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ON THE FAILURE OF CONVERGENCE OF FOURIER'S SERIES

By E. W. HossoN.

[Read Decomber 8th, 1904.—Received December 14th, 1904.]

It is well known that, if f(z) is a limited integrable function, defined
for the interval (—=, ), the corresponding Fourier’s series, at any point
z at which it converges, has for its limiting sum L 3 {f(z+e+f(@—el,

e=0

provided this limit exists at the point. It is known that the nature of the
function in an arbitrarily small neighbourhood of the point z determines
whether the function converges at z or not; various sufficient conditions
have been found that this convergence may take place. In the present
communication a general theorem is obtained relating to the most general
distribution of the points of the interval at which the series either con-
verges to the value of the function, or can be made so to converge by
bracketing the terms of the series in a suitable manner. In the latter
case the series 18 an oscillating one: some preliminary remarks are
accordingly made on the subject of oscillating series. An example, due
to Schwarz, of a series which represents a continuous function, and fails
to converge at a particular point, is considered in detail, and it is shown
that the series is in reality an oscillating one, at the point, and that by
introducing & suitable system of brackets, but without altering the order
of the terms, the series can be made to converge to the value of the
function. Finally, a function is constructed which fails to converge at
points in every interval contained in the interval (—=, 7). A more
complicated example of such a function has been given* by P. Du Bois
Reymond. ’

On Oscillating Series.

1. Let us suppose that u,, g, ..., %, ... 15 an unending sequence of
numbers, such that u, has for each value of = a definite numerical value
assigned by means of a prescribed law; let s, denote the sum
w;+us+...+u,, and let us consider the aggregate (s, sy ..., Sa, ...), the
elements of which may be denoted in the usual manner by points on a

* Abhandlungen der bayerischen Akademie, Vol, xr,
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straight line. This enumerable set of points will be denoted by G ; the
following cases may arise :—

(1) The set G may consist of points all of which lie between two fixed
points 4, B, and the derivative G’ of the set G may consist of a single
point s. In this case the series u,+ug+...+un+... is convergent, and s
ig its limiting sum.

(2) The set G may be unlimited in one direction or in both directions,
and the derivative G' may be non-existent. It may be said that G has
the improper limiting point + @, or the improper limiting point — o ;
it may have both 4+ and — o as improper limiting points. In either
case |s,| has no upper limit, and the series wu,+uy+... +u,+... is said
to be divergent. There are thus two species of divergent series: for
example, the series 1/1+1/24...41/n+... is divergent and has the
improper limiting point + , whereas the series

1—-248—4+...+@n—1)—2n+...
has the two improper limiting points + o, —®.

(8) The set G may consist of points all lying between two fixed points

A, B, and the derivative G’ may consist of more than one point; in this
~ case the series is said to be an oscillating series. The set G’ may contain
a finite or an infinite number of - oints, but is, in any case, in accordance
with a well-known theorem, a clo: :d set, and consequently has an upper
limit U and a lower limit L. These limits U and L are called the limits
of indeterminacy of the series Zu,.

It is always possible to find a sequence (sa,, $u, Su, -..) Of partial sums,
where 7, <ng<<ng..., which converges to the limit U, and another such
sequence which converges to the limit L, or one which converges to any
prescribed point of G’. It thus appears that, by means of a suitable
system of brackets, the oscillating series Zu, may be converted into a
convergent series of which the sum is a prescribed point of G', the terms
in each bracket being amalgamated. The set G’ may be non-dense in the
interval (L, U), or it may consist of all the points of that interval, or it
may consist of a closed set of the most general type which is dense in
some parts of the interval (L, U).

For example, the series 1—1+4+1—1+41—... has the points 1, 0 for
the upper and lower limits of indeterminacy, and G' consisis of these two
points.

Again, it is easy to construct a series which oscillates between the.
limits of indeterminacy 0, 1, and such that G’ consists of the whole
interval (0, 1).

SER. 2. VOL, 3. NoO. 886, &
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Let sl - %’ 32 = ','1;') sa = %r 34 = %’y 35 - ‘},’y
=% =% S=3% 3922’ S10=FH oo
and generally
s = _L_ s — L s _m=+1
m(m+1)+1 ImI 2 e = 5o Ty ceny meiy = o
P T . ; _mat1
(m+1p+1 2m-|—3’ (m+10+2 2m+2, iy (m+1)(m+3) 'm,+3‘

The set G consists of all the rational numbers between 0 and 1, and

thus G’ consists of the whole interval (0, 1).
It follows that the series

.2 3 8.4 8.4 8.5
where
1 m 2 __1

Unm+1)+1 — 2m+2 m+2’ Um(m+1)+2 — om+1 2m+2'
. _8 _ 2 _m+1l_ m
m(m+1)+8 m —2m+1’ ooy u(m+1)’ - 77L+2 m+33
R B = Uomsp41 = s — 5

el = 8 Mt e = o2 2w+ 9

can have its terms so bracketed that the sum of the resulting series is any
prescribed number in the interval (0, 1).

(4) The derivative G’ may exist, but it may be unlimited in one or in
both directions: thus U may have the improper velue 4+, or L may
have the improper value —, or both these cases may arise simul-
taneously. In this case the series oscillates between limits one or both of
which are indefinitely great. The series may be made to diverge by
introducing a suitable system of brackets, or it may be made to converge
to any point of G'. '

For example, a series may be constructed which oscillates between
infinite limits of indeterminacy, but which, by introducing a suitable
system of brackets, may be made to converge to any prescribed number
whatever.

o 2z—1

If ' = ————V{x(l—z)}
the points z of the interval (0, 1) have a (1, 1) correspondence with the
points z' of the interval (— @, ®); it is clear that a set of points in the
interval (0, 1) corresponds to a set in the interval (—®, ), the relative

, where the positive sign is ascribed to the radical,
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order of pairs of points in the one interval being the same as that of the
corresponding points in the other interval. Further, a limiting point of a
set of points in the interval (0, 1) corresponds to a limiting point of the
corresponding set of points in the interval (—a, ). The rational points
within the interval (0, 1) correspond to a set of points everywhere dense in
the unlimited line (—a, 4+ o). We may apply this method to transform
the series obtained in (3) which oscillates between the limits of inde-
terminacy 0, 1, and which can be made by introducing suitable brackets
to converge to any number in the interval (0, 1).

We find
U 1 ro__ 2 v 1 ' 3
.= 0, =5 RTToOp ST o5 ST T3
r U 4 r —_ 1 U — 2 ! — 5
s =0, 37:‘73: ss——:/—ﬁ, 39—2/—3, s“’——ﬁ’ s
and generally
' — 0 2m K - _ 2m—38
Smm+n+1 = JemF1)y VAT TER S YL
' _ m s — _ _2m+1
S = 1y maper = J2m+2) T
m—1

’
S gy = m——
(m+1)(m+2) \/‘42("1 | 1)’

Thus the series

i G -G
s e

has the required character: it may be made to converge to any value
whatever by suitably bracketing the terms together and amalgamating
the terms in each bracket, without altering the order of the terms.

The transformation z' = i S is an example of an unlimited

Viz(l—2)}

number of transformations by means of which sets of points in a finite
interval may be made to correspond with sets of points i1 an unlimited
straight line, the ordering of the sets being the same. Another simp'le
transformation of this kind is ' = tan =z/2, by which a set of points z in
the interval (—1, +1) is transformed into a set of points z' on an

unlimited straight line. )
i
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The Points at which Fourier's Series does not converge.

2. Let f(z), ¢(z) denote two functions which are limited and integrable
in the interval (—m, =), and let a,, b, denote the Fourier’s coefficients

j' f () cos sz dz, Y f(z) sin szdz, the corresponding coefficients for the

function ¢(z) being denoted by a,, b,. It has been well known for a long
time that, provided the Fourier's series for the functions f(z), ¢(2) con-

. verge uniformly in the domain (—, =), the series 3ay a0+ = (@sac+ b, by)
1

converges, as n i8 indefinitely increased, to the sum %r S (@) ¢ (2)dz.

a -

The theorem has, however, more recently been established,* that the
series converges to the same sum, quite independently of the mode of
convergence of the Fourier’s series, and in fact independently of any
assumption that these series converge at all.

In the particular case in which the two functions f(z), ¢(z) are
identical, the theorem takes the form that for any limited integrable
function f(z), the series &af,-}-);.(a?-l-bf) 1s always convergent and has for

its sum —1-5" 1f(@)}?dz, and that this is true independently' of any
T)_n

assumption as to the convergence of the Fourier’s series
-]
3a,+ 2 (a, cos sz+ b, sin sz).
1

This theorem will be here applied to an examination of the properties of
the Fourier’s series.

The function f(r) being limited and integrable in the interval (—r, =),

let R, denote f(zyr—3a,—Z(ascossz+ b,sin sz) ;- we have
1

5’ E,dz = 5 {f@)*dz—r [ 3a+ 2+ |
- —r 1

The expression on the right-hand side is essentially positive, and
converges to zero as 7 is indefinitely increased. Let e, m be two fixed
numbers which may be so ‘chosen that ¢*/4m is as small as we please ;
then an integer N exists, dependent on m and e, such that

T 2
2 € ;
5_' Ridz < g provided n > N.

* The first proof was given by De la Vallée Poussin ; see .4nnales de la Soc. Scient. de Bruzeiles ;
other proofs have been given by Hurwitz, Math. Annalen, Vol. Lvi1., and by Fischer, Monatshefte
Sfiir Math. u. Physik, Vol. xv.
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Let us take a fixed value of #» which is > N; then, since |R.| is
an integrable function, the interval (—, w) can be divided into a finite
number of parts such that the sum of those parts in each of which the
fluctuation of | R.| is > e is less than an arbitvarily chosen positive
number n. In each of the other parts, the fluctuation of | R.| is < 3e.
Let these latter parts be denoted by 6,; then [R?dz, taken through all
the parts &, is < e*/4m. If one of the intervals of &, contains a point
at which |R.| > ¢, then at every point in that interval | R.| > 3e; it
is clear that the sum of those of the intervals &, for the whole of each of
which | R.| > 3¢ must be less than 1/m. It has now been shown that
there exists a finite set of intervals of which the sum is > 27 —p—1/m,
such that at every point in them the condition | R,| < e is satisfied ;
the set of intervals depends upon the particular value of » chosen.

The number of intervals in the set depends upon the value of »,
and may increase indefinitely as » is indefinitely diminished; it follows
that for each value of » which is > N there exists a measurable set
of points such that at each point | R;| <, the measure of the set being

> 2r—1/m.

It has now been established that a sequence Gy, Gw+1, G4z ---
of measurable sets of points exists such that the measure of each set is
> 27 —1/m, and such that at any point of any one of them G, the
condition |R,|< ¢ is satisfied.

The following theorem* in the theory of sets of points will now be
applied to the sequence Gy, Gy+1, G2y - :—

If P, P ..., Py, ... i8 & sequence of sets of points, each of which
sets is a component of a closed set of finite content /, and if the interior
measure of each of the sets is greater than a fixed number C, then there
exists a set of points of interior measure > C, and of the power of
the continuum, such that each point of the set belongs to an infinite
number of the given sets.

In our case the sets Gy, Gyi41, Gyyo, ... are all measurable and their
measures are all > 2xr—1/m—», however small » may be; it follows
that a set exists of interior measure > 2x—1/m—», each point of

® This theorem was stated and proved by W. H. Young, Proc. London Math. Soc., Ser. 2,
Vol. 2, in his paper on ‘‘Open Sets and the Theory of Content.”” The theorem, so far as it
relates to measurable sets, was stated without proof by Borel in the Comptes Rendus for Decemuber,
1903. The expression ‘‘measure’’ is employed in the present paper in accordance with the
usage of Borel and Lebesgue, instead of the expression ‘‘content’’ employed by W. H. Young,
because the latter has been used in another sense by Harnack, Cantor, and others. The word
content is here restricted to the case of closed sets, in which case the ‘‘ content’’ of Harnack
and the ‘‘measure’’ of Borel are identical.
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which belongs to an infinite number of the sets Gy, Gys1, .... Since
n is arbitrarily small, it follows that the interior measure of the set
of points thus found is > 27—1/m. For each point of this set G (¢
there are an infinite number of values of » such that |R,| <e. Let us
consider the set H, of points for each of which |E,| > ¢, for all values
of n except for a finite number of such values, and let a be the exterior
measure of this set, and, if possible, let a > 0; for the complementary
set which is of interior measure 27 —a«, there must be for each point
an infinite number of values of # for which |R,| <e. Let us choose
m 80 large that 1/m < a; then for each point of G(e) which is of
interior measure 2w—1/m > 2r—a there are an infinite number of
values of n for which |R.| <€, and these cannot all be included in the
set complementary to H,; it follows that it is impossible that « > 0;
thus the set H, is measurable, and its measure is zero.

Since the set H. of those points for each of which |R,| < ¢ at most
for a finite number of values of # has zero measure, it follows that the
complementary set K,, for each point of which | B,| <e, for an infinite
number of values of %, has the measure 27. Let us now take
a sequence of diminishing values of €, say e, €, ..., €, ..., which
converges to zero, and consider the sets K,, K., ..., K., ...; each of
these sets has the measure 2= : it follows, by applying again the theorem
i sets of points already employed, that there exists a set of points of
measure 27 each point of which belongs to an infinite number of the
sets K., K, ..., K., .... This set L is such that for any point P of
it a sequence e, €, €, ... of values of ¢ belonging to the sequence
€1, €, €, ... oxists such that | R,| < e, for an infinite number of values
of n, | Ba| < ¢, for an infinite number of values of n, and so on. The
sequence ep,, €p,, €p, ... converges to the limit zero; thus for any point
of the set L we have lim B, = 0, provided a properly chosen sequence
of increasing values of n is taken.

For any point of the set L, either the Fourier’s series converges
to the value f(z), or else it oscillates between finite or infinite limits
of indeterminacy, but so that the functional value at the point is a
limiting point of the partial sums of the series. In the latter case the
series can be made to converge to the value f(z), by bracketing the
terms in a suitable manner, the terms in any one bracket being regarded
as amalgamated ; no change is made in the order of the terms.

If for amy wvalue of the variable x the Fourier's series does not
converge to the value f(x), but can be made to converge to that value
by introducing a suitable system of brackets, the terms in each bracket
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being amalgamated, but the order of the terms being unaltered, the series
will be said to be quasi-convergent with f(x) as its sum.

The set complementary to L las zero measure, and contains (1) all
those points for which the Fourier's series is divergent, (2) ponts at
which the function f(z) is discontinuous and the series converges to
a value different from f(z), and (8) points at which the series oscillates
but is not quasi-convergent with f(z) as sum.

The following general theorem has now been established : —

If f(zx) is a limited integrable function defined for the interval
(—m, ™), there exists in this interval a set of points L of which the
measure s equal to that of the whole interval, such that at each point
of L the Fourier's series either converges to f(x), or is quasi-convergent
with f(z) as sum. The complementary set ts of zero measure, and
contains all points at which the sertes is divergent, or converges to

a value different from f(z), or oscillates without betng quast-convergent.
The set L is everywhere dense in the interval, and has the cardinal

number of the continuum. The complementary set may or may not be
everywhere dense.

In the case in which f(z) is a continuous function, the set com-
plementary to L consists of points at which the Fourier's series diverges
or oscillates without being quasi-convergent.

The theorem leaves the possibility open that, even in the case of
a continuous function, there may be no point in the interval at which the
series i8 convergent.

A Continuous Function for which the Series does not converge.

3. It is well known that the question as to whether a Fourier's series
converges at u particular point must be answered by an examination of
the limit of an integral of Dirichlet’s type

L:p(z) ﬂ%%”—zdz 0 <a<im,
when the positive integer m is indefinitely increased.

Let the product 1.8.5 ... (2A+1) be denoted by [2A+1], and let
the function ¢(2) be defined for the interval (0, a) in the following
manner :—In the interval (w/[A—1], 'rr/[)\]) let ¢(2) = ¢, 8in [)\] z, where
¢, is a constant dependent upon the value of A; let A have all values
A, Mi+1, A +2, ... where A, is a fixed integer, and we may suppose
a 80 chosen that a = =/[A\;—1]; also let ¢(0)'= 0. If the sequence
Crp» Cot1) Ca43r --- De 80 chosen that it converges to the limit zero, the
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function ¢(2) is continuous at the point z =0, but has an indefinitely
great number of oscillations in an arbitrarily small neighbourhood of that
point. It has been shown by Schwarz* that, if ¢, is so chosen that
cxlog(2A+1) becomes indefinitely great as A is indefinitely increased,
the integral may become indefinitely great as m is increased indefinitely,
and thus that a Fourier’s series exists which does not represent the given
continuous function at a particular point.

It will here be shown that the series is in reality oscillatory, and
that the point # = 0 is a point of quasi-convergence in the sense defined
above. A simplified proof of Schwarz’s result will first be given.

It i1s known that the integral j ¢ (2) wdz may, for the

purpose of the consideration of the limiting values when m is indefinitely

sm(277__:_+1)_z dz. Thus we may consider

increased, be replaced by t Jaqs(z)
0
the latter integral.
Let 2m+1=1,8,5 ... 2u+1l = [u];

then j ¢ (2) L2 zdz
0
— r/[u 1 gin? !p!zd2+ k2l S"’["“] sm!nlz sin [u])z dz

LM ""A‘ /(n]
% j”’[""‘] sm!n|z gin [u]z de;
w1 S

the first integral on the right-hand side may be written in the form

5”[““] 1—cos 2[u]z e
C e
#/[x] Z

which is equivalent to

B .
3¢, log Qu+1)—3c, (] j cos 2[u]z dz,
T Jailk)
where 3 is a number between /[x] and w/[u—1].
Now let ¢, log (2u+1) increase indefinitely with x ; this 1s consistent
with ¢, having a zero limit, for we have onl’y to take ¢, = Tog (2,1‘ o
where s is some fixed positive number less than unity.

8
Since ¢, MJ cos 2{u]z dz is numerically not greater than c,/w,
T Jafful

* See the history of the theory of Fourier’s series, by Sachs, Schlomilch’s Zeitachrift, Supple-
ment, Vol. xxv.
+ A rigid proof of this is given by Brodén, Math. Annalen, Vol. rir., p. 220.
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we see that, with the supposition made as to c,, the expression
w/(k—1] o312
c“j sin [u]z ;.

#/l] z
becomes indefinitely great as u is increased indefinitely.
To evaluate uil o jwl[n—ll sin [n].z sin [u]2 ds
n=A w/[n] 2

we see, by writing sin[n]zsin[u]z as half the difference of two cosines,
and applying the second mean value theorem to each integral, that the
absolute:value of the expression is less than

et [} 1 1

) |
EA. “ o (Wl + (u]+[n])
n-1
or than s & [] ( 1 + 1 }
n=A, T 1
[I‘- ]1{2#_*_1_[_[%]1_] 2“+1+[ [n] ];
which is less than [p.[i]l] .
o . Ca 1 1
and this is ;; {l+2u—1+(2,a—1)(2p.—8)+'"}'

Thus the absolute value of the expression is less than 2c./wu, and this
becomes indefinitely small as u is indefinitely increased ; thus the limiting
value of the expression is zero.

Finally, we have to consider the expression

® w/[n-—-1]
3 . j sm[nlzsm[n]zd

n=p+l n/[(n]

< [u], and |sin[n]z| < 1, the absolute value of the

. sinfulz
sin | Sl

expression is less than ¢, .1 [x] [—:—], and this has the limit zero when u

is indefinitely increased.
Schwarz’s theorem has now been established, that

j”g(z) sm[,u.]zd

sin 2

increases indefinitely as u is indefinitely increased, where

(k] =1.8.5... Qu+1),
and ¢ (z) is defined by ¢(0) = 0, ¢(2) = casin[A]z in the interval
(w/[A], =/[A—1]) where A =X, \;+1, 42, ... and a = 7/[A,—1],
provided c, has the value 1/{log (2A+1)}*, where 0 < s < 1.
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4. We proceed to consider the case in which 2m+1 = (2p+1)[u—1],
where p is an integer which varies with x in such a manner that it always
lies between 0 and u.

In this case, as before, we divide the integral

S“¢(z) sin (2’»:-{-1) 2 4z
0

into the three parts

r.} - sin [#]zSin (2p+1)[#_1]zdz
V4

-1 (wa=1] G ; -
. j’ sin[n]zsin@p+1)[u—1]z ;.

I BT z
] S"’["“‘] sin 1]z sin (2p+1)[u—1]2 iz
=u+l " w/[n] P4

The tirst part is equal to
8
c_':ZL‘Il;“JJ I ][COS]D‘—I 2‘“_217) —cos q["""l] 2#+2P+2)lt]d2

where (8 is a number between w/[u] and w/[u—1], and this expression is
less in absolute value than

C,.[,U-]_! 1 + ! !
7 A[u—17@u—=2p) ' [u—1]Cu+2p+2)

e, ' 2u+1 2u+1 )
T 12u—2p 2,u+2p+2)

and this may be written

or than

1 1
%JHE 145 \l

Tl deR]

M

If, now, p increases with x in such a manner that p/u is always less than
some fixed number which is less than unity, this expression diminishes
indefinitely as u 1s indeﬁnitely increased ; it would also be sufficient that
pln = 1—«/{log(2u+1)}*, where s' <s, ¢, = 1/{log(2u+1)}*, and « is
finite.

Next. we have "i‘ c J"’i"'” sin[n]z sin 2p+1)[u—1]2
' ey Jmitn) z

dz 18 less in

absolute value than

3l en[n] 1 + 1 I
1, r 1@+ D[u—1]—[n] ' Cp+1)[u—1]+[n]}
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or than C“ ) T [n] 1 ( 1 [ .l + 1 ! !
it T PR L) B P [
and this is less than
Cay 1 1 !
p_'rr {1+ 2u—1 + 2u—1) (2u—38) +o |

or than 2¢, /pm; thus the expression becomes indefinitely small when p
is increased indefinitely.

That 5 . 5 '"=1 gin [n] 2 sin (2p+1) [,U."‘l]c
w/[n] z

n=p+l

has the limit zero is seen from the fact that its absolute value is less than
2p+1

cur1(Zp+1)[n—1] [%] or than 7¢u1g 2

We have now established that j ¢ (2) Ml—)- dz has the limit
0
zero if 2m+1 increases indefinitely through a sequence of the form

[y —1]@2p,+1), [ee— 1] 2py+ 1), [u3—1](2pg+1).

where w,, ug, Mg, ... 18 a1 increasing sequence of integers, and py, pa. Po. ...
are such that p/u < 1—x/{log (2u+1)}°.

The limit of the samne integral has been shown to be infinite if 2m+1
increases indefinitely through a sequence of values [u,], [mo)s [mg), ----

A Continuous Function for which the Series does not converge at « Dense
Set of Points.

5. Let the continuous function f(z) he defined for the interval (—, 7)
as follows :—If —=r < z < €, where £ is a fixed point in the interval, let
f@=0; if 0<z—§<2alet f(z) =¢ (z;—f), where ¢ (_:c_;_f) is the
function ¢ (2) which has been already discussed ; in case £+ 2a < 7, we
take f(z) =0, for §+2a <z L 7.

The limit of the sum of the first 2m+ 1 terms of the Fourier’s series
for the function f(zx) is that of the expression

sin 2m+41) x';z
—\| f&) - dz’,
—w r -2

sin
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and at the point £ the limit depends upon that of
1 Ytﬁ sm @m-+ l)zdz

sm 2

It has been shown that this limit is zero, or indefinitely great, according
to the nature of the sequence of values through which 2m-+1 increases
indefinitely. 1t follows that, at the point £, the Fourier's series is not
convergent, but is quasi-convergent to the value f(£) = 0 of the function.

Let us now denote the function f(x) by f(z, £), and let &, &, ..., &, ...
be an enumerable set of values of £, everywhere dense in the interval
(—m, 7), and let us consider the funection

F@ = @, &)+t @ &)+ . +enf @, £t
where ¢;, ¢;, ..., s, ... are constants so chosen that the series
01+C’+...+6n+...
is absolutely convergent.
Since the upper limits of each of the functions |f(z, £)| has the same
finite value, it follows that the series ¢, f(z, £)+c,f(z, £)+ ... is uniformly

convergent in the interval (—=, #), and thus the function F'(z) is con-
tinuous, and the expression

LU P 2 4z
o — A

is equal to the sum

sin (

12 (7 ' é
e t@.8)

which may be written in the form

¢ XI(z» 7n)+02X2(?:: m)+... +C-uXu(z, my+ ...,
where L x,(z, m) is zero, unless z = £,, at which point the limit may be

either 0 or @, according to the mode in which  is indefinitely increased ;
a similar statement holds as regards x,(z, m) at the point £,, and generally
L xn(z, m) is zero, unless z = §,, in which case the limit depends upon

the mode in which m becomes infinite.
At the point £,, the term ¢, xa(z, m) has an infinite limit provided m is
increased indefinitely in & proper manner, but it might happen that the

‘it of
limit o Cn+lXu+l(€u: m)+cn+2Xn+2(fm m+...



1904.] THE FAILURE OF CONVERGENCE OF FOURIER'S SERIES. il

is also infinite, although each separate term has a zero limit; in that case
the limit of the whole expression for the sum of the series might be finite
or zero, in whatever manner m were made indefinitely great. If this
happened for a particular set of values of the constants ¢, ¢y, ..., Ca, Cas1, --+y
it would no longer happen if these constants were replaced by c, e, cye, e,
Cg81858, ..., Cnbyby ... 6., ..., Where e, e, ¢5, ... 13 a sequence of descend-
ing positive numbers, provided they are properly chosen. For, if

CnXn (fm m) + {cn+1X1\+l(€us 'm')+cn+2x-n+2(£n» m)=+... } »

when m is indefinitely increased, were finite, being dependent on the
form o — o, the expression

€)€y...€, Cnxn(fuy "n)+81 €y... bpyl : Cn+l X-n+1(sém m)+cn+2 en+2Xn-2 (EN’ 'm')+ vee }
would also be finite or zero, only in case

Cn41 Xw+l(fm m) +Cu+26n+2Xn+2 (,§m m)+...
Crn+1Xn+1 (fn; m)+cn+2)(n+2 (fn, my+...

€n+1

had as its limit unity, when m is indefinitely increased. But this limit
can be altered by changing €,.1, without altering ensz2, €n4s, ... ; and thus
ex+1 can certainly be chosen so that this expression does not converge to
unity when m is indefinitely increased.

It has thus been shown that, by choosing the numbels €y €gy ...
properly, the limit of the ratio o

3162 eneu+l ‘[Cn+an+1(§m m)+cn+‘.’. en+2Xn+2(§-m m)+ }
to €169 .. EnCnXn (T, M)

will be different from what it was when all the ¢’s were equal to unity. It
has therefore been shown that, by altering the numbers ¢,, ¢, ¢g, ... in a
suitable way, the infinite limit of ¢nxn(£s m) when m is indefinitely in-
creased will no longer be removed by an infinite limit of the sum

Cnt1Xn+1 (fny m) +cn+2.Xn+2 (f,., m)-l- ee s

It has thus been shown that it is possible to choose the mumbers
¢, Cg Cgy ... 11 Such @ manner that the continuous function

F() = i cn £z, &)
1

is such that the Fourier's series fails to converge to the value of the func-
tion at each point of the everywhere dense set of points (€, &, ... £).



