n A I I

is such a function.
Let us suppose first that R (s) > 0. Then, by the help of the formula

we find that*

(9) /.<*) = ( e^d-uy-'du,

where (1—w)s-1 = e(s-\)\og(\-v)^ ^ iOgarithm being real. Hence

(10) / , (*) = (? \ e-*" co8-1 dw = & (x) -fs (x)
Jo

where

(11) A, (x) = (? T e"* a)8"1 dw = r (s) x~s ex

Jo

(x~s being defined by x~s = e~sl0%x where the logarithm is real with x) and

(12) \frs (x) = e* | e'*" to3"1 dco.

Thus

(13) / , (a;) = T (s) arV—e* e'*" w5"1 dw
Ji

when R ( s ) > 0 . But it is easy to see that the right-hand side of (12)
represents an analytic function of s regular for all values of s, save
negative integral (including zero) values. The equation (13) consequently
holds for all values of s, with these exceptions. Now, we find easily by

* The term by term integration is easily justified.
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integration by parts that

(14) \[r,(x
X X'

But

r"*00891 aT" | dw < f e-
rtcose\ 1 +1\s~vdt < Kv.>

Hence, changing v into v+1,

(15) /.(s) = r i

where \R\<y-

That is to say, the asymptotic expansion of fs(x) in D is

and the asymptotic expansion of e~xfs{x) is

(17) T(s)x-S

simply; for |e~'e/s(
a;)~r(s)^~s| decreases with 1/r more rapidly than any

power of 1/?'.
1 may remark that the extension of (13) to general values of s, which

was inferred from the principle of analytic continuity, may be deduced
directly from the formulae

(18) (V
Jo I "=0

(19) f -!e-*- 2 (-)Ju I oI i/=o

which hold for a wider range or values of s than the ordinary Eulerian
formulas ;t in each of them p is the greatest integer in B.(—s), which is
supposed not to be integral.

* For an explanation of my use of K see Part I., p. 336 (footnote). By using Kv I imply
that the limits of K, may depend on v, but not on x.

t The formula (19) is attributed by Mr. Whittaker to Saalschiitz (see Modern Analysis,
p. 184) ; but it really dates from Cauchy (" Sur un nouveau genre d'Integrates," Exercices dc
Alath.,t. i., p. 57).



406 MR. G. H. HARDY [NOV. 10,

The Function exu{l—u)s-l\fs{l—u)du.
Jo

4. I shall now consider the more general function

(20) ¥, (x) = f exu (1 - uy-1 \lr{l- u) du
Jo

where R(s) > 0. I suppose that \fr(w) is a function expansible in a Taylor
series „ _• , .

whose radius of convergence is at least equal to unity, and that, if

(21) ^(a>) = 2 | cv | w",

\js (to) dw is convergent.*

I propose first to show that under these circumstances ^t(x) can
be expanded in a series

(22) icvfs+v(x)

convergent throughout D.

5. Consider the integral

(23) Ifo,^) = [ e™a-uy-ldul,cka-u)k.
Jo *

We divide the range of integration into the two parts (0, e), (e, 1). We
can determine a positive quantity K, independent of /u. and //, and
greater than the maximum of

eni(l—u) I s — 1

in (0, 8), 8 being any small fixed quantity greater than e. We can then
choose e so small that the modulus of the integral over (0, e) is less than
any given small quantity <r ; for it is obviously

< K \ du 2 Cfc (1—u) < K \ls(u)du.
Jo M Jo ^

When e is fixed the series 2cfc(l— u)k is uniformly convergent in (e, 1).
Hence /* can be so chosen that

exu(l-uy-1du'lcka-u)k

A more stringent condition than that which merely asserts the absolute convergence of
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for all values of fx' > /u, and hence so that

| HfJLifi')\ < 2cr

for all values of y! > ix. It follows that

(24) %(x) = | oc , / s + , (x) ,

by a deduction so obvious that I need not set it out in detail.*

6. Again, if /x is any positive integer and

(25)

(26)

v=0

*"(l-ic)s-ldic ick(l-it)
k.

Let us divide the range of integration into the two parts

(0, l-<5), (IS, 1)

where S = £~K (0 < X < 1).

Then

(27) I T * < K&-™ T xf,(
I Jo Jo

(u)du

Moreover, it is plain that throughout (1 — S, 1)

< K{l-uY < Sf- = £~\

and so

(28)

Thus

<

(for sufficiently large values of r), or

(29) < K

since £ > Kr throughout D.

£

* Generally, if
(A-t [A-.
I 9(u)2<t>n(u)du = 2. \ S<p,,du
Ja la

(A -

for any « > 0, we may replace e by 0 if (i.) 0 is continuous up to A, and (ii.) I <p (u)du is con-

vergent, where <p (u) = 2 | <̂ n (M) |.
This set of sufficient conditions for the integration of an infinite series is often useful in practice,
as it covers certain cases which frequently occur and are excluded by the ordinary tests.
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Again, we can choose R so that, if r > R,

where

(30) | p | < K»
x"

Hence %(x) = <f "s C-^^ + Pt
0 X0

where p again satisfies an equation of the form (30). Now X/x tends
to infinity with /JL, and so, finally, putting m = [X/z],

(3D %W= e*"i

where | p | < Km \x~mex\. It is easy to see that we can, if we like,
replace this last inequality by | p | < Km \ x~^s+ril+1)ex | : and we may sum
up the result by saying that the function

possesses an asymptotic expansion

(32) J

valid throughout D.

Extension to General Values of s.

7. Throughout §§ 5, 6 it was supposed that R(s) > 0. In fact the
integral by means of which ^s{x) was defined is evidently divergent when
R(s) ^ 0. We might generalise our result by the use of contour integrals
instead of line integrals, but for my present purpose it is more convenient
to proceed as follows :—

We shall, in the sequel, be occupied with functions ^s{x) which
(i.) are analytic functions of s for all values of s save (possibly) negative
integral or zero values; (ii.) are expressible, when K(s) > 0, in the forms
(20) and (22).

Now suppose R(s) < 0. We can choose k so that R(s+A;) > 0.
This being so, it can be shown, by the method of §§5, 6, that the series

(33) *?>(a?) = | cvfs+v(x)
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is convergent, and that rcse~x"^fc)(a;) possesses the asymptotic expansion

2cvxT(s+v).
k

Moreover, it appears that the function (33) is an analytic function of s
for all values of s for which R(s+^) is positive. The equation

is therefore valid for all such values of s save 0, — 1 , ..., —(k—1). From
this it follows at once that the conclusion of § 6 holds for the function
^s(x) for all values of s save zero or negative integral values.

Examples.

8. Before proceeding further I shall illustrate this result by some
examples.

(i.) Suppose that we write a for s, and that

where 22(0) > 0. Then

" 1.2. . . * "

It is easy to see (by a glance at a figure) that, however small K may be,

after a certain value of v. Hence it follows that, after a certain value
of v, | c | is less than the coefficient of x" in the expansion of

Now K can be so chosen that l+/c—R(/3) < 1, in which case

f1 dx
J (l-x)t1+

is convergent. The condition of § 5 relative to yjs{u) is therefore satisfied.
We find easily that

(3

and the asymptotic expansion of e~x^a{x) is

provided that R(0) > 0, and that neither a nor a + 0 is a negative integer.
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The first restriction is easily removed by the help of an obvious recurrence
formula for ¥a(x), unless /3 is a negative integer. The cases in which £
or a+/3 is a negative integer are obviously trivial. If a is a negative

integer, the function 1 + -—<——£ x+... may be easily reduced to the form
l . a + p

where P(v) is a polynomial. This is one of a class of functions which
may be reduced to the product of e° by a polynomial.

The asymptotic expansion found for \[sa(x) in D has been otherwise
obtained by W. Jacobsthal * from the point of view of the theory of linear
differential equations.

(34)

9. (ii.) Suppose that

— W

a and s having their real parts positive. Then

(35) ¥.<*)

—f— = T(s)Fa>s(x),(v+ayv\

if if = ealogu and |log (1/w)!'-1 = e(s-1)loglO8(lH), logw and log log (1/w)
being real, while (v+a)s is defined as in § 2. If a- and s are real, it is
almost obvious that, from a certain v, cv is positive. Otherwise it may be
verified by an extension of the argument used in the preceding section,
that the condition concerning \js (co) is satisfied. Thus we find the
asymptotic expansion

(36) r (5) xse-*Fai,(x) = 2 C " r {s+v)

xv

where cv is the coefficient of w" in (1 — to)0"1] — log (- )[ ; so that,
I CD M — C O / )

in particular,

(37) c o = l , Cl = £(l+s)—a, ....

This is valid throughout D if the real parts of a and s are positive. This

* '• Asymptotische Darstellung von lijsungen linearer Diff.-gleichungen," Math. Annalmi,
Vol. LVI.. p. 129.
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restriction is not, however, essential. The restriction as to s may be
removed by an argument similar to that of § 7, notwithstanding that the
coefficients cv depend upon s. The restriction as to a may be removed if
we choose k so that B,(a-\-k) is positive, and consider the function

(88, j ^ w
S W

 MIo («+/>c)s M! Jo 1 ,to M ! J 1 B VI - W i """

But I do not propose to go into the details of this here ; for when I come
to consider the region E, which it is difficult to deal with satisfactorily
by the comparatively simple and direct methods of this part of the paper,
I shall have to apply to the function FatS(x) a different and less elementary
treatment which leads with greater ease to the desired extension. The
only exceptional cases are those in which a or s is zero or a negative
integer, the cases which were indicated as exceptional in § 2.

10. When x, a, and s are real and x positive, the dominant terms in
the asymptotic equations for fs{x), Fa,,(x) may be deduced very easily from
a formula given by M. le Roy, who has proved * that, if

o

where 0 (n) is a positive function such that it and its first derivate <p' (n)
tend steadily to GO for n = co, while cf>" (n) tends steadily to 0, then for
large values of x

where £ is defined by the equation <p! (f) = log x.

11. The general form of the coefficient an in the Taylor's expansion of
^ i (x) is easily seen to be

Thus, for instance, in the first example of § 8,

a = 1 y rq

* Bull, des Sciences Math., t. xxiv., p. 245.
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We saw otherwise that
_ T(a)T(j3+n) ,

a

and the two results agree in virtue of a well known property of the
hypergeonietric series.* A more general form of alh which we might take
would be r , v

a = ^

corresponding to \\s (1 —u) = {1 — t (1 — u) [ f*'1.

12. Instead of starting with the function / , (x), we might have started
with the function

f ( \ = y 1 . 2 . . . n n

defined, when R (s) and R {t) are positive, by the double integral

enw{l-u)s-'l{l-v)t-1dudv;
o Jo

or from other more general functions which suggest themselves im-
mediately. + But, as I said in § 2, I shall content myself for the present
with indicating these generalisations.

13. Before leaving this part of the subject I may point out an inter-
esting application of these results to the theory of multiform functions,
defined by Taylor's series, with finite radii of convergence.

Application to the Function <f>{x) =

1 (p + 1) —o 1 (a+l+i/)
e~l tpfa{tx) dx

o

if | x | -< 1 and B (̂ 8) >> — 1. If x approaches x = 1 along any path which
does not meet the circle of convergence, tx = it, approaches infinity along
a path lying entirely within the region D in the w-plane. Hence

where \B\<K.

• Forsyth, Differential Equations, p. 199.
t The dominant term of/,, t (£) is easily proved to be T(s) r{£) as-*-* c".
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Now, if ft—a + 1 has its real part positive,

~ltpRdt(V
Jo

<K.Moreover,

It follows that

(40)

where 0(a?) remains numerically below a finite limit as x approaches x = 1
along any path lying inside the circle of convergence. This result may be
verified by means of the relations between the particular integrals of the
hypergeometric differential equation.

The condition R(/3) > 0 may be removed without difficulty, either bj' a
recurrence formula or by the use of a contour instead of a line integral.
If R(/3—a + l ) < 0, the series for </>(l) is convergent. If R(/3 — a + 1) = 0,
the result still holds unless ft — a + 1 = 0, in which case the part of </> (.r)
which becomes infinite is easily found to be

And, obviously, similar results may be obtained for such functions as

« /»«

n=o (n+a)s

It is not difficult to determine the limit of O(x) in (40), and of the corre-
sponding term in the similar formula for the function (41); but to enter
into this would carry me too far from my subject.

II.—THE REGION D' (r > BQ, $ir+8 < 0 < ir).

14. The functions which we have been considering belong to a class
of which it may roughly be said that they exhibit their most characteristic
behaviour in the region D ; and, notably, for real positive values of x.
An obvious illustration is provided by the function e':—P(x), where P
is a polynomial. The dominant term of all such functions is the same
in D; in D' it depends on the particular polynomial chosen. It is then
not to be expected that the easy analysis of I. will be be equally effective
now.

In this section I shall consider the function $a,s&) defined (when
R(«) and R(s) are positive) by the equation
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(42) *rti s(x) = j 1 ^ " V 1 jlog ( i ) |'"*x/,(u) du,

where >p-(u) is a function of u subject to certain conditions. I shall not,
however, treat the function in its most general form, but I shall consider
only two cases: (i.) the case in which \js(u) = 1, (ii.) the case in which
s = 1.

The Function exvu"~l\fr(u)du.
Jo

15. I shall consider first the function which is defined, when R(a) > 0,
by the equation

(48) #«(«) = \ e^u'^xJA^du,
Jo

where \fr(u) is a function satisfying the same conditions as ^(a>) in § 4.
The simplest case is that in which \fs(u) = 1, i.e.,

(44) $„(») = 2 ** = Fa>l(x);
o (a+n)w!

this function more or less fulfils the rule of " simple element" fulfilled
by f,(x) in I.

It is evident that

(AK\ W f.r) — •*• W _ paiiia-'i (111

where (—x)a = e
a]og{~x\ the logarithm being real for real negative values

of x ; and this formula holds for all values of a save negative integral
values (including zero). We easily find that

(46) ( exuua~ldu = ex
X(x)

where xO&) ia a function which possesses the asymptotic expansion

(47)

so that

where | p \ is for sufficiently large values of r less than any power of 1/r ;
in other words, we may say that the complete asymptotic expansion of
F-M is <»-r«o
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16. Now consider the more general function $a(x) of (43). We can
prove, as in §§ 5, 6, that, if /x is a sufficiently large positive integer and

(49) $a,r{x) = M2 cvFa+Vtl(x),
0v=0

then

(50) M^ ('7*1 "̂™" Cp ('7*1 1 ' I p ^ 7/ (J'iJ s f* *lt^

Jo »*
We divide the range of integration into the two parts (0, 6), (5, 1) where

S = (-i)'K (0 < X < 1),

and we prove by analysis similar to that of § 6 that

'o

finally deducing that, throughout D', ^(.x) possesses the asymptotic
expansion

Thus, for example, if a• = /3, and

where R(a) > 0, we obtain for the function (i.) of § 8 the asymptotic

expausion 1

In particular, if (3 =• 1, we obtain for the function fa (x) the expansion

This again agrees with a result of Herr Jacobsthal's,* and the restriction
on a is easily removed.

The Function Fa,s(x).

17. I come now to the question of the behaviour of Fn>s{x) in D ' ;
and it is at this point that we begin to feel the need of more powerful
analytical machinery.

I start from the equation

Fa< Ax) = S x' = A - P e™ua-1 \ log (—) Y'1 du,
v\ {v-\-a)s T(s) Jo [ \ u / )

• I.e.
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valid when the real parts of a and s are positive. To obtain a formula
for Fa)S(x), valid for other values of a and s, I consider the integral

(52)

taken round the contour in the plane of u = cre^ formed by (i.) the
positive real axis from p to 1—p and from 1-f-p to B, p being small and
B large; (ii.) the radius vector <p = TT—6, from <r = B to a = p ;
(iii.) arcs of circles whose centres are at the origin and whose radii are
p and B; (iv.) a small semicircle of radius p described around and above
the point u = 1 (see Fig. 1).

FIG. 1.

It is easy to see that the contributions of all the curvilinear parts of
this contour tend to zero when p tends to zero and B to infinity.

We start from p towards 1—p with

, .a-l — .(a-l)logu

log u and log log (1/w) being real. If u = 1—pe**,

—) = log p+i

When u is at 1—/>, \}s = Q, and as u goes round the small semicircle
\fs decreases to — ir. When u is at l-\-p, log log (1/w) = log/a—iir-\-...,
and so the value of |log(l/t<.)}s~1 along the line (l+p, B) is defined by

where (log u)*-1 = e

log log u being real. Thus the contribution of (i.) is ultimately

T emua-x jlogf—)V~ldu+e-(s-1)Tli[ rt""1 (loguf^du,(53)
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with the above assumptions as to the values of the many-valued func-
tions involved.

Again it is easy to see that the contribution of (ii.) is

(64) _* .<-* £ g-r^-i I log ( J - ) }dor,

where the path of integration is real, aa~l = e
(a~l)log<r, log o- being real, and

|lOg / J L . U ' ~ 1
=

that branch of log \ — logo-+i{0—ir) \ being taken whose imaginary part
is very small with o\ Thus, by Cauchy's theorem, we arrive at the
equation

(55) T(s)Fa .(a?) = *•<-•»' ( e^o*-1 \ - l o g o - f i (6-ir) Is-1 do-
Jo

—e{s~l)ni f emua~x (log u)3-1 du

_ ea(n-0)i r-a f e-«^»-l { l o g r — \0g t + i (6 — 77") [ *"i &t
Jo

_(f-(s-l)ni f grt(l + )̂«-l jlogd + i)-1} dt,
Jo

on transforming the two integrals by the substitutions <rr = t and
u = 1 +1 . This formula, which I shall write in the form

(56) T (s) Fa>s(x) = f<*-Oir-aA -ec-^~l^i B,

is valid if the real parts of a and s are positive.

Introduction of Loop Integrals.

20. This formula is easily generalised so as to cover all values of s
save negative integral values. For consider the integral

[exta + t)a~l \log(l + t)\°-ldt,

taken round the contour G shown in the figure (Fig. 2), including the

~~te
o c /i1'

Fio.,2.

8KB. 2 . VOL. 2 . NO. 877 . " E
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positive half of the real axis, but excluding the point t — — 1. The
values of the many-valued functions are to be so chosen that, if t moves
along pp', they assume at p ' the values already assigned to them in B.
Then, if B. (s) > 0, the contour C may be transformed into the limit of
the contour C (see the figure) and it is easy to see that

f = jl-e-2«<*-l>f£,(57)

{log(1 + 0 \$~l being multiplied by e2™^-1) by a positive circuit round the
origin. Thus

(58) r (s)Fa.(x) =

This formula is valid for all non-integral values of s; while (56) is valid
for all values of s whose real part > 0. Thus one of (56) or (57) is valid
for all values of s save negative integral or zero values of s. In both,
however, R (a) > 0.

21. Now it is easy to see that throughout D'

(59) \B'\< K(-i)*,

where y is a real constant. For, if we take C to be formed by two lines
practically coinciding with the real axis, and a small circle of radius p ,
then along the circle

I «-* | < «-*, | (l+ff1-1 {log a+t) Is-11 < KP«-\
where s' = R(s); so that the modulus of the contribution of the circle is
less than Kp*e~*p. If we take p = —1/£ this is less than Z(—£)~8'.
Again, the contribution of the rectilinear parts is in absolute value

where S is any small quantity > p . It is easy to see that, if we take
S = log(—£)!(—£), the first of these terms is less than K{—€)l~s', and
the second less than K/(—g). Hence the second term of (58) is in
absolute value less than Ke*(~£)y, or, what is the same thing, less than

22. Again
A n \s-i f° -t^x-ifi los t—i(6—TT))3'1 j .A = {log r) \ e r j l n— \ at,

Jo i logr .1
and it is easy to see that the limit of this integral for r = oo is

I e-tp-^dt = T(a).
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I omit the formal proof of this, which is a little tedious, and in no way
particularly interesting. Hence we arrive at the following conclusion :—
for all values of 6 such that %TT-\-8 ^ 6 < ir

(60) Fa,8 (x) = ^ | ( - a ) - (log r)s-1 (1+ex)

where ex is a function of x which tends to 0 for r = oo , and that uniformly
for all values of 0 in question, being, in fact, numerically less than
if/log r. Here (-x)~a = r-«g»<»-«>«,

which is real for 6 = TT. Again (log r)8"1 = {log (—a;)}8"1 (1+e). Finally,
from the uniformity of the convergence of lim ex, we infer that the equation
(60) is valid also for 6 = TT (as may be proved independently). We have
thus proved theorem II. of § 2 with the sole restriction that R (a) > 0.

This last restriction also may be removed unless a is zero or a negative
integer. For, if xQ is a fixed point in D' and | x \ is large, and the path of
integration is rectilinear,

where G is independent of x. Now

(-x)-a{\og(-x)\s-ldx

- a ; ) i s " i T + f ^ r (-*)-°{iog(-
J*o A — a Jx0

The first term may, if 0 < R (a) ^ 1, be put in the form

while the second is in absolute value less than

K \ r~a (log r)s~2dr < Krl~a (log r)s-\

Final ly, it is easy to deduce from the inequali ty \ex\ < K/log r t ha t

{-x)-a{\og {-x)}8-lexdx <Krl~a(logr)s"2.
>

Thus, finally, Fa.1)S(x) = r ^ ~ 1 ) ( - a ; )
1 - a G o g r r ' d + e , ) .

it
If we write a for a—I, the range of (60) is extended to all values of a
other than a = 0, for which R ( a ) > — 1 . Repeating this process of
extension, we arrive finally at the complete proof of II.

2 E 2
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III. THE REGION E : THE ZEROES OF Fa>s(x).

28. It follows from the results of I. and II. that there are infinitely
many zeroes of Fa,s(x) within the region E. In order to determine them
more precisely it is necessary to determine an asymptotic formula for
F(lt s (x) valid within this region. We must distinguish three cases—the

cases in which g ~ 0.

The case g<0.

24. The analysis which led to (58) assumed only that g < 0, and the
formula is therefore valid for all such points of E. The same is true of
the reduction of the first term on the right-hand side of (58) to the form

T(a)(-x)-a{\og(-x)\°-x(l+er).

But we must now consider the second term more precisely. We therefore
turn our attention to the integral

(61) I--

The real part of x being negative, it is easy to see that we may replace the
contour of integration by a similar contour Ĉ  enclosing the origin and the
straight line for which ± a, , a

° t = re^, <p = n—a.
This contour we replace by a contour C[ similar to the contour C of § 21,

taking the radius of the small circle to be 1/r. Now

where (—x)° = T V " * 1 * and

(62) R = \
J(

We can prove, as in § 21, that the absolute value of the contribution of the
circular part of the contour is less than ifr"87"1. The absolute value of
the remaining part of B is less than

K (" e-n | (l+T^y1-1 log ( l + T ^ r 1 - ^ - 1 ^ - 1 ^ \&r =
Jl/r

where 8 is less than unity. The first term is less than

rfl'dr<K(S8'+1-r-''-1),
l/r

and the second than Ke~rS.
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If we take S = K log r/r, where / c > s ' + l, both terms are small in
comparison with r~s', and so
(63)

and that uniformly for all values of x whose real part is negative. Hence

(64) Fat8(x) = j^A-x) ^ 4

where (—x)~a = e-
al°g<-*>, and xs = e-

sloe(x\ the logarithms being real
on the negative and positive halves of the real axis respectively, and ex, el
are quantities which tend uniformly to zero with 1/r for all values of x
whose real part is negative. Owing to the uniformity of the convergence
of the limit in (63) the formula is also valid when E(a;) = 0. The
extension to values of a whose real part is less than 0 is much the same
as before. We have only to make the almost obvious additional remark
that when /' is large r% % %

' ^ = 1(1+^+0

where G is independent of x.

The case f > 0 .

25. It is of importance for our present purpose to prove that the
formula (64) is valid also for those points of E whose real part is
positive. The proof of this is so similar to the preceding analysis that
I shall merely indicate the principal steps in it.

We 8 tart from the formula

\\JO} • • x \o-j-A.' dt g\JUJ — e i c \j. ~~ Ui) "j i u y i

Jo v VI
valid, like (35), so long as the real parts of a and s are positive ; and
we consider the integral

e-~(i-ur-> [log

taken round a contour which only differs from that of § 17 in that the
radius vector (ii.) is denned by (/> = —$ and that the semicircle (iv.) is
turned downwards. By arguments similar to those of § 17, we arrive
at the formula

(66) T(s)Fa>s(x) = e*-i9 f e-^d-o-e-49)0-1 {log (\—?—) V'1 dor
Jo \ VI—ore / ;

e-xu(u-l)a-l\-\osL(u-\)—7ri\s-ldu
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where in the first integral ( l - o - e - ^ " 1 = e(a-1)log(1—~\ the logarithm
vanishing for <T = 0, and

wherein

when o- is small; while in the second integral fa—I)*"1 = e(«-i)i<»s(«-i)j

the logarithm being real, and

j - l o g fa-1)-Trip-1 = e x p [ ( s - l ) l o g { - l o g f a - l ) - 7 r i ( ] ,

log fa—1) being real and log {— log fa— 1)—iri] having its imaginary
part small when fa—1) is small.

We transform each of these integrals as in § 19, obtaining

(67) T(s)Fa>s(x)

where in the first integral the last bracket, when expanded in powers of
t, starts with the term 1 +

The first of these integrals must be replaced by a loop integral when
K(s) ^ 0, as in § 20. Finally, by arguments similar to those of
§§ 22-24, we arrive at the asymptotic formula (64).

The Zeroes of Fa>s(x).

26. We have then the asymptotic formula*

(64) FUtS(x) = j$(-z)-{\og{-x)\-1a+el+ ^U+e'J,
1 \S) X

valid for all points of E, and all values of a and s other than negative
integral values. If x = i+iy is a zero of FaiS(x),

* In this section I suppose, for simplicity, that a and s are real. The necessary modifications
when they are not are easily made.
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Now r = n (1+e), log r = log r, ( l+e) , and 6 = ^Tr+e. Hence

(68) ^M^ ( g , ) y
1 \S)

Equating the moduli of the two sides, we find

(69) e* = ^

(70) £ = (s-a) log >/+(s-l) log log i + l o g ^ +e.

Dividing (68) by (69),

(71)

or

(72) 4 =

k being a positive integer. From (70) and (71) we deduce the asymptotic
formulae

f £ = (s-a) lQg (2M+(s-D log log fe+log

Thus, the zeroes of JF^ste) are associated with some or all of the points
obtained by giving k any large positive integral value in the above
formulae. The real part of the zeroes is therefore ultimately positive if
s > a, negative if s<a. If s = a, its sign depends on that of s—1.

and the zeroes are all purely imaginary.

27. It still remains to be proved that one, and only one, zero of FaiS(x)
corresponds to each of the points (73). The proof of this is not difficult,
though a little tedious. I shall only indicate the argument briefly ;
it is as follows:—

In the first place, it is easy to show that the function

(74) Oa,M

vanishes, when k is large, once, and only once, in the immediate neighbour-
hood of each of the points (73). To prove this, we have only (following a
line of argument which I have employed on several occasions in the
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papers already referred to) to draw the portions of the curves

s-1

am
T(a)

which lie in the part of the plane in question, and to satisfy ourselves that
there is in fact just one intersection near each of the points (73).

Now let S be a fixed, but fairly small, positive quantity (such as y1 )̂.
Let us surround each of the points (73) by a closed contour, say a square
with its sides parallel to the coordinate axes and all at unit distance from
the point. First we prove that for all points on this square

(75)
T(s)

Then we have only to show that for points on the square the ratio of
the moduli of the two terms of 9a,s(a0 lies between certain fixed limits in
order to satisfy ourselves that along the contour of the square

(76) Fo.M = 9 o , .

where e is small. It follows that FUi s (x) has within the square the same
number of zeroes as Oa|S(x), that is to say, one.

The Zeroes of the Two Simple Functions fs(x) and Fa,i(x).

28. When s = 1 we obtain, for the zeroes of the function Fa)i(x) which
served as " simple element" in D', the asymptotic formula

(77) £ = (1-a) log(2M+logr(a) , n fc

29. The corresponding investigation for the function /«(#), which
served as our simple element in D, is simpler, and I shall not set it out in
detail, as the formula

(78) fs(x) = T(s)x-sex(l+€)-x-1(l+e)

is already known.* From this we deduce the asymptotic formula for the
zeroes, viz.,
(79) £ = («-l)log(2for)-logr(«), v = 2fc7r+£(s-l)x.

It may be shown, as above, that one and only one zero is associated with
each of these points.

* Sec e.g., Jacobpthal, loc. cit.
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80. I do not propose to attempt a similar discussion for the more
general functions considered in I. and II. It is obvious that in order to
apply the preceding methods assumptions would have to be made not only
as regards the behaviour of the arbitrary functions \fs along the line (0, 1),
but also as regards their analytic nature for complex values of u. To take
a simple example, consider the function defined by the integral

Ga(x) = T (Tua-Xy},{u)du {a > 0)
Jo

and its continuation in the a-plane, \jr (u) being real and expansible in a
Taylor's series which converges for u = 1. Then the dominant terms
of the asymptotic expressions for Ga(x) in D and D' respectively are
#~Vi/r(l) and T(a)(—x)~a\fs(0) respectively. It is natural to suppose
after what has preceded that in E

Ga(x) = £^ ( l ) ( l+€)+r<a) ( -3 ) - °^ (0 ) ( l+e ) ,

in which case the zeroes are, when a is real, given by the points

( l - o ) log (2&7r)+log r(a)+log2fcM +»{(2&+1) 7r+£(a+l)7r[.

But I do not intend now to attempt to investigate the conditions re-
garding \fs (u) which are sufficient to establish the truth of this.

The case in which s = 1 and a is a Positive Integer.

81. If s = 1 and a is a positive integer, we can obtain an easy and
interesting verification of our results. In fact, in this case,

as is easily found by repeated integration by parts. In the first place, this
verifies the formula (64). Again, the equation Fa, s(x) =0 takes the form

and it follows from results which I have proved elsewhere* that the

* Quarterly Journal, Vol. xxxv., p. 261.
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asymptotic solution of this equation is given by

i= ( l - a ) l o g ( 2 M + l o g r ( a ) , n = (2&+l)7r+£(<H-l)7r,

which is in agreement with the general result. The case in which a = 1
has been already disposed of (§ 26, end).

IV.

82. I shall conclude this paper by a short discussion of one or two
points of a miscellaneous character.

The Function Fa> _„ (x).

In all the preceding analysis it has been assumed that neither a nor s
is a negative integer. If a is one, FaiS(x) is no longer defined. But the
case in which s is a negative integer —n is of considerable interest. In
fact, in this case FatS{x) reduces to the product of e* by a polynomial Pn(x)
of degrees. For ^,,-l-r/V1 r"

•ta, -,iW — 2, :

o vl

is the coefficient of tn in the expansion of
n\ le-—j-^- = n\eat+ze ;

o

so that FGt _lb(x) = (-r-J

which is easily seen to be of the form*

(81) . e*Pn{x).

From the method of formation of the polynomials Pn it is easy to deduce
the recurrence formula

(82) Pn+l (x) = (x+a) Pn(x)+x < ^ ^ ;

so that

(83) P0(x) = 1, P^x) = x+a, P2(x) = z2+(2a+l)x+a2, . . . .

If a is real and positive, the roots of Pn(x) are all real and negative, and
separated by those of Pn-i (x). This is easily proved by induction.

* A result substantially equivalent to this was proposed as a problem in the Mathematica
Tripos for 1903.
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Another interesting property of these polynomials is that

(84) f° exPn(x)dx = (a-l)n.

The Equation Fa,s(x) = c.

88. The question is naturally suggested whether the functions Fa, s {x)
possess the property that for one value of the constant c the distribution
of the roots of Fa,s(%) = c is abnormal. It is easy to see that in certain
cases they do, though the peculiarity is far less marked than in the case
in which s = 0 (or, more generally, s is a negative integer). Suppose, for
simplicity, that s = 1, and that a and c are real. Then we have to
satisfy the equation

It is easy to infer from this that £ must be positive and large (though
small in comparison with rf), whatever be the value of a. If a <C 0, we
approximate to the roots by taking

e*=T{a)(-x)l-a(l+e),

and the value of c is indifferent. But, if a > 0, we must take

ex = ex (1-f-e),

i.e., £ = log (2&7r)+log c+e, t] = (2&-f£) TT,

unless c = 0, in which case the approximation (77) still holds. Thus the
case of c = 0 is abnormal, provided a > 0 [and, more generally, pro-
vided JR(a)>0].

CO _ 7 l

The Function Fs(x) = 2 -r—:.

84. In the case in which a is zero or a negative integer the definition
of Fa, s(x) by means of a series fails. But, if, for instance, a = 0, it is
natural to define Fs{x) = FOtS(%) as

(85) lim {Fa, s(x)-a~s\ = £ -j£- .

If E(s) > 0 , T(s)F8(x) = I log (—) - du

and r(s)K(x) = [ <r™ • log (—) [' ' du = V (s) Fh,. (x).
Jo v \ u I)
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The asymptotic expressions in D and D' for Fh s (x) are

x-v and _ i iiogt-or,
1 (s) x

and it may be shown, in the first place, that the dominant terms in the
expressions for Fs(x) are dominant terms in the integrals of these
expressions, namely

x-f and -X e a n d

and, in the second place, that the equation Fs(x) = 0 is equivalent to

from which we deduce as an asymptotic formula for the zeroes

(86) f = slog(2&7r)+sloglogA;-logr(s+l), n =

In the particularly interesting case in which s = 1, so that

(87) Fx(x) = 2 l
i n. n \

where, y is Euler's constant, the asymptotic expressions are*

(88) eT/x, —log (—a;),

and the formula for the zeroes is

(89)

Functions analogous to the Sine Function.

35. All the functions which have been considered so far are in many
ways analogous to the ordinary exponential function. Their iucrease is
substantially that of er, and the distribution of their zeroes is substantially
similar to that of the zeroes of ec—c (c=£0). Even in the case of those
functions whose zeroes have not been approximated to by the methods of
Section III., the asymptotic expressions obtained in I. and II. show that
the zeroes ultimately lie inside any small angle issuing from 0 and
including the imaginary axis.

* See Barnes, " On Integral Functions," Phil. Trans. (A), Vol. 199, p. 411, and Horn,
Grelle, Bd. cxx., p. 1, where complete asymptotic expansions of this function are obtained.



1904.] ZEROES OF CLASSES OF INTEGRAL TAYLOR SERIES. 429

By means of combinations of these functions we can form a variety of
functions similarly related to the simple function sin x.

Consider, for instance, the function

(90) ^a(^) = I sin («%)%"" ̂ M [R(a) > 0]
Jo

(-)nx2ll+1

We easily find that in the domain Dx for which 0 < <S ^ 0 ̂  ir—tf < 7r

(91) *Jsa(%) = — 5 — (1+e),

while within the corresponding domain below the real axis

(92) xl,a(x) = - f

Thus yfra(x) possesses the property of sin a; that its modulus tends to
infinity along any line issuing from the origin and going to infinity save
along the real axis.

On the other hand, if £ and i/rj are large and £ positive, yjsa(x) may be
expressed in the form

(93) - r ^ e

where {^xi)~a has an argument nearly equal to ^7riaand (xi)~a one nearly
equal to — %Tria. From this formula an asymptotic formula for the zeroes
may be deduced. If, e.g., a is real, positive, and less than unity, £, >/,
and i/tj are all large and positive and

l (a) sin £7r

and so

(94) i = 2for+e, r, = (1-a) log (2&7r)+log )T(a) sin lira) +e.

In the special case in which a = 1,

, , v f1 • j 1—cos a;
•Jr. (a:) = \ Bin xudu = ,

Jo x
so that all the zeroes are real; in fact, £ = Zkir, rj = 0, which agrees with
the general result. The close analogy between yjsa (x) and sin x is now
apparent.
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x x"
Functions analogous to the Function 2 r=- •—-.

o T(an+1)
86. Prof. Mittag-Leffler has denned a function

EM = 2
o r(an+l)f

and has summarily indicated some of its properties, which are in many
ways analogous to those of the exponential

It is natural to suppose that the function

o> ' v ' o (n+aYT(an + l)

would be, to some extent at any rate, amenable to analysis similar to that
of this paper. But, as Prof. Mittag-Leffler's extended memoir on the
subject has not yet appeared, I shall not discuss this question further at
present.

Conclusion,

37. The behaviour in D of the series

n\

the series bo-\-bJ?i-\-... being convergent for n^ 1, may be determined in
certain cases by means of the results of Section I. But the corresponding
investigations for D' and E seem to present serious difficulties, the nature
of which I have to some extent already indicated. And, if, instead of
postulating the entire analytic nature of the coefficients cn, we confine our-
selves to the information furnished by inequalities, however precise, we
find at once that very little progress can be made. Suppose, for instance,
that we consider the function

where cn = - ~ +Pn, | />* | < ; K

Then F{x) = Fa, i{x)+<p {x)
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Thus at a zero of F(x)

which, if, e.g., £ > 0, gives

an inequality which conveys very little information indeed. And this is
only as it should be. Consider, for instance, the case in which

Cn = - 4 " + 7 ^ T 2 . F(X) = Fa, ! (x) +Fa.t{-iz).
n-\-a \n\a)

The modulus of this function becomes exponentially infinite when x
approaches infinity along any radius vector situated in the angle
(̂ 7r—8, %TT~\-8) ; and its zeroes are distributed over the plane in a
manner entirely different from that of the zeroes of Fa, i {x).


