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The terms -— and — are due to magnetic doublets, whilst the
OZ OX

others are due to electric doublets. All these integrals vanish if

x',y',zf be on the negative side of (a:, y) and - and _-_ change sign
oz oxoz

on crossing the plane uy; hence the electric and magnetic doublets
each contribute half the total amount of the magnetic force. Putting

. x'—x v'—y 2'
A — 1 r — > v — >

r r r
we find that at a great distance the electric force contributed by a
magnetic doublet is jn-oportional to(—v, 0, A), whilst the electric force
contributed by an electric doublet is proportional to [—(/** + »'2), V , ^"]-
If we take the sources as they stand in the integrals above, we find
that the electric force contributed by an element of the surface
varies as 1 +»'. This is Prof. Love's expression. If we took only the
magnetic doublets, the force would vary as v/V + X2. If we took only
the electric doublets, we should get Lord Rayleigh's form v//x:i+»'"-
Since X, Y, Z are independent of x, y, z, then

This means that a certain system of electric quadruplets distributed
on the surface have a null effect. Combining these sources with the
electric doublets, we find Sir G. Stokes's expression </p*+v%(\-tv).
The region of integration is supposed to be an infinite rectangle.
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The consideration of the theory of linear sets of points leads, in a
natural manner, to that of sets of intervals on a straight line.
Indeed, in some respects it is more natural to begin with the latter
than with the former. For example, every set of non-overlapping
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intervals defines a set of points, (namely, those points which are
not interior to the intervals) ; whereas the converse is not necessarily
true unless the set of points be closed.

A branch of the theory where this latter order seems the more
natural, as well as the simpler, is that of the theory of content. We
pi'opose in the present paper to investigate certain fundamental
theorems on sets of intervals, with the object of subsequently apply-
ing our results to the general theory of closed sets of points.

The sequence of thought here presented runs, to some extent, on
parallel lines to that of Borel in his Legons; * but the mode of pre-
sentation is different, and some of the results have, we believe, never
been formally stated. The introduction of the explicit distinction
between external and semi-external points and the avoidance of the
Heine-Borel theorem,f (which is the key-stone of Borel's account),
may, perhaps, be said to characterize the present introductory
account. The proof of this theorem given by Borel in the Legons,
(Borel's second proof), is very elegant in conception; but it can
scarcely be said to give the reader an insight into the raison d'etre of
the theoi'em.

§ 1. We define the content Is of a finite number of intervals to be the
sum of their lengths. With this definition we see at once that

(1) the content I, is positive and less than or equal to the length I
of the segment (A, B), (supposed finite), of the straight line in which
the set lies.

(2) If the content Is be less than Z, then there exists a comple-
mentary set of intervals, whose content Ip is equal to the excess of
I over the content of the given set, i.e.,

2, + !, = I.

(3) If the content Is be equal to I, then

(i.) There are no complementary intervals;
(ii.) There are no points of (A, B) exterior to all the intervals ;

(iii.) There are no end points (except, of coui'se, A and B), which
do not belong to two intervals.

* Emile Bore), Lecons sur la Theorie des Fonetiotis, 1898.
+ § 11, footnote.
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§ 2. Next consider an infinite number or set of non-overlapping
intervals in the segment (A,B). What are analogous theorems to
(1), (2), and (3) of the previous article ? Cantor has proved * that
in this case the set of intervals is countable; they will therefore have
a definite sum * less than or equal to I. This we define as the content
I,. It then follows at once that (1) holds as it stands for any set of
non-overlapping intervals.

When I, = I it follows from the meaning of this equation * that
no complementary interval can exist. (2), however, falls en-
tirely to the ground; for not only is it not necessary for the com-
plementary points to fill up a set of intervals, but it may even
happen that there is no single complementary interval, i.e., no
interval whatever of (A, B) free from interim' points of the intervals S.
Indeed, given any quantity e, however small, it is possible to construct
a set of non-overlapping intervals whose content Is is less than e, yet
such that no complementary interval exists at all.

Incredible as this at first sight appears, this is not the only para-
doxical circumstance connected with such a set of intervals.

In spite of the absence of even one complementary interval, the
relation It < I will be found sufficient to necessitate the existence of
a more than countable set of points exterior to every interval 8f;
indeed, the potency J of the exterior points is that of the linear con-
tinuum, provided only lt < I, (whether or no there are complementary
intervals).

It is, perhaps, even more surprising that, whereas this must be
true if I{ < I, it may be true when Is = I. In this case, as already
stated, no complementary interval exists; so that (3, i.) holds as it
stands; but (3, ii.) falls to the ground, since not only may exterior
points exist, but they may even be more than countable in number,
(of potency c). This shows that the familiar relations between the
interior, end, and exterior points of a finite set of non-overlapping
intervals cannot be assumed in dealing with an infinite set. We
proceed to investigate these relations in the most general case.

* See §§ 3 and 4. t § 22 and §29. \ Machtigkeit.
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§ 3. Cantor's Theorem. *

Every set of intervals on a straight line is countable, provided no two
overlap.

For let e,,<?«, e8,... be any sequence of numbers having zero as
limit, and let us consider only the case when the intervals all lie
in a finite segment {A, 11) of length I. There is in this way no loss
of generality, since we can bring the whole infinite straight line into
(1, 1)-correspondence with (A, li). The number of intervals of the
given set whose magnitude lies between e,. and e,.+i must be finite,
since the intervals do not overlap. Let these, arranged in any order,
be denoted by G,.. Then G,. is finite and the whole set can be
arranged in the order (•?„ 6?2,..., and " counted " as they stand ; which
proves the theorem.

COB.—Prom the above it is evident that the intervals can be
arranged in order.of magnitude 3,, &,, ...", and that, if (A, B) be a
finite segment, given any positive quantity €, we can assign an
integer m so that, for all values of n $ m, §„ < «.

§ 4. Now the sum of any number of the intervals cannot be greater
than /. There must therefore be an upper limit It, Irss than or
equal to I, such that the snm of any finite number of the intervals
is always less than I,, but can.be made as near as we please to J3 be-
taking suiHcient of the intervals when arranged in order of magni-
tude. That is to say, given any c, we can find an integer in sucli

that, for all values of n 5 m, Is—e < 28,. < /,,.
i

In the usual manner we express this fact in other words by saying
that the series

2 cS = <5, -+• <59 + ... ad inf.

is convergent, and has I.s for its sum. T, ice call the content of the set
of intervals. This evidently agrees with the definition of the con-
tent in the case when the set consists of a finite number of intervals
only.

It now follows from the corollary of § 3 that, given any small positive
quantity tr, we can assign a small quantity, e such that the sum of all the

* Stated nml proved in precisely this way by Cantor, "Ueber unendliche
linenre Punktnuuinigfaltigkeiten," Ann., Vol. xx., p. 117, 1882.
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intervals of the set tohich are less than e is less than or. Denoting this su m
by li (e), we have R(e) < cr.

§ 5. Having so defined the content, we can at once prove the fallow-'
ing theorem :—

The content Tt of a set of intervals in a finite segment (A, B) is equal
to the sum of the contents in any set of segments inside (A, B) such that
each one of the given intervals is interior to some one of the segments.

For let any small quantity a be assigned ; then we determine c so
that R(e) < <r. Let the segments be denoted by D,, Z)8, ... in order
of magnitude, and let us determine m so that, for all values of n > vi,
D,, < €. Then every interval of the given set which is not less than e,
lies in J),, 7)2, ..., Dm, and the sum of these intervals is less than the
content le by less than cr. A fortiori the sum of the contents of all the
intervals in D,, D2,..., 1),,, is less than Is by less than <r; which is what
we wanted to prove.*

§ 6. We proceed to discuss first the case when /,, — I. As already
stated, (3, i.) holds universally. An example will best prove that
(3, ii.) falls to the ground, and it will be seen that the possibility of the
presence of external points is due to the fact that it is in the nnigh-
bourhood of certain points that the intervals 8 become smaller than
any assignable quantity.

Ex. 1.—In the interval (0, 1) consider the intervals (0, £), (£, \),

/22--l 2s 1\
f•-—— , ——̂— j , ..., and all the intervals got by reflecting these in
the point \. Then we shall have a (countably) infinite set of intervals
in the segment (0, 1), and the sum of them is

and yet the point \ in exterior to every interval.

* The most general form of this theorem, which can be immediately deduced
from the results of this paper, is the following :—

It in (A, B) is equal to the sum of I he contents in any set of segments contained
in (A, B), provided the sum of those segments and parts of segments which lie inside
each interval S is equal to the content of that interval 5.

In particular, by Theorem 3, this will be the caRC if there is no external point of
the segments which is not exterior to the intervals.
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In fact, if we consider the given set as the " limiting set "* 0 of
the finite sets Gv G*, ..., where Gx consists of the two intervals
(0> ij)i (f> 1)! #8» ••• °f Me f ° u r intervals

(0 } ) (1 2 ' - l \ , / 2 3 + l 2 + l \
\ ' 2 2 / ' \ 2 3 ' 2d 7 \ 23 ' 22 / f

\ 2 s

and so on, the complementary set of Gn always consists of one

interval, of length successively — , —, -3 , ...; so that in the limit
the complementary interval evanesces, leaving us, however, with the
point -̂ , which is interior to the complementary interval of Gn for all
values of n.

§ 7. Ex. 2.—Instead of reflecting all the intervals to the left of the
point £ in that point, we might take as a new interval (£, 1), the
intervals to the left of ^ being the same as before. In this case
It is still equal to 1 ; but the point ^ is no longer external to every
interval. It is, in fact, the left-hand end point of one interval. On
the left of it, however, there is no interval of which it is an end
point; so that, although (3, ii.-) is not violated, (8, iii.) is so.

We shall find it convenient to use a new term to denote that a
point is an end point of one interval only of the set.

DEFINITION.—A point, other than A or B, is said to be semi-external
to a set of non-overlapping intervals in a segment (A, B) when it is an
end point of one interval only of the set. A or B is, however, regarded
as only semi-external when it is an end point of no interval; other-
wise A or B is an ordinaiy end point. This agrees with the de-
finition if we consider the whole straight line exterior to {A, B) as
being, like the intervals, black.

§ 8. Since a semi-external point is an end point of one interval, it
follows, by Cantor's theorem, that the number of semi-external points
of a set of non-overlapping intervals is at most countahly infinite.

* That is to say, any interval of O occurs as an interval of On for all values of n
greater than a certain determinable integer m.
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It is easy to construct examples where the number of semi-external
points is actually countably infinite. For instance, as follows:—

Ex. 3.—Take the set of intervals of Ex. 2, viz., (-n~>l)> l ^ ' o s ) '

— , -—• - - 1, ..., having the point — as semi-external point, and
2 2 / a

divide each of these intervals similarly to the division in Ex. 2 of
the segment (0, 1). Then in each of the above intervals the middle

point will be a semi-external point, and there will be no external
points. The semi-external points will be ^, -5, ^, -^, §£, ..., and will
be countably infinite in number.

§ 9. Similarly we might generalize Ex. 1, and obtain a set of con-
tent I having a countably infinite set of external points. We content
ourselves here with giving these simple examples illustrating the
truth of the statement that when the content Ie = I there may be an
infinite number of external points, violating (3, ii.), and there may be
a countably infinite number of semi-external points, violating (3, iii.).
We defer the introduction of examples of a more complicated nature
illustrating the other statements till after the enunciation and proof
of some general theorems.

§ 10. THEOREM 1.—" Of External and Semi-External Points."

If zve have a (countably) infinite set of non-overlapping intervals
£„&,,..., lying in the segment (A, B) of length I, then, (even when
Is = Z), there must be at least one point external or semi-external to th6
set.

If there be any complementary interval, the theorem is obvious.
If not, let the 3's be arranged as in § 3 in order of descending
magnitude. Mark the interval 3, black. There remain over two
segments or one; in any case there remains over at least one
segment such that in it there lie intervals Sk with index k higher
than any assignable integer. Let (A^B^ be this segment if de-
terminate, or the left-hand segment if there are two possessing this
property.

We treat (Al}Bt) precisely as we did (A,B), marking black the



252 Mr. W. H. Young on [Nov. 13;

interval of lowest index in it, and passing on to that one of the
segments left in (-4,, B}) which contains intervals dk with index k
higher than any assignable integer, and taking, if both segments
have this property, the left-hand one.

Proceeding thus, we get an infinite series of segments (A, J5),
(/I,, #,), (A2, JB2), ..., each contained within the preceding and having
with it one,- and only one, end point common. These segments de-
crease without limit in length, since there is no interval of (-4, B)
free of internal points of 3's. They define, therefore, a definite
limiting point L, which is either internal to aZZ the segments (.4,., B,.),
or, from and after a fixed integer TO, is an end point of every segment
(An B,.), v 2 vi.

This point L cannot be interior to any interval 8k; for, if it were,
denoting by h the distance of L from the nearer end point of 8*

(or h = ^ , if L lies in the middle), h will be finite, and we can

determine an integer m such that for all values of w ^ m the length
of (A,,, B,,) is less than h. The interval (-4,,, Bn), of which L is an
interior or end point, will then lie entirely within ?k, which, since
the cs do not overlap, is contrary to the hypothesis that (.4,,, Bn)
contained 3's with indices higher than k.

L may/however, be an end point of a determinate fik, while the d's
with indices as high as we please crowd themselves on the other
side of L from Sk. L will then be an end point of every (-4,,, B,,) for
all values of n from and after a determinate one m. For instance,
L might coincide with B,,, n $ TO, and be the left-hand end point
of *̂, as in the figure.

The point L is therefore either exterior to all the black intervals S
or an end point of only one of them, i.e., semi-exterior; which proves
the theorem.

§ 11. The above proof shows that the point L is such that, at least
on one side of L, the intervals 8 with indices higher than any assign-
able quantity crowd themselves together. The lengths of these in-
tervals become, as we saw (§ 3, Cor. 1), indefinitely small; so that
the point L is a limiting point of ends of black intervals 3, or, if we
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please, of the right-hand end points of 5's by themselves, or of the
left-hand end points by themselves.

If L is a limiting point on both sides, it will certainly be external to
all the black intervals. The two following theorems will show under
what restrictions every point external to all the 5's is a limiting
point on both sides of the end points. In the meanwhile we may
enunciate the preceding theorem in the following more precise
form:— *

An infinite (countable) set of non-overlapping intervals Bu 82, ... has
alivays at least one limiting point of end points to Inch is either external
or semi-external to every black interval. If the limiting point be a
limit on both sides, it is certainly external to every black interval; other-
xoise it is semi-external.

§ 12. THEOREM 2.—" Of External Points"

Given a set of non-overlapping intervals, such that no complementary
intervals exist, in a segment (A, B), then, if there be any point G of
(A, B) exterior to the set of intervals, G is a limiting point on both sides
of intervals.

For let e, be any small positive quantity, and construct on the left
of G a segment of length e,. Then, since no complementary in-
terval exists, there must be at least one point within this segment

. C

h i, '
which is not exterior to every interval. Let P, be such a point.
Then, since G is exterior to the interval B containing Pv there must
be in the segment (Pl5 G) the right-hand end point of the interval <5
to which P, is not exterior. Let this point be y n where Qr is either
identical with P, or lies between P, and G ; then GQX < ev

* This theorem takes the place of the so-called Heine-Borel theorem, the proof
being of the type of Borel's second proof, (Lccons sitr la The'orie'de.i Fmtctiom, p. 42),
only direct instead of indirect. The enunciation of the Heine-Borel theorem is as
follows : —

Given a countable set of intervals, (of course overlapping), such that each point of
the closed segment (A, B) is an internal point of at least one interval, then it is
possible to choose out a finite number If of these intervals having the same property.

This theorem may be deduced easily from our theorem. For, if we arrange the
Heine-Borel intervals in countable order, then omitting any interval or part of an
interval which was contained in any of the preceding intervals, and omitting any
parts exterior to (A, B), we get a set of intervals such that every internal point of
[A, B) is an interior point of one interval, or an end point of two intervals, while
A and B are end points each of one interval. By our theorem the number of these
intervals cannot be infinite. But each of these is the whole or a part of a definite
interval of the given set, and these have the required property.
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Now let e3 be smaller than the length of (0, Qx). We determine
similarly a right-hand end point Q2 such that CQ2 < es. Proceeding
thus, we determine a sequence Qv Q2, ... of right-hand end points of
intervals S, lying on the left of G and having C as limiting point.

Similarly we construct a sequence of left-hand end points of in-
tervals B, lying on the right of G and having G as limiting point.
Thus G is a limiting point on both sides of end points of intervals.

Q. E. D.

COB.—If Is = I, then, if there be any exterior point, it is a limiting
point on both sides of intervals. For in this case, (§ 4), no comple-
mentary interval can exist.

§ 13. In the case, then, when the complementary set of intervals does
not exist, the whole continuum (A, B) is made up of the given set of

non-overlapping intervals of content Is ^ L and the limiting points,
(if any), on both sides, (exterior points). As to these exterior points,
since they are not, like the semi-exterior points, each bound to some
particular interval, we cannot assert that they are not more than
countably infinite.

In fact, though there may be none at all, or only a finite or
countably infinite number of them, they may be more than count-
ably infinite, as we will now show by examples.

The first of the following examples where, although Is = I, (so that
certainly no complementary interval exists), the exterior points have
the potency of the linear continuum is of classic interest.

§ 14. Consider the segment (0,1), and let us take as right-hand end
points of our intervals the point 1, and all those points whose numbers
expressed as fractions in the ternary scale involve a finite number of
O's and l's, and do not involve the figure 2.

The number corresponding to the left-hand end point of any
interval is got from the number corresponding to the right-hand
end point by changing the final one into Ol.

Thus, in order of magnitude, the first few intervals are (#1, 1),
(-01, -1), (OOl, -01), and (101, -11) ; or, which is the same thing,

0 -001 -01 101
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using the everyday notation, (£, 1), ( | , | ) , ( ^ , £), and
It is evident from the numbers that these intervals do not overlap
nor abut anywhere, and that there are no complementary intervals,
so that every end paint is a semi-external point. These semi-external
points correspond, therefore, by construction, to all the terminating
ternary fractions, involving only O's and l's, (right-hand end points),
and all the simple recurrei'S, involving only O's and l's and ending
in 1, (left-hand end points).

Also it is easy to show that all the interior points of black intervals
correspond to ternary fractions involving at least one 2, and vice versa.
For, if N denote any combination of n figures, O's and l's only, and
M any combination of O's, l's, and 2's, the ternary fraction 'N02M,
as well as, (for all integral values of p), N01p2M, lies, whatever If
may be, between -NOl and 'Nl). These numbers correspond there-
fore to internal points of a determinate black interval, ('.WOl, .NT.).
Vice versa, any number lying in this interval is expressible in one of
the two given forms.

The remaining (exterior) points consist therefore of all the non-
terminating ternary fractions involving only O's and l's, other than the
simple recurrers ending in 1. Every such point is, as follows, easily
shown to be a limiting point on both sides of the semi-external points.

Given any such non-terminating fraction, we can form a sequence
of semi-external points, (right-hand end points), having that fraction
as limiting point, by stopping in succession at each 1 inclusive. A
similar sequence on the other side of the point in question is de-
termined by stopping short of each 0 and appending a 1.

It is easy to see that these external points are more than countably
infinite in number; indeed, the potency is actually c, (that of the
linear continuum). For we only have to interpret these ternary
fractions in the binary scale and we have set up a (1,1)-correspond-
ence between these points and the whole continuum from 0 to 1, with
the exception of a countable number of binary points, which do not,
of course, affect the potency.

We can, moreover, show that the sum of the black intervals is actually
1. For, since N consists of n figures, O's and l's, the number of semi-
external points Nl, (for the same «), is 2". Each of tl\ese is the

right-hand end point of an interval of length \ -^7-,.
o

Hence the sum of all the intervals is
1 2 2s \ / 1 1

+ + + J H1+
( 1 2 2 s \ / 1 1 \
i+-3- + -32+3T+...J = H 1 + ¥ w ) = lm
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It has therefore been proved that in the segment (0,1.) the points
corresponding to all the ternary fractions involving the figure 2 fill up a
set of intervals of content 1* which do not overlap nor abut anywhere*

• so that the semi-external points are countably infinite in number. The
external points are more than countably infinite, and yet are not dense
in any interval, however small.

§ 15. The mode in which we have treated this example was sug-
gested by the context as throwing light on the preceding theorems
and statements about external and semi-external points. Historic-
ally this example—the first of its kind—must be referred to H. J. S.
Smith,f who, however, treated the subject purely geometrically
and from a somewhat diifei'ent point of view. H. .T. S. Smith's
set of intervals are not in all essentials identical with those
given above,;}: since each of our black intervals is replaced in his
treatment by an infinite set of abutting intervals exactly filling it
up. Thus, a number of points which in our set were internal points
become end points, and a number of semi-exterior points, (left-
hand end points), become external points.

The law of formation of these abutting intervals in the interval
(M)l , NY) is that the ends of the abutting intervals consist of the
sequence JY02, -M>12, M)112, ..., AT01"2, .... (for all integral values
of p), the limiting point of which is JVOi. The intervals are plotted
down by H. J. S. Smith successively in order of magnitude.

On account of its historical interest, and the light the method
throws on the general lie of the set in its relation to the continuum,
and also because the method lends itself easily to a form of general-
ization which will be exceedingly valuable to us in the sequel, we
shall now give a more detailed discussion of H. J. S. Smith's set of
intervals from his point of view.

§ 16. II. J. S. Smith's Ternary Set of Intervals of the First Kind.

Divide first the segment (0,1) into three equal parts, and blacken
the right-hand part. At the second division divide each of the two un-
blackened parts into three equal parts and blacken the two right-hand
parts. The two black intervals which abut, if amalgamated, would

* So that certainly no complementary interval exists,
t Proc. loud. Math. Soc, Vol. vi., 1870.
J Cf. W. H. Young, " On the Density of a Linear Set of Points," Proc. Lond.

Math. Soc, Vol. xxxiv., p. 286, footnote.
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(1

(

* 1

1

2 •1 )

12

i

form the germ of the first of the black intervals of the preceding section.
At the third division divide each of the 22 unblackened segments,

of length —, into three equal parts, and blacken the 2s right-hand

parts. Generally at the (ra + l)-th division divide each of the 2" un-

blackened segments, of length —, into three equal parts and blacken
o

the 2" right-hand parts. (See Gx in Fig.)
That this set of intervals is dense everywhei*e is almost immedi-

ately evident from the mode of construction, as are also the facts that
there are a countably infinite set of simple end points, (left-hand) ,*
and another countably infinite set of semi-external points, (right
hand). It is not, however, easy to see geometrically that the ex-
ternal points are more than countable, f

These facts did not interest H. J. S. -Smith at the moment; the
question with him was one of content pure and simple.

The sum of the intervals blackened in the first n
division is

processes of

1+2.
+ 3 3"

If, therefore, we continue the division ad tnfinitwn, we shall get a set
of black intervals of content 1.

§ 17. This method of H. J. S. Smith is capable of a natural modi-
fication which does not suggest itself when we work numerically.
We are furnished in this way with the following example, among
others, given also by H. J. S. Smith, without use of number, loc. cit.
This example serves to show the fallacy of the naive assumption
that when It is less than I at least one complementary interval must
exist.

* Whose numbers all terminate with a 2, and involve otherwise (a finite number
of) O's and l 's only.

t For instance, the reasoning in Bore], p. 44, is only valid when Is < I.
VOL. XXXV.—NO. 806. S
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§ 18. H. J. S. Smith's Ternary Set of Intervals of the Second Kind.

As in the former example, divide the segment (0,1) into three
equal parts, and blacken the right-hand part ('2,1), omitting it from
further division. The origin together with the point of division *1,
which lies outside the omitted segment, we shall denote by Qv

At the second division we shall divide each of the two segments
not blackened, (0, *1) and ('1, "2), into 3s equal parts, and blacken the
right-hand segment. (See T in Fig. of p. 257.)

Denoting by G3 the set of points consisting of Gx and all the four-
teen points of division which lie outside the blackened parts, we see
that the numbers of O2 are completetely characterized as being all
the numbers of the form "e1e2e3, where

J (1) ex is not 2,
3 \ (2) e2 and e3 are not both 2.

At the third division we divide each of the (3—1) (3a—1) seg-
ments not already blackened into 38 parts and blacken the right-hand
segment in each.

Denoting by 6?8 the set of points consisting of C?a and all the
(3—1)(32—1)(38—2) points of division which lie outside the black-
ened parts, we see that the numbers G$ are completely characterized
as being all the numbers 'e,e2e3e4e6ea, where

(1) e, is not 2,
Az- (2) e2 and e3 are not both 2,

(3) e4, e6, and e8 are not all 2;

that is, where, in addition to the conditions -42, the condition At (3)
is satisfied; and these conditions together are denoted by As.

It is now obvious how in turn Gv G6, ... will be constructed and
will become in turn the right-hand end points of black intervals. At
the w-th division we divide each of the ( 3 - l ) ( 3 a - l ) ... ( 3 ' - 1 - ! )
segments not already blackened into 3" equal parts, and omit in each
the right-hand segment. G,% will then consist of Glt.i and all the
(3-lX(33-l)(38—1) ... (3"-1—1)(3"—2) points of division outside
the blackened parts, and the numbers of Gn are therefore completely
characterized as being all the numbers 'exe3... 6|[„(„+!)], where,
in addition to the conditions Au.u we have the condition ^,,(n), viz.,
e*[(H-i)n]+n eit«(»-])]+2, "-, «![»(»»»,] a r e not all to be 2. These conditions
we denote by An. The limiting set * of Gx, G^, we denote by G.

* That is, that set G such that any assigned point of O has been a point of
every Ou, from and after an assignable index in.
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§ 19. Each point of 0 is a right-hand end-point of a set of'abutting
black intervals. If we consider all abutting intervals as amalgamated,
and continue these intervals up to their limiting points on the left, we
obtain a set of intervals analogous to those of § 14. Those limiting
points, which were external and have now become semi-external, can
be assigned as follows :—

Suppose P to be a point of 0 which belongs to Gn* but not to
#„_!, and let Q be the point of On immediately to the left of \P.f
The left-hand end point of the interval of which "P is the right-hand
end point is obtained by appending to 'Q, if necessary, so many 0's

as to make the number of figures n-^~-—\ and then appending

K, where X, = 21221222122221...

and X,, = 2"12"+112"+21...

the number of 2's between consecutive l's increasing each time by
one.

Thus, for example, the black interval whose right-hand end point is
•0 12 001 02 has for left-hand end point 0 12 001 0122 2* 12s 12° 1 ... .
These numbers show us that the left-hand end points are, as was
asserted, semi-external points, since, stopping at any figure in one of
these numbers, we get a number obeying the conditions A,, for a
certain definite integer n, and therefore a sequence of numbers of O,
having the given left-hand end point as limit on the right. The right-
hand end points are also semi-external, since we can add on at the
end of any one of these numbers any number of 0's followed by a 1,
and so get a sequence of points of O, having the desired right-hand
end point as limit on the left.

Both the left- and the right-hand end points being semi-external, it
is evident that no complementary interval can exist. This could be
deduced from the geometrical construction.

The content of the set of intervals is, however, no longer 1. I t is,

* Given *P, it is quite easy practically to determine n: for instance,

•P= *1 02 101 2121 00011 12

belongs to Ga, but not to G5.

t 'Q is known at once as soon as 'P is given, since

s 2
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in fact, evident from the geometrical construction that the content is

1 (3-1) ( 3 - l) , ( 3 l ) ( 3 - l ) . . . ( 3 l )
3 32*1 Q3 + 3 + 1 •"!••• T Ql + 2 + ...-in ' *•'»

which is

3~ + F X ^ T ) + Fl1"!") I1"3V + "•'
whence % < I, < %.

Any point which violates the condition An(n) for any value of n is
evidently an interior point of a black interval which we can at once
assign. The ri^ht-hand end point of this black interval is obtained

by stopping at the first -1—Tl_2 figures of the number in question:

e.g., the points whose number's begin with the figures 102 0012222 ...
are interior to the black interval (1 02 000 281 2*1 ..., .102 001).

It was asserted that when I, < I, (that is, here < 1), there must be
a more than countable set of exterior points. The only ternary
fractions at present unaccounted for are all the infinite ternary
fractions which do not violate the conditions An for any value of n,
(other than those ending in X,,). These are the exterior points of the
set. That they have the potency of the continuum is evident when
we consider that all the non-terminating ternary fractions involving
only 0's and l's are among them (§ 14).

Numerically we have proved the following theorem:—
Let •'?,e!Je3... e| [ , l ( , l . ] )1+1e4I,1 ( , , .1 ) J+2 . . . e j [ M ( l l + 1 ) ] denote any ternary

fraction with 9-±^- figures, and let An denote the conditions that for

no positive integral value of r ^ n all the figures ej[r(r-i)]+i» •••> ej[»-(»-+))]
should be 2's. Then all the ternary fractions which violate the conditions
An for some value of n fill up a set of intervals of content Is, where

< h
which do not overlap nor abut anywhere, so that the semi-external
points are countably infinite in number. The external points are more
than countably infinite, (of potency c), and yet are not dense in any
interval, hoioever small.*

• The numbers corresponding to the simple end points of H. J. S. Smith's
ternary set of the second kind are evidently those terminating fractions which
violate some condition An, but only in the final stage An (n).
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§ 20. H. J. S. Smith's Sets toith Base TO.

Instead of the base 3, we might take any base m ^ 3 and per-
form the construction of § 16, or that of § 18, mutatis mutandis.
The former series of sets, in which at each division we divide the un-
blackened parts of the straight line into m equal parts, gives us
nothing particular of interest beyond the set for m = 3. But the
latter series of sets, in which at the w-th division we divide the un-
blackened parts into m" parts, presents this new and highly in-
teresting feature, that

< ia < r-,
in vn — 1

the other properties of the set being the same as in § 18.

Hence we see how it is possible to construct a set of intervals whose
content is less than any assigned magnitude, and having a more than
countable set of exterior points, (of potency c), which, however, are not-
dense in any interval, hoivever small.

§ 21. Similarly by using any base m 5 3, we can, as in §§ 14 and 18,
construct sets of non-abutting intervals, with contents ranging from
L down to less than any assignable quantity, and yet dense everywhere.

The numerical statements of these facts are interesting.

(1) In the segment (0, 1), the points corresponding to all the m-ary
fractions involving the figure (m—1) fill up a set of intervals of content 1,
which do not overlap or abut anywhere ; so that the semi-external points
are countably infinite in number. The external points are more than
countably infinite, (of potency c), and yet are not dense in any interval,
however small.

These semi-external points correspond to all the terminating
fractions not involving the figure (m — 1) and all the non-terminating
fractions ending in " (m—2) circulating." The external points
correspond to all the other non-terminating fractions not involving
the figure(w —1).

(2) Let ' e ^ e j ... enxu-ijj+i ••• eii»(»+i) denote any m-ary fraction, and let
An denote the conditions that for no positive integral value of r ^ n all
the figures %,•(.•-oi+n •••> ei»(»-+]) should be (m—l)'s. Then all the m-ary
fractions xohicli violate the conditions An for some value of n fill tip a set
of intervals of content Is, ivhere

m HI—1'
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which do not overlap nor abut anywhere; so that the semi-external points
are countably infinite in number. The external points ate more than
countably in/mite, (of potency c), and yet are not dense in any interval,
however small..

§ 22. The properties of the sets which we have denoted as H. J. S.
Smith's sets of the second kind are of the most general character
possible, as is indicated by the following theorem :—

THEOREM 3.—If we have a set of non-overlapping intervals Sly £a, ...,
lohose content Is is less thanl, lying in a segment (A, B) of length I, thenthe
points of (A, B) which are external to all the intervals hform an infinite
non-countable set* (It will appear from the sequel that this set has
the potency c of the linear continuum.)

If any complementary interval exists, the theorem is obvious. If
not, every external or semi-external point 0 will be a limiting point
of intervals 5, and there will be at least one such point. The number
of semi-external points is at most countably infinite.

This being the case, let us, if possible, arrange all the external and
semi-external points in countable order Gz, Ca, Round Gx describe

an interval d, of length - Avith 0, as middle point, where

e = l-Is.

Lot Gi be the next point of the series Gi} G.,, ... which is exterior to dv

and describe similarly an interval of length ^r^- with 0,- as middle

point. If this overlap or abut with du we amalgamate them into one
interval; if not, we call it d.2.

Proceeding in order with the points G which are not already in-
terior or end points of intervals d, we get a finite or countably infinite
set of non-overlapping and non-abutting intervals d, whose content
is not greater than .

s 1 e
e T 2 ' : ~ 2 '

containing all the points G. Adding to these such intervals <$, or parts
of intervals 2, as ai'e external to the intervals d, and amalgamating
them with the intervals d where they overlap with them, we get a set
of non-overlapping intervals such that no point of (A, B) is exterior
or semi-exterior to( them. By Theorem 1, " Of External and Se'mi-

* JJorei, Zcconx, p. 41.
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external Points," the number of these intervals can only be finite.
A fortiori the number of intervals d is finite. Let them be denoted
by dt, d2, ...,dn.

Marking these black, we are left with a finite number ( ^ n — 1)

of segments (A, B) whose content also lies between I—— and I. In

each such unblackened segment there is no external or semi-external
point of the intervals <5. Hence, by Theorem 1, in each, and there-
fore in all, of these segments there is a finite number of intervals S
entirely filling them up, and whose content therefore also lies between

I ?-• and 1. But this is inconsistent with the fact that 1=1—e.
2

Hence the assumption was false, and, by a reductio ad absnrdiim,
we are obliged to deny the possibility of counting the points C.

Q E. D.

§ 23. The Typical Ternary Set of Intervals.

We have seen that, given any set of intervals, we have a perfectly
determinate countable set of semi-external points, and that any end
point of an interval where it does not abut on another interval is
either (1) a semi-external point or (2) not a limiting point at all. In
the latter case the set of intervals is not dense everywhere.

The question of content is obviously unaffected if we amalgamate
all abutting intervals, in which case the end points of the new
intervals will consist entirely of the two classes of points above re-
ferred to, and, if the original set of intervals be dense everywhere, will
consist exclusively of semi-external points.

This demonstrates the importance of considering in detail the
properties of sets of intervals whose end points are all semi-external
points, tha.t is, sets of non-abutting intervals ivhich are dense every-
where.

The sets considered in §§ 14 and 18 belong to this class; but we
shall find it desirable to modify them and take another set* as typical
of the class, its numerical equivalent being the most convenient, as
giving us a system of indices for the 3's in the general case, by means
of which any two sets of the class are arranged at once in (1, 1)-
correspondence.

Cf. G-. Cantor* Math. Aim., Vol. xxi., p. 590, and Schoenflies'e Bericht, p . 102.
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§24. Take the segment (0,1) of the x axis and divide it into three
equal parts and blacken the middle one: this is ("1, '2), or, as we
prefer to write it, (02\ *2). This we denote by Sv In each of the
two unblackened segments repeat the process: we get two new black
intervals,

Sn = (-002, -02),

in = (-202, -22).

In each of the unblackened segments repeat the process, and
so on.

Denoting by N any combination of n figures, 0's and l's, and by
(2N) the number got by multiplying N by 2, we see that any black
interval obtained by our process may be denoted by 5A-,, and charac-
terized by the symbolic equation

We notice that the order of the intervals is precisely that of the
binary fractions 'Nl. The internal points of the black intervals
are characterized by the appearance of a proper 1, not 2, in their
ternary factions.

G iven any ternary fraction with a proper 1 in it, we can at once
assign the black interval to which it belongs. For example, the
number •020022021 ..., (where the dots denote any subsequent figures),
lies between '0200220202 and '020022022, and therefore is interior to
the black interval ôioonon-

The only numbers unaccounted for are the non-terminating ternary
fractions other than the simple recurrers ending in 2 involving only
the figures 0 and 2. These must then represent the exterior points
of onr set of black intervals. Dividing each such number by 2, and
interpreting in the scale of 2, we evidently get the whole continuum,
with the exception of a countable set; so that the potency of this set
of numbers is c. Hence the potency of the exterior points is c.

§ 25. If we are given any set of non-overlapping and non-abutting
intervals, dense everywhere in an interval (A',B'), then A' and B'
themselves may be ordinary end points or may be semi-external
points. In the former case there are black intervals (.4, A'), (JB\ B)
belonging to the set, and A' and B' are not semi-external points. Such
intervals, if they exist, do not materially affect the character of
the set; they may therefore be conveniently omitted from con-
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sideration in the present section. We are working, then, in a seg-
ment (A, B) where A and B are semi-external points of our set of
intervals. We now propose to set up a (1,1) correspondence, maintain-
ing the order between the given set and the t3rpical set of intervals,
§24.

§ 26. Divide (A, B) into three equal parts at G and D. The a, since
the set is dense everywhere, either (C, D) forms part of a determ-
inate black interval or else there is a black interval insida (0, J>).
possibly coinciding with it. Let us then choose some particular black
interval, for instance, the largest possible in (0, D), and denote it
by Sv and, in the first case, let £t be the black interval of which
(C, D) forms a part.

Since A and B, being semi-external points, are not the end points of
any black interval, there will be two unblackened segments left after
we have blackened Sv The end points of each of these two segments
are semi-external points; hence we may repeat the process in each of
these two segments and choose out two new intervals of our set, one
in each of these segments, and these we may call £0, and 3n. The
order of the three intervals £01, £,, <5U is evidently the same as in the
typical case, (§24), and the same as that of the binary fractions
•01, 1, 11.

We are now left with four segments, whose end points are all semi-
external to our set of black intervals ; so that we can repeat our
process in each of them, and choose in each a black interval of our
set. These we denote by Sm, $m, Sm, Sm in order from left to right;
so that the order of the binary fractions is maintained.

Proceeding thus, we can evidently use the terminating binary
fractions, (omitting the point), as a general system of indices, not
merely proving the countableness of our set of intervals, but also
indicating exactly their order in relation to the continuum. This
sets up, ipso facto, a (1, 1)-correspondence, maintaining the order,
between the general set of this class and the typical set of § 24,
enabling us to solve many problems for the general set by means of
the known properties of the typical set.

§ 27. One consequence of the mode adopted for determining the
indices is that, given any positive q/iiantity e, toe can determine an in-
teger m such that, for all values of n ^ m, hKX < e {n being, as always,
the number of figures in N). For, by the construction, the two seg-
ments left after the blackening of Sl are each less than § of (A, 13),
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and at each stage a similar statement can be made as to the length
of each unblackened segment. Thus we have only to determine m so
that (•§)'" (.4, B) < e, and this in will certainly satisfy our require-
ments.

§ 28. Since the order has been maintained, it follows from the above
that any sequence of intervals of the given set, denning a single
limiting point, will correspond to a sequence of intervals of the
typical set, defining a single limiting point, and vice versa. We can
most easily express this coi'respondence between the limiting points
by denoting the left- and right-hand end points of any black interval
of 8jV1 by P.Mij, and Pm, and any exterior point by P, with, as index,
the ternary number denoting the limiting point of the corresponding
intervals of the typical set.

We see that, the semi-external points being in (1, l)-correspondence
by themselves, fie exterior points will be so also. Hence it follows
that the potency of the, external points is c.

§ 29. We have proved by our correspondence that the external points
of a set of non-abutting intervals have the potency of the linear con-
tinuum, it being unnecessary to postulate that the set should be
dense everywhere, since, when at least one complementary interval
exists, the theorem is obvious. The following can now be deduced:.—

THEOREM 3'.—Of the Potency of the External Points.

If toe have a set of non-overlapping intervals 8,, &,, ..., whose content
Is < I, lying in a segment of length I, then the points which are
external to all the intervals 8 form an infinite non-countable set of
potency c.

If the set is not dense everywhere, the theorem is obvious. We
assume, therefore, that the set is dense everywhere.

We shall, for reasons which will immediately be evident, denote
as a point of arrest a point such that in any segment, however small,
containing it as internal point, there is a more than countable set of
external points.

Let (A\ Bly) be the segment in which the set exists. If A' and B'
are not points of arrest, we will show how to replace (A', B) by a
segment (--1, B), lying- within it, so that the potency of the external
points is unaltered, while A and B are points of arrest.

Let us bisect (A1, B') at M. Then, since, by Theorem 3, there is a
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more than countable set of external points in (A\ i?'), this must be
the case in one or both of (A', M), (M, B'). We determine whether
or no (A\ 31) has this property. Next we bisect again, and deter-
mine that segment which (i.) contains a more than countable set of
external points, and (ii.) lies nearest to A'. Continuing this process,
since there is nothing to prevent our doing so, ad infinitum, we have
a series of segments, each contained within the preceding, and of
half its length. This determines- a limiting point, which will
evidently coincide with A', if A' be a point of arrest, and will other-
wise be the first point of arrest on the right of A', so that between it
and A' there is at most a countable set of external points. This
point of arrest we denote by A, and blacken the whole interval
(A', A). In amalgamating all the intervals between A' and A in
this way we have, at viost, affected a countable set of external
points.

We notice, then, that the content of the amalgamated intervals
is, by Theorem 3, equal to that of (A\ A). Similarly, working
from right to left, we obtain B from B\

Now, as in § 26, divide (A, B) into three equal parts and determine
a black interval of the given set, which either coincides with the
middle segment, or contains it, or is contained in it. This interval
we subject to the already described process of amalgamation,
blackening up to and including the first point of arrest on the right
and left respectively.

During our process of amalgamation we have, as before, affected
at most a countable set of exterior points, and the content of the
amalgamated intervals is the same as that of the new interval we
have constructed and blackened. This new interval does not abut
with (A\ A) nor (B\ B) nor with the remaining intervals of the given
set, and, if we denote it by (Au B:), each of the segments {A,A^)
and (£,, B) has its end points points of arrest, and the length of
either of them is less than -§ (A, B).

We now proceed separately with (yi.,.4,) and (I?,, B), as we did
with (A,B). Subsequently we repeat the same process separately
with the 2a segments left after the amalgamation and blackening
have been carried out in (A, Ax) and (i?,, B) ; and so on.

After the «-th stage we shall have blackened

distinct intervals, obtained by amalgamation, without affecting more
than a countable set of external points. The 2" segments left over
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are such that the length of each is less than (§)" (A, B), while the
end points of each ai'e points of arrest.

Thus, after a countably infinite series of steps, we determine a
definite new set of black intervals. By our mode of construction
these black intervals are dense everywhere in (A, B) and abut
nowhere; while, with the possible exception of a finite or countably
infinite set of points, our new set of black intervals has the same
external points as the given set. By § 28 the potency of the external
points is therefore c, as was asserted.

§ 30. We notice, further, that in each of the 2" —1 new black in-
tervals at the end of the w-th stage the content of the amalgamated
intervals is equal to that of the new black interval in which they lie;
while, since in the remaining segments there is no interval of the
given set greater than (§)"(A, B), (which may be made as small as
we please by choosing n sufficiently large), the sum of the intervals
of the given set in the remaining segments may be made as small as
we please by choosing n sufficiently large; for the same reason the
sum of all the intervals of the new set which lie in one of these
segments can be made as small as we please. It follows, therefore,
that the neiv set of black intervals has the same content as the given
set.* Thus we have incidentally proved the following important
theorem:—

THEOREM 4.—Of the Ultimate Set.

Any set of non-overlapping intervals determines uniquely, {after a finite
or countably infinite series of steps of the type described), an ultimate
set of non-abutting intervals having the same content and, (with the
possible exception of a finite en' countably infinite set of points), the same
external points.

<7/.§5.


