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ON FUNCTIONS OF SEVERAL VARIABLES

By H. F. BAKER.

[Received and Head January 8th, 1903.]

THIS paper is mainly concerned with the problem, suggested by
Weierstrass (Ges. Werke, Vol. n., p. 163), of showing that a function
without finite essential singularities can be expressed as a quotient of
two integral functions. In the Ada Math., Vol. xxn., 1898, M. Poincare"
had worked out in more detail, for the case of periodic functions, the
suggestion considered in his earlier paper in Ada Math., Vol. IL, 1883,
of expressing the real part of an integral function by the potential of
the construct over which the function vanishes; this potential is a
(2p — 2)-fold integral, if p be the number of complex variables. In the
Trans. Cavib. Phil. Soc, Vol. xvin., 1899, p. 431, the present writer
showed that the imaginary part of the function could be introduced con-
currently with the real part, and the whole expressed as a (2jo—l)-fold
integral. So far as the form of the subject of integration only is con-
cerned this integral is a particular case of one suggested by Kronecker in
1869 (Werkc, Vol. i., p. 198), but it differs in that it is taken, not over a
closed (2p — l)-fold, but over a (2p — l)-fold limited by a (2p — 2)-fold
denned by the vanishing of a function of the complex variables. In
the recently published Ada Math., Vol. xxvi., pp. 57-80, M. Poincare"
has again given a solution of Weierstrass's problem, " qui tient pour
aussi dire le milieu entre celle de M. Cousin et la lnienne,'" depending
upon an infinite series of (2p — l)-fold integrals. It would appear that
this solution also can be deduced from the (2p—1)-fold integral used in
the writer's previous paper, and the main object of the present paper
is to explain this as simply as possible. Another object, however, is to
attempt to put a point of view which appears to open a whole series of
important questions.
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1. Independent complex variables being denoted by (fx ... £,,) or
( T X . . . T } ) , p u t £" = Xot-i-j-ix?!,, TS = £ 2 .9- i+^2.<> a n d s p e a k of (xx...xn) o r
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{tx ... tn) where n = 2p, as the coordinates of a point in n dimensions,
calling the positive square root of (x1—tx)

2-{-...-\-(xn—tn)
2 the distance

between these points. Imagine an analytical (w-l)-fold, expressed near
any point of itself by a single power series F(xx... xn) = 0, the function
F(tx ... tn) passing from negative to positive as (t) passes from the inside,
so called, to the outside; let {dkxx... dkxn), for k — 1.. . (w—1), be inde-
pendent sets of differentials on the surface, and dSn-.X} the so-called
element of extent, be the positive square root of the determinant formed
by multiplying into itself, row into row, the array of (n— 1) rows and
n columns (d/cx1... d/cxn); and, taking dtx... dtn towards the outside from
the point x of the (?i—l)-fold so as to satisfy the {n—1) equations
dtxdkxx+...-\-dtndkxn = 0, let lr = h~ldF/dtr, Zf-f-• • • +^« = 1» where
h is real and positive. Further put

P{x,t) = --^l(xx-tx?+... + {xn-tn?Y^--V
n—it

or = ilog [ (^-^) 2 +(^-Q 2 ] ,
the latter when n = 2, and

H = P(x, t)-P(x, 0)+ (t ̂ j P(x, 0)-...+ {~^~l (t Aj* p(.r>0)

where k is a definite positive integer which may be zero and

dx/ xdxx ' dxn

Then, taking (a;) for a point of the (n—l)-fold, and (0 for any point of
space, consider the integral

where sr = 27rJ7(jp—1)! is the total solid angle in 2j» dimensions, and
is a function of ^ ... £,, which therefore satisfies the p equations

= 0.

2. Notice, first, that for n = 2, putting lx = dx2/ds, l2 = —dxjds,
Sn-i = ds, the integral is

and

l dx
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so that, taken round a closed curve within which / ( T ) is not singular, it

jj/'(O) + tL

where e1} e2 are both unity if T and the origin be within the closed curve,
but one or both of them otherwise zero; while, if we put 2-7T& in place of
/(£), and integrate from infinity along a curve not passing through the
origin, up to £, the integral has the value

which is the logarithm of Weierstrass's prime factor for an integral
function having £ for a simple zero.

3. Consider now values of n greater than 2. The integral F is
unaltered by a slight deformation of the {n—l)-fold of integration, neither
a singularity of f(r), nor the point T, nor the origin being passed over ; for
the condition this should be so is only

s;+* ̂ )m (s; ' ) + 1 + l

namely, A c ) ^ _ + _ + ...J = 0 ;

further, when taken over a small closed (n— l)-fold given by

within which we suppose/^) is not singular and the origin is not found,
the integral is equal to

t2) \~xl—t1—i(x2—t2) _ xx—ix2 ,

L 7 (.ri+...)^i"

which, when e = 0, gives / ( r ) ; and, in fact, if (yx ...yn) be any point,

fi — 2/i+*2/2> &c-> t n e integral

J = ^ (/©{ft+iyd- -i
taken over (a^—^y!)24-... + (zn—y,02 = e2 is exactly equal to /(»?), inde-
pendently of e, provided/(£) is throughout non-singular; and hence, as
may be proved directly,
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or, say,as

and in general

Thus, our integral, denoted above (§ 1) by F, when taken over a closed
(11 — l)-fold within which/(T) is not singular, has, as for n = 2, the value
ei/(T)—e2(l» r)k where elt e2 are both unity when (T) and the origin are
included but either or both otherwise zero, and (1, r)*, arising as the
value when y = 0 of

is the integral polynomial in TX ... TV of order k constituting the initial
terms of the Taylor expansion of / ( T ) about the origin.

4. It appears that the integral F also represents a function of ry... T,,
when the (n— l)-fold over which it is taken is not closed, provided its
boundary consists of an (;/ —2)-fold given by the vanishing of functions of
the complex variables. We have dH/dtm = —dK/dxw. where K is obtained
from H by changing k into k—1; hence

dF , . dF

Now let &, = 1 J { ( ^ 1 + < 2 ) / ( a ( g - i g&, = 1 J {
integrated over the (?i—2)-fold which bounds the (;* —l)-fold, where /,,,
denote the hi(n—l) direction cosines of the (•«•— 2)-fold; this contour
integral can, by the generalized Green-Stokes theorem, be expressed as an
integral over the (n—l)-fold, given by

^1+^2)5—/^) (5 *

SEE. 2 . VOL. 1. NO. 8 2 1 .
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of which the first integral has an identically vanishing integrand; thus

^% T ~ 3 — *a"~)

This is _ true whatever be the character of the bounding (n—2)-fold,
provided /(£) remain finite on the (/? —l)-fold and (n—2)-fold, neither the
origin or the point (0 be upon these, and provided any singularities which
either construct may possess do not affect the validity of the trans-
formation theorem; in case the bounding (n—2)-fold be given by the
vanishing of functions of the complex variables (r), we have, at any point
in the neighbourhood of which one such function gives the (11—2)-fold
^2r-l,2s-l+^2r-l, 2.*H~'i(̂ 2r, 2s-l+'^2r, 2s) — 0, and therefore ^2»--lH"̂ 2>- — 0,
giving dFjdtzr-i+idF/dtir = 0, which proves the theorem in question.
The theorem therefore holds, for an {n—2)-fold extending to infinity, for
instance one given by the vanishing of a single integral function, provided
the integrals are convergent. For more details we refer to the writer's
paper, Camb. Phil. Trans., Vol. XVIII., where the theorem was also used
for the case of /(£) = 1.

5. Suppose now that O ^ . - . T , , ) is an integral function of T^.-.T,,,

capable, therefore, of expression about any finite point as a power series
converging for all finite values of TX ... rp. The equation 6 (T) = 0 defines an
(n—2)-fold which we may denote by I; we suppose that, when (r°) is a
point subject to no conditions but 0(T°) = 0, the lowest terms when B(T)
is arranged in ascending powers of the differences TX—T° ... T/(—T° are
linear ; then the intersection in the neighbourhood of (T°) of the
{n—2)-fold 7 with any 2-fold given by such equations as

consists only of the point (T°) counted once; and the increment of
for a closed 1-fold path lying in this 2-fold, is Z-jri. Imagine now a very
large closed (n— l)-fold S, afterwards to pass off entirely to infinity—it will
enclose part of I, intersecting this in (n—3)-folds; and imagine that the
interior of S is rendered simply connected by an {n— l)-fold diaphragm P
bounded on one part by the (n— 2)-fold I and on the other by the
in — 2)-fold in which P intersects S ; this diaphragm may be regarded as
arising by the coincidence of the two in—l)-fold sheets of an {n—l)-fold II
which encloses I and shuts it off from the interior of S, save only that, as
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II degenerates into the two sides of P, it gives rise also to a cylindrical
(n—-l)-fold 2 surrounding, and having every point of itself very near to,
some point of the (n— 2)-fold I. The portion of II interior to S, and the
whole of S other than the ultimately vanishing portion cut out from it by
the (n— 2)-fold in which II intersects S, form together a closed (n— l)-fold
in which log 0 (T) is single valued and everywhere developable. Thus the

integral — Iog9(£)-\(h~^^k)(^ i*—•) + ...\dSw-i taken over this
CT J I. XoXi ox2J 1

has a value Iog9(-r) — (1, T)/,-. NOW let II degenerate into the two sides of
the diaphragm P, together with the cylindrical (n— l)-fold 2 surrounding
/, and this itself degenerate into / . As the values of log 9 (£) on the two
sheets of II differ by 27ri, the integral contains a portion

taken over one side of the diaphragm P. As regards the portion taken
over 2, it can be shown that, if the points of 2 be denned by equations

m—r° = -r (W) s i n

where (T°) is a point of I, and (8B/3T^)' is the conjugate complex of
dO/dr^, and h the positive square root of the sum of the squares of the
moduli of such quantities, then the element, of extent of 2 has a form
dSn~\ = edOdSn-2 where dSn-2 is a corresponding element of extent for/;
it is clear that e log 0 vanishes when e vanishes ; we shall assume, there-
fore, that when 2 degenerates into I the (n — l)-fold integral over
2 vanishes. We have then

Iog0(r) = (1,

where W = — f log 9(f) -((L+iti &^ —>' ^] + ...'- dS«-i

taken over the (n—l)-fold S with the exclusion of a vanishing portion
bounded by the (n—2) -fold which is the limit of the intersection of II
with S. We notice that $ is not continuous across P.

Now suppose the (n— l)-fold S to be taken at greater and greater
distance ; assume that the integer h can be chosen so that the (n — l)-fold
integral $ over one side of the diaphragm P remains convergent when
taken over what ultimately becomes an infinite diaphragm P bounded only
by the zero (n—2)-fold I; it is by no means asserted that this is so for
any integral function 9, but it appears that it is so for a very extensive
class of functions, including those for which I is periodic. It follows then
from the equation above that W does not become infinite or indeterminate

c -2
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for general positions of (r); it is part of the purpose of the introduction
of the {n— l)-fold II to ensure that (T) is not infinitely near to the
(n—2)-fold I. But, in fact, the form of W shows that it cannot change
from definite and finite to indefinite or infinite in consequence of any
variation in the position of (T) SO long as this point remains in the
interior of S ; the indefinite approach of (r) to the (w—2)-fold I introduces
no infinite elements into W. We infer therefore, since by § 4 the integral
$ is a function of rx... rp, that the limit of W when S passes off to
infinity is an integral function of rx ... rv, possibly a constant or zero.
This indeterminateness, too, in the expression for log9(T) was to be
anticipated; since the other integral <3?, over P, depends only on the
position of the zero (n—2)-fold I, which is the same for any function
Oe*, where ^ is an integral function, as for 9.

We have then the result following :—

An integral function having the zero {n—2)-fold I, supposed of
multiplicity 1, is given by the exponential of the integral

f | / ? . .jjdH .dR\
J I - \ox1 day

taken over an infinite {n— l)-fold diaphragm P bounded by I, pro-
vided k can be chosen so that this is convergent.

We shall, however, find it desirable to bear in mind the more complete
form

log6(r) = (1. r)H-*5 J {(ll+ilj ( g - i g ) +...

where W is the integral function arising as the limit of the (n— l)-fold
integral previously put down, involving logO(^) under the integral sign.

It has already been shown that this result is valid for the simple
integral function of one variable 1— T / £ the diaphragm P being then a
curve coming from infinity and terminated at f; it is therefore also valid
for any integral polynomial in the one variable T, the diaphragm con-
sisting then of several such curves, each terminated in one of the zeros of
the polynomial; and therefore also valid for any integral function of r
of finite genre, the diaphragm consisting then of an infinite number of
such curves. And, similarly, in the general investigation above we have
not intended to assume that I consists of only one piece nor that P is
simply connected ; it may, moreover, be divided into unconnected portions
by branches of I, in case this is, as would appear necessary for the case
of periodic functions, a self-intersecting structure ; it is believed, however,
that the language employed can be understood in a sense suitable for all
cases.
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6. As a simple case where the assumption as to the convergence of the
integral $ over the (n— l)-fold diaphragm P is justified, we may take
p = 2, and 0(£) = &— (a-\-ib); then the (n—2)-fold I is xx = a, x2 = b,
and the diaphragm P is given by xx — a, x2 < b ; also ^ = 1,
£2 = J8 = Z4 = 0 ; taking k = 0, we find

a - i s , ' dx dx dx

i_ \
a-\-ib)

In general, if the diaphragm P be such that for distant parts of space,
at distance B from the origin, the extent of the diaphragm contained in
/i-fold extent V is at most of the order of magnitude of Bk~lV, the integral
in question is convergent. For then, as the quantities dH/dx^-i—i hHjhx^
are ultimately of order .R-*""1"̂ , the portion of the integral over the part
of the diaphragm for which r < B < rx is, in absolute value,

i(-L__L)
where fx is a fixed quantity and rx =

It is, however, to be remarked that, just as we have been able to infer
the convergence of the integral W from the assumption of the convergence
of the integral #, so the converse process may be possible. In absolute
value W is of the order of

— 1 | log6(|) | \B-('L+k)\B"-ld<o,
tt J

and vanishes if the limit of B (/"+1)log |O(£)| is zero as (x) passes to
infinity in any direction not asymptotic to the zero (11—2)-fold / . For
instance, if 6(£) be an integral polynomial, this is so for k = 0. Thus

Any integral polynomial B(T) can be represented in the form

6(T) _ T2xi f f ,7 , ., x (ha . dH\ , | , o "I

o(o) -exp L v j r + * g va^ ~ % y + - J ^ii-lJ
where H = P(x, t) —P(x, 0) and the integral is over the infinite
(n—l)-fold diaphragm limited by the (n—2) -fold on which O(T) = 0.
It is supposed, as usual, that this (n—2) -fold is of multiplicity unity
and does not contain the origin.

7. For the case of periodic functions consider first p = 1. The
diaphragm consists then, say, of straight lines directed from the origin,
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one passing from each of the, say m, zeros in every parallelogram of
periods, to infinity; the number of parallelograms in a circle of radius r,
when r is large, is of the order r2; the whole length of diaphragm in the
annulus r < B < rx is then of order m^—r)r*; the ratio of this to the
area of the annulus is

•m {rx—r)7* _ m
r7r r[—7* 7r rx-\-r'

and is ultimately of order r ; thus the condition of convergence is satisfied
by taking k = 2.

For larger values of p, the (n—2)-fold I may be periodic in the sense
that it is possible to divide ?i-fold space into period cells, the interior of
any one of these being given by p equations

where A is a constant and \ ... A2/, are real variables each between 0 and
1, in such a way that the portion of I in every cell is a repetition of that
in any one cell. In that case the (n— l)-fold diaphragm P is presumably
not periodic, there being in a distant cell, in addition to the portion
bounded by the part of I actually contained therein, also portions con-
tinued from less distant cells and bounded by parts of I contained in
these. It appears sufficient in order to show that the condition for the
convergence of the integral is satisfied, also in this case by taking k = 2,
to remark that the {n—l)-fold integral over the diaphragm P can be
reduced to an (n—2)-fold integral over the bounding (n— 2)-fold I; or,
similarly, that a part of the (?*—l)-fold integral over a distant portion of
P can be reduced to a boundary (n—2)-fold integral; and that the con-
dition for the convergence of the (n— 2) -fold integral is that for an
mtegral of the form $ dSH-2/Rn+L~l) assuming that the extent of I
included in any period cell is finite, the convergence of this last is
reducible to that of the Eisenstein series

nil = —oo

where (j>{mx... mn) is a definite quadratic form in the n integers rnx ... mn ;
this series converges if n-\-k—l>n or & = 2.

8. When k = 2 the second partial differential coefficient
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is equal to _ _ J j f t + ^ ^ ^ -

where Ho = P(x, t) —P(x, 0); if 2w, a set of p complex quantities
(OjL+iffla, Os+^4, ...), be a period, it maybe shown, by .associating with
any point (x) of the diaphragm of integration the equally arising point
x—a; and with this the point x — 2a, and so on, that the increment of the
second partial differential coefficient, say P#(T), which is given by

where K = P(x—a, t)—P(x,t), is zero. Thus the quotient, for an
integral function 9 whose logarithm is represented by the (n— l)-fold
integral over the diaphragm P, expressed by 0(T-\-2U))I0(T), is the
exponential of a linear function of TX ... TP. From this it follows, if (£) be
a distant point obtained by addition of a general period from a finite poinl
(T), that the quotient 9 ( £ ) / 9 ( T ) is the exponential of a quadratic function
of n integers mx ... m,,.; and the condition previously remarked for the
evanescence of the integral W, that I^~(/+1)log |9(£)| should ultimately
vanish, is clearly satisfied by k = 2 ; for R is the square root of a definite
quadratic function of the n integers ml ... vin.

The integral function k) cannot be itself periodic; for, if we write
9 = U-\-iV, the {n— l)-fold integral, taken over the perimeter of a period

cell, I U [1XK Z25 (-•••) dSn-i would then be zero; it is, however,
J \ 02/2 OXX I

equal to I s ^— ( JJ ^—j — ^— ( U ~—J + . . . .• dSn taken through the cell,

namely, to 1- (5—) + (5—) +•••[ dSn- On the other hand, it is not the

case that every integral function whose zero {n—2)-fold is periodic is such
that its second partial differential coefficients are periodic. We have
shown that an integral function with such periodic differential coefficients
can be found whose zero {n—2)-fold is an arbitrary given periodic
(n—2)-fold ; any other integral function having the same zero (n— 2)-fold,
with the same multiplicity, is obtainable from this by multiplication with
a factor which is the exponential of an integral function. Integral
functions whose second partial differential coefficients have, as here, sets
of simultaneous periods are those considered by Frobenius under the
name of " Jacobian functions" ; it follows from his investigations, sketched
in the present writer's Abelian Functions, pp. 579 et seq., that the periods
cannot be taken arbitrarily, and that the functions can be expressed by
theta functions. This property then, as follows from the remarks to be
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next made, attaches to all single-valued analytic functions of p variables
without finite essential singularities which have 2p sets of simultaneous
periods—a theorem stated (on the authority of Hermite) to have been
known to Riemann.

9. Suppose an analytic function is known to exist and to be single-
valued and to be capable of expression about every finite point (T°) as the
quotient of two power series converging in sufficiently near neighbourhood
of (T°). If these series are both divisible by another power series vanish-
ing at (T°), this factor may be supposed divided out (Weierstrass, Ges.
Werke, t. n., p. 151); but further there exists a finite region about (T°), in
the common region of convergence of the two series, such that, if the two
series be developed about any point of the region, the resulting series have
no common factor vanishing at this point (Weierstrass, loc. cit, p. 154).
Let a part of this region bounded by points all at the same distance from
(T°) be called the proper region of (r°), and denoted by Ko, the expression
of the function valid therein being ^O/0O, where ^0, <p0 are power series in

•p—TI having no common factor vanishing at any point of KQ.r,—T1 ' V • • -j >p i p

There may quite well be points of Ko at which \fr0 and 0O both vanish,
these lying on the {n—4)-fold where the original function is not definite.
Now let any finite region of space be for the moment called a suitable or
unsuitable region according as it lies entirely within the proper region of
some point within or upon the boundary of itself, or does not. Take any
finite portion of space, however great, bounded by a closed (n— l)-fold:
for definiteness we take the portion bounded by the 2?t plane (n—l)-folds
expressed by xs = — as, xs = as; let it be divided by planes into 22'1

similar rectangular cells each of extent 2~2"-th of the original; these
again divided into 2~2'1 equal cells, and so on continually. After a finite
number of steps, the original region must consist of sub-divisions each of
which is a suitable region according to the definition above. For consider
any indefinitely continued series of sub-divisions each of which is a sub-
division of the preceding one of the series; the series will have a definite
limiting point, say (T°), lying within or upon the boundary of every sub-
division of the series. As the series is indefinitely continued, a stage can
be assigned beyond which every sub-division is of less than an assigned
extent, and therefore a stage can be assigned beyond which all the sub-
divisions of the series lie entirely in the proper region of (r°), which by
hypothesis is a spherical region about (r°) of assignable radius. Thus it
is clear that in this series of sub-divisions we reach a suitable region after
a finite number of steps ; so that there exists no indefinitely continued
series of wholly unsuitable regions, each contained in the preceding one of
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the series. Thus the original cubical region, and similarly any nnite
portion of space, can be divided into a finite number of not-overlapping
regions, each having the property of being entirely contained in the proper
region of some point within or upon the boundary of itself.

Denote any one of these regions by Bo; considering then the interface
between two regions Bo, B1 and the equality \[,0/<f>0 = ^/fa between the
two possible expressions of the original function existing on this interface
as belonging to the proper regions of both the points (T°) and (T1), which
we may, as above, associate respectively with the regions Ro and Bt; and
assuming that a power series iu (p—1) complex variables which vanishes
at the origin and for all the points of a (limited) 2/) —2-fold continuous
about the origin, with the possible exception of a (2p — 4)-fold part of this
for which nothing is known, necessarily has zero coefficients; we can infer
that, in the region common to the proper regions KQ, Kv the (n — 2) -folds
\fsQ = 0, \jj-x — 0 are the same, as also those expressed by <f>0 = 0, </JX = 0.
We thus build up the idea of a zero (n—2)-fold Iv and an infinity
(n—2)-fold I.2, for the original function, whose common (u—4)-fold inter-
section consists of the points where the function is imassigned. Expressing
the equations of these (n—2) -folds, as in the previous part of this paper,
by integral functions Qv 02, the original function has a form e®3B1/B2,
where O8 is an integral function, and Ov O2 have no common zero save
where the function is unassigned.

10. Suppose now that, as in what precedes, the whole of any Unite
portion of ?i-fold space is divided into regions B, Bo, Bv ..., separated by
('/i— l)-fold interfaces, the diaphragm P, limited by the zero (// — 2)-fold ./
of an integral function 0, forming part of the system of interfaces; and
that each region Bs is within the domain of one of the component series
c/>, by which 6 is expressed, while on the interface $,..,. between B,. and B6

the ratio <j>r / (J>s is not zero or infinite.
mi • - i 27T'iff\7 . .7,/9£r .dH\ , ! ia ,, ,.
The integral — -, (U-\-ilo) 5 %^— ) + • • • r dSu-i over the dia-

0 zr J I \ax1 dx21 >
phragm P may be decomposed into a sum of parts, one part for each of
the portions of P which forms a face of a region B ; if such a portion of
P be denoted by H, the corresponding part of the integral may be
regarded as arising from the sum of two integrals each of the form
— [\os<l>\{lx+iK)(^—i%^)+--.\dSn-i, and taken over 11, but with
ZT J ° 1 { XOXi OX2/ )

opposite directions and signs for lx, l2, ... and values of log <f> differing by
27r*; these two elementary integrals we shall represent diagrammatically
by oppositely drawn arrows named (j> and <j>', the dash associated with the
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latter indicating that the corresponding values of log <j> is greater by 2irl
than for the other integral; to these parts must be added, as in § 5, an
ultimately vanishing integral taken over a cylindrical (n—l)-fold 2
enclosing and everywhere very near to / ; we suppose, in addition to what
has been said, that the division of space into regions B is so taken that I is
very nearly an intersection of interfaces, but is shut off from the regions
by portions of X which form part of the perimeter of these; in the
diagram below the (n—2) -fold I is denoted by a dot and the cylindrical
(•//.—1) -fold 2 by a small closed curve. We have seen that an integral

-itaken o v e r a c l o s e d fa-

within which f(r) is not singular is zero, unless (T) or the origin is
enclosed; in the former case it gives / ( T ) , in the latter an integral
polynomial in rx ... rv of order k. With the exception of these possibilities,
to be afterwards referred to, we may now make a further decomposition
of the (n— l)-fold integral over P in a way perhaps best explained with
the help of the diagram.

Here the arrows in dark line represent the original portions of our
integral over the parts H of the diaphragm P which are contained in the
system of interfaces. For each region Es we supply an inwardly directed

integral — log <j>s \ (Zj+'iy (5 i ^—) + • • • r dSn-\ over its whole sur-
face ; this is zero, save that we must supply a correction log <p(r) for the
single region containing (T), besides a correction, a polynomial in TX ... r?),
for the single region containing the origin. An inspection of the figure
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shows that the result is an integral over every interface E m of the form

— log (&-) •; (li+ilj (5 i TS—) +...,- dSv-x, wherein, as has been
ra" J V 0, / I Vox! oa?2/ J
said, \og(<prI <f>a) is finite and developable over this interface ; together with
integrals over the ou side faces of the most external of the regions ; these
latter together form an integral of the character of that denoted in § 5
by W; we shall here denote this sum by — W, so that W is directed
outwards over the whole outside (n—l)-fold S bounding the portion of
space considered. We have thus the result—

The integral over the {n—l)-fold diaphragm P,

tr J ( \dx1 day 1

is equal to hg(p{r)-\-'LJrs—W'-\-(l, r)k, where </>(T) is the series for
the region R containing (T), the symbol (1, T)^ denotes an integral
polynomial of order k, and Jrs denotes the integral

taken over the interface separating the regions Br and R^, and the
sum of these integrals is to be taken for all the interfaces.

To the two sides of this equation we may add the integral T̂ " of § 5,

- j log e© \ ft+uj ( ^ -r j - ) + . . . I «. .„

taken over the whole outside (•»— l)-fold S. It is manifest that the
difference >F— W is ultimately an integral function, the function log 9/0
being finite and not zero over S; thus, if our diaphragm integral is con-
vergent, the sum 2 / r s is ultimately convergent, and the sum W is
ultimately an integral function. Thus in this case we have the further
result—

An integral function having the given zero construct I is repre-
sented by log 0(T) + 2JrS.

Now putting, for abbreviation,

7 iL-L i / i - i / A _ / A _ L _!_/ d ; d _ 9
oa^ oa;7l 01/ oo;2 Oct! oxn oxw-\ O<T

so that a function U-{-iV oi x^ix^, ..., xn-\-\-hxn satislies

. . a
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we have

and any one of the integrals Jrs can be written in the form

Jn = Krs- ± [ £ (ff log %) dS»-u

where Kn =-\P-f log ̂ s l (log %-Y\dS»-i,
CT J L 01/ 0 S 01/ \ 0s / J

taken over the interface RrS' Consider the sum of the integrals

where in the former {l^, l2, ...) are directed inwards to the region Rr and
in the latter inwards to the region Bs; an integral J d/dtr [Hf(g)] dSn-i is
easily seen to be unaltered by a deformation of the (n— l)-fold of integra-
tion provided no singularity of /(£) is passed over, and to give zero when
taken over a vanishing closed {n—l)-fold containing (T) or the origin.
Hence it is easily seen that the sum of these integrals is ultimately zero.
Compounding them together by a process the reverse of that followed in
obtaining the sum 2 Jrs, there result three parts.

i f d
(1) a sum of integrals I ^- iff log 0) dSn-\ over the outside

{it—l)-fold S bounding the space considered, ultimately zero because H is
ultimately of order i2~(7l+A:), and the part of S where 0 = 0 and log </> = <x>
is excluded from integration by the cylindrical in— l)-fold 2 ;

(2) an integral — I -5— dSn-i over the diaphragm P ;
ZT J 0(T

(3) an outward integral —\^-iH\og<p)dSn-i over the cylindrical
ZT J (i(T
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(n—l)-fold 2 ; this, in virtue of id<pldo- = —d<p/dv, is equal to

which, if we put dSn-i = ed6dSn-2 as in § 5, and allow e to vanish, so
that 2 degenerates into / , becomes, since <p = 0 on 1,

dSn-2

and it is the fact that the sum of this last integral, over the boundary I of
the diaphragm P, and the integral in (2), over this diaphragm, is zero. We
have thus shown, for cases when our original integral is convergent, that

An integral function having the given zero (n—2)-fold I may be
obtained by adding, to the sum of integrals

Kn= f _ I T a (log

over the interfaces, the quantity log <j> (T) associated with the region
containing (T).

This is the result obtained, for the less general case of periodic functions,
by M. Poincare" in his last paper, Ada Math., Vol. xxvi., pp. 67, 73, 78 ;
while the identity just remarked,

ZJ J dcr

occurring Trans. Gamb. Phil. Soc, Vol. XVIII., p. 431, establishes the
identity of the real part of the function considered by M. Poincare", Ada
Math., Vol. XXII., p. 168, with the real part of the function

which is fundamental in the present paper.

11. To some readers the constant use of the language of hyperspace,
and in particular the frequent mention of (n— 2)-folds, in this paper, may
seem to augur badly for the theory of the functions involved; on the
contrary, the writer believes that this point of view, already found with
some explicitness in Kronecker's Berlin Monatsber. paper of 1869, is of
the greatest importance for the development of the theory of functions of
several variables. It is desired to add here some general remarks,
including a view of Mittag-Leffler's theorem for functions of more than
one variable, which may add a little to the elucidation of the ideas.

In the plane which we employ in describing the properties of functions
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of one complex variable T, the element is the point; it is, in general, at
a point or a set of discrete points that a function of the complex variable T
has an assigned value, and we speak of infinite values of r as lying in the
neighbourhood of a point 1/T = 0 ; and the region of existence of a power
series in the difference T—T° is necessarily a circle described about and
entirely enclosing the point T°, there being no point outside the circle at
which the series converges. Suppose, however, we have, for instance, a
power series in the two differences TX —T\, T2—T2, say <p{rv T2) ; we have
the theorem that, if the series converges for values T'X, T'2 such that
\TX—T\\ = Rx, \r2—T°| = -R2,

 a region of convergence is given by the
equations \TX—T?|< JRlf |T 2 —T 2 | < R2; but in a region of convergence
of this form the radii Rv R2 are not in general to be regarded as fixed or
independent; it may happen, indeed, that by taking one of them sufficiently
small the other may be taken arbitrarily great; in that case, though,
putting rx = tx-\-it2, r2 = tn-\-itA, and using the language of hyperspace,
we may take a sphere

and choose R less than the less of Rx and R2, to have its greatest value
so that the power series converges at every interior point, yet this
sphere will not in general contain all the points at which the series con-
verges ; the points at which the series (j>(rx, T^ has any value which it
takes within this sphere lie, in fact, upon a continuum of two dimensions
satisfying <j>xdTx-\-<p2dT2 = 0, which generally intersects the sphere, in a
locus of one dimension, and passes to indefinite distance.

As an example of a power series whose region of existence is easily
seen to pass to infinity, we may take the series obtained from the series

(B) ?2

by arranging according to terms of increasing dimension, that is, the series

(A) 1 + T l + (-Tvra+T?) + (ijZ? - 2T»T2+TJ)

if T l = J\el9\ T2 = r2e
i02, the sum of the moduli of the terms of (B) is

l-j-r1era+rje2r2+..., which converges, only when rx < 1, for rx <L e~r-:
for any values of TX, T2 satisfying this condition the series (B) can be
arranged as a convergent power series (A). Conversely, if the series (A)
converges for any pair of values rx = T'1} T2 = T2, it will converge
absolutely for values | TX \ < | T'X \, \ T2 | < | T2 | and converge therefore to
the same value when arranged in the form (B); but the series (B) con-
verges only when | TX | < | eT21, or, if T2 = ts+it4, only when rx < ctj;
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its region of convergence, represented on the two planes of TX and T2,
consists therefore of the interior of a circle, centre the origin, of radius rv

in the first plane, taken with the region to the right of the straight line
parallel to the imaginary axis in the second plane at distance logrj to
the right of this axis ; there can, therefore, be absolute convergence only
when logrx is negative or ?\ <. 1, and then only when r2 < log l/rt or
rr < e~r"-. Thus the region of convergence of the series (A) consists
of the interior of the three-fold r-^c'1'- = 1; within this i\ cannot be as
great as unity, but can be as near as may be desired by taking r2 small
enough; on the other hand, r2 can be as great as may be desired by taking
i\ small enough. We may then describe the region as spindle-shaped.
It contains in its interior an infinite number of bi-cylindrical regions of
convergence, each bounded by portions of two three-folds rx = Bv

r2 = B2, for which B2 = log (1/B^ ; this pah- of three-folds intersects
in a two-fold lying on the boundary of the spindle-shaped region. The
spherical region of convergence of greatest radius is given by

where B is the real positive quantity between % and 1 for which B =• e~R.
The two-fold on which the function represented by the series has the
value, unity, which it has for TX = 0, T2 = 0, has for equation rx = 0 ;
it clearly passes to infinity; it intersects the boundarj7 of the spherical
region of convergence in the locus of one dimension tx = 0, t2 = 0,
t\-\-t\ = B2 ; it intersects the perimeter of a bi-cylindrical region of
convergence \rx\ < Bv |T2 | < B2 in the one-fold tx = 0, t2 = 0,
t\-\-t\ = B\; but it does not intersect the perimeter of the spindle-shaped
region of convergence in any finite point. Finally, it has appeared that
this latter region is by no means co-extensive with the region of existence
of the function represented by the power series, which is (1— T^"7 2)"1.

Thus the hyperspace of n, = 2p, dimensions which we speak of to
describe the properties of a function of p complex variables is one of which
the elements are not the points, but (n—2)-folds (cf. § § 2, 4); the closed peri-
meters separating off regions where the function has an assigned character
or value are (n—l)-folds which are not most naturally spheres, but multi-
cylindrical surfaces often passing to an indefinite distance, and the infinity
of the space consists not of one point, but of points lying on one or more of
the (71—2)-folds, p in number, expressed by r^1 = 0, ... T~T = 0; in
general a point of the space is a derived element obtained by the co-
intersection of p (n— 2)-folds; whereas in the case of one variable the
whole space is expressed by two equations of the form \r\ < B, |7--1| < B,
in the case of p variables there are 2P regions necessary to include the
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whole space, first the finite region | rt | < J^ ... | rp | < Rp, and then all
the regions of the form

| T f 1 | < i 2 1 . . . I T ; 1 ^ ^ , | T » + 1 I < J B W + 1 . . . \TP\<BP,

where m = 1, 2, ..., p.

12. If now we have a single-valued function / ( T ) , either rational in the
variables rx ... TP, or without essential singularity for finite values of these,
whose infinity (?? — 2)-fold I does not pass through the origin, and a multi-
cylindrical region \rx\ < Rx ... \rp\ < Bv be constructed whose (n—l)-fokl
boundary, given by the aggregate of p sets of equations

| T 1 | < J 3 1 . . . | T « | = B « . . . | T P | < B P ,

excludes the (n—2)-fold I, the function/(T) can be expanded in this region
as a power series in TX ... rp ; and this expansion may be valid in a region
of greater extent including in its interior all such possible multi-cylindrical
regions; let G denote an {n— l)-fold excluding / , and including the origin,
within which the expansion of/(T)

/<T)= I ... i ^ . .^ . . .T; ' ; * 1

»H, = 0 m,, = 0

is uniformly convergent, in the sense that, for any assigned small positive
quantity e, values of /ux... np can be assigned such that

F(T) = / ( T ) - "S1 ... "S1 A^^T?...!?
TO] = 0 m.p = 0

co a

• • • m ] . . . m ; > ' l • • • 'p
w , = /x, Dip = mi

is in absolute value less than e for all points interior to C; so that the
region may be a multi-cylindrical region, or an interior:- spherical region,
or be more extended.

Now suppose we have an enumerable series of such functions, infinity
{n— 2)-folds and (» — l)-folds, / I ( T ) , / 2 ( T ) , ..., Iv I2, ..., Cx, C2, ••• such
that any one (n—l)-fold Cs excludes Is, Js+1, ..., but includes Cs-i, Cs-i, •••
and the origin, while any finite point of space is interior to only a finite
number of the (vi—l)-folds C1} C2, ... ; and, taking a convergent series of
real positive terms ev e2, ..., subtract from the expansion of / S ( T ) in G\ the
sufficient polynomial that the remainder

F.(T) = / . ( T ) - "S1 ... Y A^^i?...-!?
mi = 0 mp = 0

may within Cs be less than es in absolute value, the integers fxx... fxp pre-
sumably depending on s. Taking, then, any point (T°) not upon any one
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of the (n—2)-folds I l5I2, ..., but exterior, say, to Cl... Cs_i and interior to
CsGs+\..., the infinite series FS(T) + FS+I(T) +... whose terms are power
series in TX ... rr absolutely less respectively than es, es+i, ..., is uniformly
convergent about this point and its sum can be arranged as a power series
in the differences T^—T? ... T;,—T° ; about this point also each of the finite
number of functions FX{T) ... Fs_i(r) is non-singular and capable of ex-
pression as a power series in these differences, though possibly incapable
of expression as a power series in TX ... TV. Thus

The series F(r) = F1(T)-{-F2(T)-{-FS{T)-\-... represents a single-
valued function developable about every finite point not upon any one
of the (n—2)-folds I}, 72, ... ; while, as precisely the same reasoning
applies if one of the (n—2)-folds and the corresponding function be
omitted from consideration, and the difference FS{T)—/S{T) is an
integral polynomial, it follows that the difference F(r)—fs(T) is a
function whose region of existence excludes only the (n—2)-folds other
than /„.

It is, of course, in the specification of the behaviour of the function
F(r) in the neighbourhood of the (•?? — 2)-folds Is that the subsidiary functions
f8 (T) have their chief utility; yet we have assumed a knowledge of the
expansion of fs (T) about the origin in order to form the functions Fs (T) ; it is
worth remarking that when the functions /S(T) are known only in the
immediate neighbourhood of the (n—2)-folds Is, essentially a similar final
theorem can be obtained. For one variable, if /S(T) be given only in an
annulus surrounding the point Is, consider the function

taken round a closed curve in the annulus; it exists, is single-valued and
developable about every finite point outside the inner boundary of the
annulus, requires a knowledge of /S(T) only in the part of the annulus
interior to the closed curve of integration, and is such that everywhere
within this closed curve the difference <-/>.< (T)—/S(T), being equal to

— ~—•. " I T C ̂  , is non-singular (not excluding Js). If then we use the
2 J £—T

expansion of </>.,(T) about the origin, just as before we used the expansion
of fa(r), we shall obtain essentially the same character for the function F(T).
So, for any number of variables, imagine a cylindrical (n—l)-fold surface I \
passing to infinity which encloses the (n—2)-fold Ia, and suppose that the
function fs (T) is known only in an annular cylindrical space which encloses
Fs; then by § 4 we can use the expansion of the function

SHB. 2 . VOL. 1. NO. 8 2 2 . T)
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_/ . (T) [fiH .
zr )\dv 0<r

which is easily seen to be continuous as (T) passes over Ts, in place of the
expansion of /s(r), about the origin. This gives another example of the
utility of the theorem of § 4.

Further, the reason for the use of the functions FX(T) in the place of
the functions /S(T) is the need of a series converging uniformly about every
Unite point (T°) not upon the (n—2)-folds Iv I2, ... and of definite con-
struction ; it may be possible, in place of choosing the integers ^ ... /u,, so
that FS{T) is absolutely less than ev« for the whole interior of Cs, to choose
them smaller than in that case in such a way that for the whole interior
of any assigned Gr the series Fr{r)-\-Fr+i{r)-\-..., and therefore the series
F(T), is uniformly convergent, which is sufficient for the theorem. An
example is the case where F(T) = cot TTT ; another example occurs below.

The series obtained permit of integration and differentiation term by
term, as may be proved in a manner quite analogous to that given by
Weierstrass for one variable, or by consideration of the integrals

Fr (r) = F,. (g) (A —i4

taken over a closed (n— l)-fold within Avhich no one of the functions
^ ( T ) , F2(T), ... is singular.

The theorem and proof are capable of extension to functions not
altogether single-valued or of pseudo-rational character; in particular,
analogous to the way in which Weierstrass's factor theorem for integral
functions of one variable is derivable from Mittag-Leffler's theorem, there is
a derivable factor theorem for functions of several variables ; the expression
in § 6 for the logarithm of a rational function gives rise to the necessary
expansion of this logarithm nbout the origin.

13. To form an example of the theorem it seems natural in the first
instance to consider the case when the in — 2)-folds Ilt I2, ... are given by
linear equations. For two complex variables g = x-\-iy, y = z-\-it, the
square of the distance from the origin to the nearest point of the two-fold
(a-\-ib)g-\-(c-\-id)t] = 1 is (a2+&2+c2-}-^2)~1; and, in fact, the square of
the modulus of the left side of this equation, that is, of

is (ax—by-\-cz—dt)2-\-(ay-\-bx-{-ct-\-dzf, which is equal to

(a2+fe2-r-c2-f d W + ^ + ^ + t f 2 ) - (az+bt-cx-dy)2 - {at-bz-cy+dxf

and is less than unity when x2+y2-\-z2+t? < (fl^+^+^-f-d2)"1; so that
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under this condition we have, if u = a-\-ib, v = c+id, the expansion

Now take an infinite series of functions

where w^w^, ... are constants, so that the numbers JRl = [\ui\2+\vi\~]~h>
R2= [|w2|

2H~ \v2\] ~5, ... constantly increase to infinity, but in such a way
that only a finite number of them are less than any assigned real positive
number ; then, 0 being a fixed real quantity just less than unity, the
(n—l)-folds | £ | 2 +hr 2 = (0-R,)2 are such a series as those denoted in § 12
by Gv C2, . . .; and, if e be a real quantity between 0 and 0, Ws = \ios\ and
ps = \ug^'-j-vst]\, the sum of the moduli of the terms which follow the
Hs-th. term of the expansion within Cs of WaO-—us£—rsrj)-1 in powers of
Uai+Vrf, namely WspZ>l(l—p.,), is, for \€\2+\ri\'2<{eRf, a n d there-
fore ps^.e, less than or equal to Ws^'liX—e), and the functions Fs{$, >/)
may be denned by choosing the numbers fis so that Wsfl(l—e)<.es and
taking

but we have remarked that it is sufficient if the numbers /JLS be such that
the series "EWspssl(l—ps) be uniformly convergent within any assigned

s

Cr; which is satisfied, since ps < e, if the series 'ZWsPs* be so uniformly
s

convergent;, and this again, since ps^{\us\'
2'-\-\vs\'

1)^{x^-\-y2-\-zl-\-t'1)^,

provided the series of constants 2 Ws [ | us |
 2 + | vs |

2] *** be convergent.
s

The most obvious case is when the series 2TFS is convergent; then we
s

CO

have F(i, r,) = 2 -—™' ^ ,

the aggregate of numbers [h*s|
2-H^s|2] ~* satisfying the condition of

having infinity as its sole point of condensation.
For another case we may take ws = 1 and us = vi~l, i\ = n~l,

wherein mv m2, ... and nv n2, ... are both series of constantly increasing
— -\—-) * converges for ,us = 2, and we have
m; n;J

T) 2
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14. Such considerations appear to the writer to have great interest as
throwing light on the question, " How far do there exist Mittag-Leffler
series* of simpler functions for multiperiodic functions without finite
essential singularities analogous to the well known series for the elliptic
function ptyi)?" When we consider the periodicity of the infinity con-
struct of such a function, it appears unlikely that such a series can be
built under the hypothesis that the (n—l)-folds Cv C2, ... used in the
demonstration of § 12 are spheres or multicylindrical surfaces of all finite
radii; for that case, moreover, already considered by M. Appell, Ada
Math., Vol. ii., 1888, p. 71, the proof is only a very obvious generalization
of the case of one variable; we believe it to be of importance to plead for
standing ground for the more general formulation.

* [September 1st, 1903.—For triply periodic functions of two variables, such series are
derivable at once from the known unsymmetrical forms given, for instance, in Part in. of the
writer's note on hyperelliptic functions in Proc. Camb. Phil. Soc, Vol. xn., Part in. (Easter
Term, 1903). See also Painleve, Compt. Bend., April 14th, 1902.]


