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On the Motion of a Particle on the Surface of an Ellipsoid.
By W. E. WESTROPP EOBERTS.

[Read May 10th, 1883.]

1. The cases of motion of a particle constrained to move on the
surface of an ellipsoid discussed in this paper are those in which the
velocity, expressed as a function of the primary axes of the confocal
hyperboloids determining the position of the particle on the surface,
assumes a certain form.

The following theorem in the Calculus of Variations, which can be
easily established, enables us to determine the motion and path of the
particle in the cases considered.

If I '/<b(x) + "9 (y) y/dof+dy* be a minimum, then

is a first integral of the differential equation afforded by the Calculus
of Variations, C being an arbitrary constant; and hence, more generally,

if

be a minimum, then the first equation becomes

fa?) . dx . S^ (y). dy _

)0
2. Let us now express ds the element of the arc of a curve on the

surface of the ellipsoid in terms of ft and v, the primary axes of the
confocal surfaces through the point considered (see Salmon's Geometry
of Three Dimensions, Art. 424).

Then

where da •

Tho Principle of Least Action gives us I v ds a minimum, or

T "* s
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a minimum for the motion of the particle on the surface ; hence we

see that, if vVp*—vi— >/* (/*)+¥ (v),

the dynamical problem is reduced to the mathematical problem
already discussed. If then

<[> (ft) and ¥ (v) involving the coordinates fi and v of the initial posi-
tion, and /3 the initial velocity of the particle, the differential equation
of the path will be

V(^=
or multiplying by \Z/*8—v8, and referring to (1),

dtr | *"' = 0 (3).

3. The lines of curvature are obviously included in the above
differential equation, hence if v* is of the form

the particle can, by a proper determination of the initial circumstances,
be made to describe a line of curvature; if then it be required to
make the particle, under the action of a force which causes the
potential, and consequently v*, to assume the above form, describe the
line of curvature /u = JI', it must obviously be projected in the direc-
tion of a tangent to this curve, and it remains to find the proper
initial velocity /3.

Let N be the resolved part of the force along a line perpendicular
to the direction of motion and the normal to the surface, p the radius
of curvature of the orbit, and <f> the angle the osculating plane makes
with the tangent plane to the surface; we have then the following
equation from mechanical considerations :—

jy+ i2icos0== 0 (1).
P

If, now, the path is the line of curvature fi = ft', ^21x — — when fit
p .

is the radius of curvature of the section of the hyperboloid of one
sheet by the tangent plane to the ellipsoid. Now, R'— "—y-y <p being

p
the perpendicular from the centre on the tangent plane to the
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hyperboloid of one sheet, hence (1) becomes

Now $ — is evidently the force perpendicular to the ft line of cur-

vatnre or N; therefore, differentiating the equation

we get (ft'-v2) f !+v3 x'2/4. f = *'(/.) & ;
ao- aer aa

or i ^ . ^ _ i ^ ,
dff f l - l / S * JLt2 — VJ

But ^~ = »' therefore

!E_ = i . __4? (3),
3 2 2 2
^i4
ft3 — V2 f l 2 —V2

and this will be identical with (2) if $' (ft) = 0. This equation
will determine ft, since * (ft) involves ft', v', and ft. The following
examples will make this more clear.

A particle constrained to move on the surface of an ellipsoid is acted
on by an attractive force to the centre as Ar. The potential is then
\A^, and consequently v* = A (r^-r^+ft2 or A (f^ + ^ - f t ' -
since r2 = /u' + î  + ci2—h2—k* (Salmon's Surfaces, Art. 161) ;

hence • „« = W^+^+^y-^-A (»>-*')
ft V2

which gives (ft) = {̂ 1 (//2 + v'3) +/32} ^-Afi\

and the condition ¥ ' (ft) = 0 determines ft from the equation

or fti = A(ix3-y'i))

and therefore «8 = J. (ft*2—y2).
A particle moves on the surface, and is acted on by a central force

situated on the axis major at a point S distant — from the centre, the
a

force varying directly as the distance and inversely as the cube of the
tangent to the sphere having 8 for centre and touching the ellipsoid
at the umbilics, to determine the initial velocity in order that it may
describe the line of curvature ft = ft'. The radius of this sphere will
be found to be —, and the tangent from any point on the ellipsoid will

a A
be consequently equal in length to ft + v. Now the potential is ~7^»
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hence £«2 = - ^ A~^
fJL + V fl + V

or

hence * (ft) = ( /32- - | ^ - , ) M*

and the condition * (/*') = 0 gives

\fx' + v/
Substituting this value of /82, we find, since r =

A particle moves on the surface and is acted on by an attractive
force situated at the centre, 8, of the sphere having double contact at
the umbilics whose abscissa is positive, and by a repulsive force
situated at S', the centre of the sphere having double contact at the
umbilics whose abscissa is negative, the law of force being, as in the
preceding problem, to determine the initial velocity, in order that the
path may be the line of curvature fx = ft'.

The principle of vis viva gives us

where A and B are the absolute forces respectively,

and C = / 3 2 - -M-, + -$-B

The condition 4>' (ft) = 0 gives us

If now we make ft* = 0, we get

Hence we see that, if the particle be placed at rest at any point of the
curve fj. = av\ it will describe the line of curvature f» = /*' which
passes through the point, and will obviously oscillate perpetually.

The curve ft = av is the intersection of a sphere with the surface.

4. I now show how to find the reaction 12 of the surface for any
cases of motion on the surface in which the forces have a potential.
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Now £ — is evidently the resolved part of the force perpendicular to
dir0

the surface, dtr0 being the element of the normal, and consequently

0 being the angle the osculating plane makes with the normal.

But = —, where p0 is the radius of curvature of the normal section
P Po

through the tangent line; and again p0 = — (Salmon's Geometry of
P

Three Dimensions, Art. 194), where y is the semi-diameter parallel to
the tangent line and p the perpendicular on the tangent plane from

the centre; hence B = £ — + ^-2.

But vs is a function of ft, v, and a the primary axis of the surface, and
if we consider for a moment a as variable where it enters through as, y,

and z, pda^ = ada,

therefore finally 22 = \%- .-^- + ̂ =- (1).
J a a da y%

5. I now discuss some special cases of motion by assigning par-
ticular forms to $ (ft) and * (v) which render <& (/i) •+•¥ (y) divisible
by ft*-p\

In general, the differential equation of the path is
• do , do / v •

Let us make * ( / * ) - 0 = -5—75,
It —~ ft

where B is a constant. The differential equation of the path then

assumes the form . I^K du±x Mr1^, .dv = 0.
V k%—p* V AT — v

which is the differential equation of the orthogonal trajectory to an
umbilicar geodesic. We have also

i -
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Ahence w9 = - j , A being constant, and consequently the force is attrac-
V A

tive and varies as —=.
y

The principle of vis viva gives us

*-$-?+*
therefore

Hence:—A particle constrained to move on the surface under the action
A '''of an attractive force varying as - j - , and projected perpendicularly to an

y /A
umUHcar geodesic with the initial velocity ^-7-, will describe the curve

if

traced on the surface by the extremity of an umbilicar geodesic of constant
length.

On the Points and Tangents common to Two Oonics.

By Professor GENESE, M.A.

[Mead May \Qth, 1883.]

Taking the triangle ABO formed by three common tangents to two
conies as that of reference in any system of point coordinates, let the
equations to the conies be

+ Jmfi + ^n^y = 0 (1),

(2),

each radical being capable of the double sign; we may, without loss
of generality, make the convention that the first term in each is to be
taken positively.

For the points common to the two conies, we have

y/n \/t— \/l </ri

or = &c, •
mn+ntn—2 \Zm s/n y/tn s/n

o r i S n y >

where p\ q't r' may take the double sign; but, since qY = Up' always,


